Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
C
cpython
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Batuhan Osman TASKAYA
cpython
Commits
30c73624
Kaydet (Commit)
30c73624
authored
Ara 01, 2010
tarafından
Raymond Hettinger
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
Clean-up last update (missing comma, unnecessary spacing change, spurious backtick).
üst
adb8146e
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
434 additions
and
434 deletions
+434
-434
itertools.rst
Doc/library/itertools.rst
+434
-434
No files found.
Doc/library/itertools.rst
Dosyayı görüntüle @
30c73624
...
@@ -2,14 +2,14 @@
...
@@ -2,14 +2,14 @@
=======================================================================
=======================================================================
.. module:: itertools
.. module:: itertools
:synopsis: Functions creating iterators for efficient looping.
:synopsis: Functions creating iterators for efficient looping.
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>
.. testsetup::
.. testsetup::
from itertools import *
from itertools import *
This module implements a number of :term:`iterator` building blocks inspired
This module implements a number of :term:`iterator` building blocks inspired
...
@@ -46,7 +46,7 @@ Iterator Arguments Results
...
@@ -46,7 +46,7 @@ Iterator Arguments Results
==================== ============================ ================================================= =============================================================
==================== ============================ ================================================= =============================================================
Iterator Arguments Results Example
Iterator Arguments Results Example
==================== ============================ ================================================= =============================================================
==================== ============================ ================================================= =============================================================
:func:`accumulate` p[, start=0] p0, p0+p1, p0+p1+p2
... `
``accumulate([1,2,3,4,5]) --> 1 3 6 10 15``
:func:`accumulate` p[, start=0] p0, p0+p1, p0+p1+p2
, ...
``accumulate([1,2,3,4,5]) --> 1 3 6 10 15``
:func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ... ``chain('ABC', 'DEF') --> A B C D E F``
:func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ... ``chain('ABC', 'DEF') --> A B C D E F``
:func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ... ``compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F``
:func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ... ``compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F``
:func:`dropwhile` pred, seq seq[n], seq[n+1], starting when pred fails ``dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1``
:func:`dropwhile` pred, seq seq[n], seq[n+1], starting when pred fails ``dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1``
...
@@ -102,44 +102,44 @@ loops that truncate the stream.
...
@@ -102,44 +102,44 @@ loops that truncate the stream.
.. function:: chain(*iterables)
.. function:: chain(*iterables)
Make an iterator that returns elements from the first iterable until it is
Make an iterator that returns elements from the first iterable until it is
exhausted, then proceeds to the next iterable, until all of the iterables are
exhausted, then proceeds to the next iterable, until all of the iterables are
exhausted. Used for treating consecutive sequences as a single sequence.
exhausted. Used for treating consecutive sequences as a single sequence.
Equivalent to::
Equivalent to::
def chain(*iterables):
def chain(*iterables):
# chain('ABC', 'DEF') --> A B C D E F
# chain('ABC', 'DEF') --> A B C D E F
for it in iterables:
for it in iterables:
for element in it:
for element in it:
yield element
yield element
.. classmethod:: chain.from_iterable(iterable)
.. classmethod:: chain.from_iterable(iterable)
Alternate constructor for :func:`chain`. Gets chained inputs from a
Alternate constructor for :func:`chain`. Gets chained inputs from a
single iterable argument that is evaluated lazily. Equivalent to::
single iterable argument that is evaluated lazily. Equivalent to::
@classmethod
@classmethod
def from_iterable(iterables):
def from_iterable(iterables):
# chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
# chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
for it in iterables:
for it in iterables:
for element in it:
for element in it:
yield element
yield element
.. function:: combinations(iterable, r)
.. function:: combinations(iterable, r)
Return *r* length subsequences of elements from the input *iterable*.
Return *r* length subsequences of elements from the input *iterable*.
Combinations are emitted in lexicographic sort order. So, if the
Combinations are emitted in lexicographic sort order. So, if the
input *iterable* is sorted, the combination tuples will be produced
input *iterable* is sorted, the combination tuples will be produced
in sorted order.
in sorted order.
Elements are treated as unique based on their position, not on their
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, there will be no repeat
value. So if the input elements are unique, there will be no repeat
values in each combination.
values in each combination.
Equivalent to::
Equivalent to::
def combinations(iterable, r):
def combinations(iterable, r):
# combinations('ABCD', 2) --> AB AC AD BC BD CD
# combinations('ABCD', 2) --> AB AC AD BC BD CD
...
@@ -161,9 +161,9 @@ loops that truncate the stream.
...
@@ -161,9 +161,9 @@ loops that truncate the stream.
indices[j] = indices[j-1] + 1
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)
yield tuple(pool[i] for i in indices)
The code for :func:`combinations` can be also expressed as a subsequence
The code for :func:`combinations` can be also expressed as a subsequence
of :func:`permutations` after filtering entries where the elements are not
of :func:`permutations` after filtering entries where the elements are not
in sorted order (according to their position in the input pool)::
in sorted order (according to their position in the input pool)::
def combinations(iterable, r):
def combinations(iterable, r):
pool = tuple(iterable)
pool = tuple(iterable)
...
@@ -172,23 +172,23 @@ loops that truncate the stream.
...
@@ -172,23 +172,23 @@ loops that truncate the stream.
if sorted(indices) == list(indices):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)
yield tuple(pool[i] for i in indices)
The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
or zero when ``r > n``.
or zero when ``r > n``.
.. function:: combinations_with_replacement(iterable, r)
.. function:: combinations_with_replacement(iterable, r)
Return *r* length subsequences of elements from the input *iterable*
Return *r* length subsequences of elements from the input *iterable*
allowing individual elements to be repeated more than once.
allowing individual elements to be repeated more than once.
Combinations are emitted in lexicographic sort order. So, if the
Combinations are emitted in lexicographic sort order. So, if the
input *iterable* is sorted, the combination tuples will be produced
input *iterable* is sorted, the combination tuples will be produced
in sorted order.
in sorted order.
Elements are treated as unique based on their position, not on their
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, the generated combinations
value. So if the input elements are unique, the generated combinations
will also be unique.
will also be unique.
Equivalent to::
Equivalent to::
def combinations_with_replacement(iterable, r):
def combinations_with_replacement(iterable, r):
# combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
# combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
...
@@ -207,9 +207,9 @@ loops that truncate the stream.
...
@@ -207,9 +207,9 @@ loops that truncate the stream.
indices[i:] = [indices[i] + 1] * (r - i)
indices[i:] = [indices[i] + 1] * (r - i)
yield tuple(pool[i] for i in indices)
yield tuple(pool[i] for i in indices)
The code for :func:`combinations_with_replacement` can be also expressed as
The code for :func:`combinations_with_replacement` can be also expressed as
a subsequence of :func:`product` after filtering entries where the elements
a subsequence of :func:`product` after filtering entries where the elements
are not in sorted order (according to their position in the input pool)::
are not in sorted order (according to their position in the input pool)::
def combinations_with_replacement(iterable, r):
def combinations_with_replacement(iterable, r):
pool = tuple(iterable)
pool = tuple(iterable)
...
@@ -218,196 +218,196 @@ loops that truncate the stream.
...
@@ -218,196 +218,196 @@ loops that truncate the stream.
if sorted(indices) == list(indices):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)
yield tuple(pool[i] for i in indices)
The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.
The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.
.. versionadded:: 3.1
.. versionadded:: 3.1
.. function:: compress(data, selectors)
.. function:: compress(data, selectors)
Make an iterator that filters elements from *data* returning only those that
Make an iterator that filters elements from *data* returning only those that
have a corresponding element in *selectors* that evaluates to ``True``.
have a corresponding element in *selectors* that evaluates to ``True``.
Stops when either the *data* or *selectors* iterables has been exhausted.
Stops when either the *data* or *selectors* iterables has been exhausted.
Equivalent to::
Equivalent to::
def compress(data, selectors):
def compress(data, selectors):
# compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
# compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
return (d for d, s in zip(data, selectors) if s)
return (d for d, s in zip(data, selectors) if s)
.. versionadded:: 3.1
.. versionadded:: 3.1
.. function:: count(start=0, step=1)
.. function:: count(start=0, step=1)
Make an iterator that returns evenly spaced values starting with *n*. Often
Make an iterator that returns evenly spaced values starting with *n*. Often
used as an argument to :func:`map` to generate consecutive data points.
used as an argument to :func:`map` to generate consecutive data points.
Also, used with :func:`zip` to add sequence numbers. Equivalent to::
Also, used with :func:`zip` to add sequence numbers. Equivalent to::
def count(start=0, step=1):
def count(start=0, step=1):
# count(10) --> 10 11 12 13 14 ...
# count(10) --> 10 11 12 13 14 ...
# count(2.5, 0.5) -> 3.5 3.0 4.5 ...
# count(2.5, 0.5) -> 3.5 3.0 4.5 ...
n = start
n = start
while True:
while True:
yield n
yield n
n += step
n += step
When counting with floating point numbers, better accuracy can sometimes be
When counting with floating point numbers, better accuracy can sometimes be
achieved by substituting multiplicative code such as: ``(start + step * i
achieved by substituting multiplicative code such as: ``(start + step * i
for i in count())``.
for i in count())``.
.. versionchanged:: 3.1
.. versionchanged:: 3.1
Added *step* argument and allowed non-integer arguments.
Added *step* argument and allowed non-integer arguments.
.. function:: cycle(iterable)
.. function:: cycle(iterable)
Make an iterator returning elements from the iterable and saving a copy of each.
Make an iterator returning elements from the iterable and saving a copy of each.
When the iterable is exhausted, return elements from the saved copy. Repeats
When the iterable is exhausted, return elements from the saved copy. Repeats
indefinitely. Equivalent to::
indefinitely. Equivalent to::
def cycle(iterable):
def cycle(iterable):
# cycle('ABCD') --> A B C D A B C D A B C D ...
# cycle('ABCD') --> A B C D A B C D A B C D ...
saved = []
saved = []
for element in iterable:
for element in iterable:
yield element
yield element
saved.append(element)
saved.append(element)
while saved:
while saved:
for element in saved:
for element in saved:
yield element
yield element
Note, this member of the toolkit may require significant auxiliary storage
Note, this member of the toolkit may require significant auxiliary storage
(depending on the length of the iterable).
(depending on the length of the iterable).
.. function:: dropwhile(predicate, iterable)
.. function:: dropwhile(predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate
Make an iterator that drops elements from the iterable as long as the predicate
is true; afterwards, returns every element. Note, the iterator does not produce
is true; afterwards, returns every element. Note, the iterator does not produce
*any* output until the predicate first becomes false, so it may have a lengthy
*any* output until the predicate first becomes false, so it may have a lengthy
start-up time. Equivalent to::
start-up time. Equivalent to::
def dropwhile(predicate, iterable):
def dropwhile(predicate, iterable):
# dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
# dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
iterable = iter(iterable)
iterable = iter(iterable)
for x in iterable:
for x in iterable:
if not predicate(x):
if not predicate(x):
yield x
yield x
break
break
for x in iterable:
for x in iterable:
yield x
yield x
.. function:: filterfalse(predicate, iterable)
.. function:: filterfalse(predicate, iterable)
Make an iterator that filters elements from iterable returning only those for
Make an iterator that filters elements from iterable returning only those for
which the predicate is ``False``. If *predicate* is ``None``, return the items
which the predicate is ``False``. If *predicate* is ``None``, return the items
that are false. Equivalent to::
that are false. Equivalent to::
def filterfalse(predicate, iterable):
def filterfalse(predicate, iterable):
# filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
# filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
if predicate is None:
if predicate is None:
predicate = bool
predicate = bool
for x in iterable:
for x in iterable:
if not predicate(x):
if not predicate(x):
yield x
yield x
.. function:: groupby(iterable, key=None)
.. function:: groupby(iterable, key=None)
Make an iterator that returns consecutive keys and groups from the *iterable*.
Make an iterator that returns consecutive keys and groups from the *iterable*.
The *key* is a function computing a key value for each element. If not
The *key* is a function computing a key value for each element. If not
specified or is ``None``, *key* defaults to an identity function and returns
specified or is ``None``, *key* defaults to an identity function and returns
the element unchanged. Generally, the iterable needs to already be sorted on
the element unchanged. Generally, the iterable needs to already be sorted on
the same key function.
the same key function.
The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
generates a break or new group every time the value of the key function changes
generates a break or new group every time the value of the key function changes
(which is why it is usually necessary to have sorted the data using the same key
(which is why it is usually necessary to have sorted the data using the same key
function). That behavior differs from SQL's GROUP BY which aggregates common
function). That behavior differs from SQL's GROUP BY which aggregates common
elements regardless of their input order.
elements regardless of their input order.
The returned group is itself an iterator that shares the underlying iterable
The returned group is itself an iterator that shares the underlying iterable
with :func:`groupby`. Because the source is shared, when the :func:`groupby`
with :func:`groupby`. Because the source is shared, when the :func:`groupby`
object is advanced, the previous group is no longer visible. So, if that data
object is advanced, the previous group is no longer visible. So, if that data
is needed later, it should be stored as a list::
is needed later, it should be stored as a list::
groups = []
groups = []
uniquekeys = []
uniquekeys = []
data = sorted(data, key=keyfunc)
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):
for k, g in groupby(data, keyfunc):
groups.append(list(g)) # Store group iterator as a list
groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)
uniquekeys.append(k)
:func:`groupby` is equivalent to::
:func:`groupby` is equivalent to::
class groupby:
class groupby:
# [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
# [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
# [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
# [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
def __init__(self, iterable, key=None):
def __init__(self, iterable, key=None):
if key is None:
if key is None:
key = lambda x: x
key = lambda x: x
self.keyfunc = key
self.keyfunc = key
self.it = iter(iterable)
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = object()
self.tgtkey = self.currkey = self.currvalue = object()
def __iter__(self):
def __iter__(self):
return self
return self
def __next__(self):
def __next__(self):
while self.currkey == self.tgtkey:
while self.currkey == self.tgtkey:
self.currvalue = next(self.it) # Exit on StopIteration
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)
self.currkey = self.keyfunc(self.currvalue)
self.tgtkey = self.currkey
self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey))
return (self.currkey, self._grouper(self.tgtkey))
def _grouper(self, tgtkey):
def _grouper(self, tgtkey):
while self.currkey == tgtkey:
while self.currkey == tgtkey:
yield self.currvalue
yield self.currvalue
self.currvalue = next(self.it) # Exit on StopIteration
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)
self.currkey = self.keyfunc(self.currvalue)
.. function:: islice(iterable, [start,] stop [, step])
.. function:: islice(iterable, [start,] stop [, step])
Make an iterator that returns selected elements from the iterable. If *start* is
Make an iterator that returns selected elements from the iterable. If *start* is
non-zero, then elements from the iterable are skipped until start is reached.
non-zero, then elements from the iterable are skipped until start is reached.
Afterward, elements are returned consecutively unless *step* is set higher than
Afterward, elements are returned consecutively unless *step* is set higher than
one which results in items being skipped. If *stop* is ``None``, then iteration
one which results in items being skipped. If *stop* is ``None``, then iteration
continues until the iterator is exhausted, if at all; otherwise, it stops at the
continues until the iterator is exhausted, if at all; otherwise, it stops at the
specified position. Unlike regular slicing, :func:`islice` does not support
specified position. Unlike regular slicing, :func:`islice` does not support
negative values for *start*, *stop*, or *step*. Can be used to extract related
negative values for *start*, *stop*, or *step*. Can be used to extract related
fields from data where the internal structure has been flattened (for example, a
fields from data where the internal structure has been flattened (for example, a
multi-line report may list a name field on every third line). Equivalent to::
multi-line report may list a name field on every third line). Equivalent to::
def islice(iterable, *args):
def islice(iterable, *args):
# islice('ABCDEFG', 2) --> A B
# islice('ABCDEFG', 2) --> A B
# islice('ABCDEFG', 2, 4) --> C D
# islice('ABCDEFG', 2, 4) --> C D
# islice('ABCDEFG', 2, None) --> C D E F G
# islice('ABCDEFG', 2, None) --> C D E F G
# islice('ABCDEFG', 0, None, 2) --> A C E G
# islice('ABCDEFG', 0, None, 2) --> A C E G
s = slice(*args)
s = slice(*args)
it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
nexti = next(it)
nexti = next(it)
for i, element in enumerate(iterable):
for i, element in enumerate(iterable):
if i == nexti:
if i == nexti:
yield element
yield element
nexti = next(it)
nexti = next(it)
If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
then the step defaults to one.
then the step defaults to one.
.. function:: permutations(iterable, r=None)
.. function:: permutations(iterable, r=None)
Return successive *r* length permutations of elements in the *iterable*.
Return successive *r* length permutations of elements in the *iterable*.
If *r* is not specified or is ``None``, then *r* defaults to the length
If *r* is not specified or is ``None``, then *r* defaults to the length
of the *iterable* and all possible full-length permutations
of the *iterable* and all possible full-length permutations
are generated.
are generated.
Permutations are emitted in lexicographic sort order. So, if the
Permutations are emitted in lexicographic sort order. So, if the
input *iterable* is sorted, the permutation tuples will be produced
input *iterable* is sorted, the permutation tuples will be produced
in sorted order.
in sorted order.
Elements are treated as unique based on their position, not on their
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, there will be no repeat
value. So if the input elements are unique, there will be no repeat
values in each permutation.
values in each permutation.
Equivalent to::
Equivalent to::
def permutations(iterable, r=None):
def permutations(iterable, r=None):
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
...
@@ -434,9 +434,9 @@ loops that truncate the stream.
...
@@ -434,9 +434,9 @@ loops that truncate the stream.
else:
else:
return
return
The code for :func:`permutations` can be also expressed as a subsequence of
The code for :func:`permutations` can be also expressed as a subsequence of
:func:`product`, filtered to exclude entries with repeated elements (those
:func:`product`, filtered to exclude entries with repeated elements (those
from the same position in the input pool)::
from the same position in the input pool)::
def permutations(iterable, r=None):
def permutations(iterable, r=None):
pool = tuple(iterable)
pool = tuple(iterable)
...
@@ -446,87 +446,87 @@ loops that truncate the stream.
...
@@ -446,87 +446,87 @@ loops that truncate the stream.
if len(set(indices)) == r:
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)
yield tuple(pool[i] for i in indices)
The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
or zero when ``r > n``.
or zero when ``r > n``.
.. function:: product(*iterables, repeat=1)
.. function:: product(*iterables, repeat=1)
Cartesian product of input iterables.
Cartesian product of input iterables.
Equivalent to nested for-loops in a generator expression. For example,
Equivalent to nested for-loops in a generator expression. For example,
``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
The nested loops cycle like an odometer with the rightmost element advancing
The nested loops cycle like an odometer with the rightmost element advancing
on every iteration. This pattern creates a lexicographic ordering so that if
on every iteration. This pattern creates a lexicographic ordering so that if
the input's iterables are sorted, the product tuples are emitted in sorted
the input's iterables are sorted, the product tuples are emitted in sorted
order.
order.
To compute the product of an iterable with itself, specify the number of
To compute the product of an iterable with itself, specify the number of
repetitions with the optional *repeat* keyword argument. For example,
repetitions with the optional *repeat* keyword argument. For example,
``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
This function is equivalent to the following code, except that the
This function is equivalent to the following code, except that the
actual implementation does not build up intermediate results in memory::
actual implementation does not build up intermediate results in memory::
def product(*args, repeat=1):
def product(*args, repeat=1):
# product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
# product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
# product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
# product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] * repeat
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
result = [[]]
for pool in pools:
for pool in pools:
result = [x+[y] for x in result for y in pool]
result = [x+[y] for x in result for y in pool]
for prod in result:
for prod in result:
yield tuple(prod)
yield tuple(prod)
.. function:: repeat(object[, times])
.. function:: repeat(object[, times])
Make an iterator that returns *object* over and over again. Runs indefinitely
Make an iterator that returns *object* over and over again. Runs indefinitely
unless the *times* argument is specified. Used as argument to :func:`map` for
unless the *times* argument is specified. Used as argument to :func:`map` for
invariant parameters to the called function. Also used with :func:`zip` to
invariant parameters to the called function. Also used with :func:`zip` to
create an invariant part of a tuple record. Equivalent to::
create an invariant part of a tuple record. Equivalent to::
def repeat(object, times=None):
def repeat(object, times=None):
# repeat(10, 3) --> 10 10 10
# repeat(10, 3) --> 10 10 10
if times is None:
if times is None:
while True:
while True:
yield object
yield object
else:
else:
for i in range(times):
for i in range(times):
yield object
yield object
.. function:: starmap(function, iterable)
.. function:: starmap(function, iterable)
Make an iterator that computes the function using arguments obtained from
Make an iterator that computes the function using arguments obtained from
the iterable. Used instead of :func:`map` when argument parameters are already
the iterable. Used instead of :func:`map` when argument parameters are already
grouped in tuples from a single iterable (the data has been "pre-zipped"). The
grouped in tuples from a single iterable (the data has been "pre-zipped"). The
difference between :func:`map` and :func:`starmap` parallels the distinction
difference between :func:`map` and :func:`starmap` parallels the distinction
between ``function(a,b)`` and ``function(*c)``. Equivalent to::
between ``function(a,b)`` and ``function(*c)``. Equivalent to::
def starmap(function, iterable):
def starmap(function, iterable):
# starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
# starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
for args in iterable:
for args in iterable:
yield function(*args)
yield function(*args)
.. function:: takewhile(predicate, iterable)
.. function:: takewhile(predicate, iterable)
Make an iterator that returns elements from the iterable as long as the
Make an iterator that returns elements from the iterable as long as the
predicate is true. Equivalent to::
predicate is true. Equivalent to::
def takewhile(predicate, iterable):
def takewhile(predicate, iterable):
# takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
# takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
for x in iterable:
for x in iterable:
if predicate(x):
if predicate(x):
yield x
yield x
else:
else:
break
break
.. function:: tee(iterable, n=2)
.. function:: tee(iterable, n=2)
Return *n* independent iterators from a single iterable. Equivalent to::
Return *n* independent iterators from a single iterable. Equivalent to::
def tee(iterable, n=2):
def tee(iterable, n=2):
it = iter(iterable)
it = iter(iterable)
...
@@ -540,38 +540,38 @@ loops that truncate the stream.
...
@@ -540,38 +540,38 @@ loops that truncate the stream.
yield mydeque.popleft()
yield mydeque.popleft()
return tuple(gen(d) for d in deques)
return tuple(gen(d) for d in deques)
Once :func:`tee` has made a split, the original *iterable* should not be
Once :func:`tee` has made a split, the original *iterable* should not be
used anywhere else; otherwise, the *iterable* could get advanced without
used anywhere else; otherwise, the *iterable* could get advanced without
the tee objects being informed.
the tee objects being informed.
This itertool may require significant auxiliary storage (depending on how
This itertool may require significant auxiliary storage (depending on how
much temporary data needs to be stored). In general, if one iterator uses
much temporary data needs to be stored). In general, if one iterator uses
most or all of the data before another iterator starts, it is faster to use
most or all of the data before another iterator starts, it is faster to use
:func:`list` instead of :func:`tee`.
:func:`list` instead of :func:`tee`.
.. function:: zip_longest(*iterables, fillvalue=None)
.. function:: zip_longest(*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the iterables. If the
Make an iterator that aggregates elements from each of the iterables. If the
iterables are of uneven length, missing values are filled-in with *fillvalue*.
iterables are of uneven length, missing values are filled-in with *fillvalue*.
Iteration continues until the longest iterable is exhausted. Equivalent to::
Iteration continues until the longest iterable is exhausted. Equivalent to::
def zip_longest(*args, fillvalue=None):
def zip_longest(*args, fillvalue=None):
# zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
# zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
yield counter() # yields the fillvalue, or raises IndexError
yield counter() # yields the fillvalue, or raises IndexError
fillers = repeat(fillvalue)
fillers = repeat(fillvalue)
iters = [chain(it, sentinel(), fillers) for it in args]
iters = [chain(it, sentinel(), fillers) for it in args]
try:
try:
for tup in zip(*iters):
for tup in zip(*iters):
yield tup
yield tup
except IndexError:
except IndexError:
pass
pass
If one of the iterables is potentially infinite, then the :func:`zip_longest`
If one of the iterables is potentially infinite, then the :func:`zip_longest`
function should be wrapped with something that limits the number of calls
function should be wrapped with something that limits the number of calls
(for example :func:`islice` or :func:`takewhile`). If not specified,
(for example :func:`islice` or :func:`takewhile`). If not specified,
*fillvalue* defaults to ``None``.
*fillvalue* defaults to ``None``.
.. _itertools-recipes:
.. _itertools-recipes:
...
@@ -592,168 +592,168 @@ which incur interpreter overhead.
...
@@ -592,168 +592,168 @@ which incur interpreter overhead.
.. testcode::
.. testcode::
def take(n, iterable):
def take(n, iterable):
"Return first n items of the iterable as a list"
"Return first n items of the iterable as a list"
return list(islice(iterable, n))
return list(islice(iterable, n))
def tabulate(function, start=0):
def tabulate(function, start=0):
"Return function(0), function(1), ..."
"Return function(0), function(1), ..."
return map(function, count(start))
return map(function, count(start))
def consume(iterator, n):
def consume(iterator, n):
"Advance the iterator n-steps ahead. If n is none, consume entirely."
"Advance the iterator n-steps ahead. If n is none, consume entirely."
# Use functions that consume iterators at C speed.
# Use functions that consume iterators at C speed.
if n is None:
if n is None:
# feed the entire iterator into a zero-length deque
# feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)
collections.deque(iterator, maxlen=0)
else:
else:
# advance to the empty slice starting at position n
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
next(islice(iterator, n, n), None)
def nth(iterable, n, default=None):
def nth(iterable, n, default=None):
"Returns the nth item or a default value"
"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)
return next(islice(iterable, n, None), default)
def quantify(iterable, pred=bool):
def quantify(iterable, pred=bool):
"Count how many times the predicate is true"
"Count how many times the predicate is true"
return sum(map(pred, iterable))
return sum(map(pred, iterable))
def padnone(iterable):
def padnone(iterable):
"""Returns the sequence elements and then returns None indefinitely.
"""Returns the sequence elements and then returns None indefinitely.
Useful for emulating the behavior of the built-in map() function.
Useful for emulating the behavior of the built-in map() function.
"""
"""
return chain(iterable, repeat(None))
return chain(iterable, repeat(None))
def ncycles(iterable, n):
def ncycles(iterable, n):
"Returns the sequence elements n times"
"Returns the sequence elements n times"
return chain.from_iterable(repeat(tuple(iterable), n))
return chain.from_iterable(repeat(tuple(iterable), n))
def dotproduct(vec1, vec2):
def dotproduct(vec1, vec2):
return sum(map(operator.mul, vec1, vec2))
return sum(map(operator.mul, vec1, vec2))
def flatten(listOfLists):
def flatten(listOfLists):
"Flatten one level of nesting"
"Flatten one level of nesting"
return chain.from_iterable(listOfLists)
return chain.from_iterable(listOfLists)
def repeatfunc(func, times=None, *args):
def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.
"""Repeat calls to func with specified arguments.
Example: repeatfunc(random.random)
Example: repeatfunc(random.random)
"""
"""
if times is None:
if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))
return starmap(func, repeat(args, times))
def pairwise(iterable):
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
a, b = tee(iterable)
next(b, None)
next(b, None)
return zip(a, b)
return zip(a, b)
def grouper(n, iterable, fillvalue=None):
def grouper(n, iterable, fillvalue=None):
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue)
return zip_longest(*args, fillvalue=fillvalue)
def roundrobin(*iterables):
def roundrobin(*iterables):
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
# Recipe credited to George Sakkis
# Recipe credited to George Sakkis
pending = len(iterables)
pending = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables)
nexts = cycle(iter(it).__next__ for it in iterables)
while pending:
while pending:
try:
try:
for next in nexts:
for next in nexts:
yield next()
yield next()
except StopIteration:
except StopIteration:
pending -= 1
pending -= 1
nexts = cycle(islice(nexts, pending))
nexts = cycle(islice(nexts, pending))
def partition(pred, iterable):
def partition(pred, iterable):
'Use a predicate to partition entries into false entries and true entries'
'Use a predicate to partition entries into false entries and true entries'
# partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
# partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
t1, t2 = tee(iterable)
t1, t2 = tee(iterable)
return filterfalse(pred, t1), filter(pred, t2)
return filterfalse(pred, t1), filter(pred, t2)
def powerset(iterable):
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def unique_everseen(iterable, key=None):
def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
"List unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
# unique_everseen('ABBCcAD', str.lower) --> A B C D
# unique_everseen('ABBCcAD', str.lower) --> A B C D
seen = set()
seen = set()
seen_add = seen.add
seen_add = seen.add
if key is None:
if key is None:
for element in filterfalse(seen.__contains__, iterable):
for element in filterfalse(seen.__contains__, iterable):
seen_add(element)
seen_add(element)
yield element
yield element
else:
else:
for element in iterable:
for element in iterable:
k = key(element)
k = key(element)
if k not in seen:
if k not in seen:
seen_add(k)
seen_add(k)
yield element
yield element
def unique_justseen(iterable, key=None):
def unique_justseen(iterable, key=None):
"List unique elements, preserving order. Remember only the element just seen."
"List unique elements, preserving order. Remember only the element just seen."
# unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
# unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
# unique_justseen('ABBCcAD', str.lower) --> A B C A D
# unique_justseen('ABBCcAD', str.lower) --> A B C A D
return map(next, map(itemgetter(1), groupby(iterable, key)))
return map(next, map(itemgetter(1), groupby(iterable, key)))
def iter_except(func, exception, first=None):
def iter_except(func, exception, first=None):
""" Call a function repeatedly until an exception is raised.
""" Call a function repeatedly until an exception is raised.
Converts a call-until-exception interface to an iterator interface.
Converts a call-until-exception interface to an iterator interface.
Like __builtin__.iter(func, sentinel) but uses an exception instead
Like __builtin__.iter(func, sentinel) but uses an exception instead
of a sentinel to end the loop.
of a sentinel to end the loop.
Examples:
Examples:
iter_except(functools.partial(heappop, h), IndexError) # priority queue iterator
iter_except(functools.partial(heappop, h), IndexError) # priority queue iterator
iter_except(d.popitem, KeyError) # non-blocking dict iterator
iter_except(d.popitem, KeyError) # non-blocking dict iterator
iter_except(d.popleft, IndexError) # non-blocking deque iterator
iter_except(d.popleft, IndexError) # non-blocking deque iterator
iter_except(q.get_nowait, Queue.Empty) # loop over a producer Queue
iter_except(q.get_nowait, Queue.Empty) # loop over a producer Queue
iter_except(s.pop, KeyError) # non-blocking set iterator
iter_except(s.pop, KeyError) # non-blocking set iterator
"""
"""
try:
try:
if first is not None:
if first is not None:
yield first() # For database APIs needing an initial cast to db.first()
yield first() # For database APIs needing an initial cast to db.first()
while 1:
while 1:
yield func()
yield func()
except exception:
except exception:
pass
pass
def random_product(*args, repeat=1):
def random_product(*args, repeat=1):
"Random selection from itertools.product(*args, **kwds)"
"Random selection from itertools.product(*args, **kwds)"
pools = [tuple(pool) for pool in args] * repeat
pools = [tuple(pool) for pool in args] * repeat
return tuple(random.choice(pool) for pool in pools)
return tuple(random.choice(pool) for pool in pools)
def random_permutation(iterable, r=None):
def random_permutation(iterable, r=None):
"Random selection from itertools.permutations(iterable, r)"
"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)
pool = tuple(iterable)
r = len(pool) if r is None else r
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))
return tuple(random.sample(pool, r))
def random_combination(iterable, r):
def random_combination(iterable, r):
"Random selection from itertools.combinations(iterable, r)"
"Random selection from itertools.combinations(iterable, r)"
pool = tuple(iterable)
pool = tuple(iterable)
n = len(pool)
n = len(pool)
indices = sorted(random.sample(range(n), r))
indices = sorted(random.sample(range(n), r))
return tuple(pool[i] for i in indices)
return tuple(pool[i] for i in indices)
def random_combination_with_replacement(iterable, r):
def random_combination_with_replacement(iterable, r):
"Random selection from itertools.combinations_with_replacement(iterable, r)"
"Random selection from itertools.combinations_with_replacement(iterable, r)"
pool = tuple(iterable)
pool = tuple(iterable)
n = len(pool)
n = len(pool)
indices = sorted(random.randrange(n) for i in range(r))
indices = sorted(random.randrange(n) for i in range(r))
return tuple(pool[i] for i in indices)
return tuple(pool[i] for i in indices)
Note, many of the above recipes can be optimized by replacing global lookups
Note, many of the above recipes can be optimized by replacing global lookups
with local variables defined as default values. For example, the
with local variables defined as default values. For example, the
*dotproduct* recipe can be written as::
*dotproduct* recipe can be written as::
def dotproduct(vec1, vec2, sum=sum, map=map, mul=operator.mul):
def dotproduct(vec1, vec2, sum=sum, map=map, mul=operator.mul):
return sum(map(mul, vec1, vec2))
return sum(map(mul, vec1, vec2))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment