Kaydet (Commit) 72182027 authored tarafından Fred Drake's avatar Fred Drake

"Make small changes, but carry a big diff."

Minor local consistency adjustments.
A couple of small tweaks to the setdlopenflags() description.
For setprofile() and settrace(), convert some references to become
hyperlinks in the HTML version.
üst 1a2302b3
......@@ -11,13 +11,12 @@ It is always available.
\begin{datadesc}{argv}
The list of command line arguments passed to a Python script.
\code{argv[0]} is the script name (it is operating system
dependent whether this is a full pathname or not).
If the command was executed using the \programopt{-c} command line
option to the interpreter, \code{argv[0]} is set to the string
\code{'-c'}.
If no script name was passed to the Python interpreter,
\code{argv} has zero length.
\code{argv[0]} is the script name (it is operating system dependent
whether this is a full pathname or not). If the command was
executed using the \programopt{-c} command line option to the
interpreter, \code{argv[0]} is set to the string \code{'-c'}. If no
script name was passed to the Python interpreter, \code{argv} has
zero length.
\end{datadesc}
\begin{datadesc}{byteorder}
......@@ -36,82 +35,81 @@ It is always available.
\end{datadesc}
\begin{datadesc}{copyright}
A string containing the copyright pertaining to the Python interpreter.
A string containing the copyright pertaining to the Python
interpreter.
\end{datadesc}
\begin{datadesc}{dllhandle}
Integer specifying the handle of the Python DLL.
Availability: Windows.
Integer specifying the handle of the Python DLL.
Availability: Windows.
\end{datadesc}
\begin{funcdesc}{displayhook}{\var{value}}
If \var{value} is not \code{None}, this function prints it to
\code{sys.stdout}, and saves it in \code{__builtin__._}.
If \var{value} is not \code{None}, this function prints it to
\code{sys.stdout}, and saves it in \code{__builtin__._}.
\code{sys.displayhook} is called on the result of evaluating
an expression entered in an interactive Python session.
The display of these values can be customized by assigning
another one-argument function to \code{sys.displayhook}.
\code{sys.displayhook} is called on the result of evaluating an
expression entered in an interactive Python session. The display of
these values can be customized by assigning another one-argument
function to \code{sys.displayhook}.
\end{funcdesc}
\begin{funcdesc}{excepthook}{\var{type}, \var{value}, \var{traceback}}
This function prints out a given traceback and exception to
\code{sys.stderr}.
When an exception is raised and uncaught, the interpreter calls
\code{sys.excepthook} with three arguments, the exception class,
exception instance, and a traceback object.
In an interactive session this happens just before
control is returned to the prompt; in a Python program this happens
just before the program exits.
The handling of such top-level exceptions can be customized by
assigning another three-argument function to \code{sys.excepthook}.
This function prints out a given traceback and exception to
\code{sys.stderr}.
When an exception is raised and uncaught, the interpreter calls
\code{sys.excepthook} with three arguments, the exception class,
exception instance, and a traceback object. In an interactive
session this happens just before control is returned to the prompt;
in a Python program this happens just before the program exits. The
handling of such top-level exceptions can be customized by assigning
another three-argument function to \code{sys.excepthook}.
\end{funcdesc}
\begin{datadesc}{__displayhook__}
\dataline{__excepthook__}
These objects contain the original values of \code{displayhook}
and \code{excepthook} at the start of the program. They are saved
so that \code{displayhook} and \code{excepthook} can be restored
in case they happen to get replaced with broken objects.
These objects contain the original values of \code{displayhook} and
\code{excepthook} at the start of the program. They are saved so
that \code{displayhook} and \code{excepthook} can be restored in
case they happen to get replaced with broken objects.
\end{datadesc}
\begin{funcdesc}{exc_info}{}
This function returns a tuple of three values that give information
about the exception that is currently being handled. The information
returned is specific both to the current thread and to the current
stack frame. If the current stack frame is not handling an exception,
the information is taken from the calling stack frame, or its caller,
and so on until a stack frame is found that is handling an exception.
Here, ``handling an exception'' is defined as ``executing or having
executed an except clause.'' For any stack frame, only
information about the most recently handled exception is accessible.
If no exception is being handled anywhere on the stack, a tuple
containing three \code{None} values is returned. Otherwise, the
values returned are
\code{(\var{type}, \var{value}, \var{traceback})}.
Their meaning is: \var{type} gets the exception type of the exception
being handled (a string or class object); \var{value} gets the
exception parameter (its \dfn{associated value} or the second argument
to \keyword{raise}, which is always a class instance if the exception
type is a class object); \var{traceback} gets a traceback object (see
the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.
\obindex{traceback}
\strong{Warning:} assigning the \var{traceback} return value to a
local variable in a function that is handling an exception will cause
a circular reference. This will prevent anything referenced by a local
variable in the same function or by the traceback from being garbage
collected. Since most functions don't need access to the traceback,
the best solution is to use something like
\code{type, value = sys.exc_info()[:2]}
to extract only the exception type and value. If you do need the
traceback, make sure to delete it after use (best done with a
\keyword{try} ... \keyword{finally} statement) or to call
\function{exc_info()} in a function that does not itself handle an
exception.
This function returns a tuple of three values that give information
about the exception that is currently being handled. The
information returned is specific both to the current thread and to
the current stack frame. If the current stack frame is not handling
an exception, the information is taken from the calling stack frame,
or its caller, and so on until a stack frame is found that is
handling an exception. Here, ``handling an exception'' is defined
as ``executing or having executed an except clause.'' For any stack
frame, only information about the most recently handled exception is
accessible.
If no exception is being handled anywhere on the stack, a tuple
containing three \code{None} values is returned. Otherwise, the
values returned are \code{(\var{type}, \var{value},
\var{traceback})}. Their meaning is: \var{type} gets the exception
type of the exception being handled (a string or class object);
\var{value} gets the exception parameter (its \dfn{associated value}
or the second argument to \keyword{raise}, which is always a class
instance if the exception type is a class object); \var{traceback}
gets a traceback object (see the Reference Manual) which
encapsulates the call stack at the point where the exception
originally occurred. \obindex{traceback}
\strong{Warning:} assigning the \var{traceback} return value to a
local variable in a function that is handling an exception will
cause a circular reference. This will prevent anything referenced
by a local variable in the same function or by the traceback from
being garbage collected. Since most functions don't need access to
the traceback, the best solution is to use something like
\code{type, value = sys.exc_info()[:2]} to extract only the
exception type and value. If you do need the traceback, make sure
to delete it after use (best done with a \keyword{try}
... \keyword{finally} statement) or to call \function{exc_info()} in
a function that does not itself handle an exception.
\end{funcdesc}
\begin{datadesc}{exc_type}
......@@ -119,59 +117,61 @@ exception.
\dataline{exc_traceback}
\deprecated {1.5}
{Use \function{exc_info()} instead.}
Since they are global variables, they are not specific to the current
thread, so their use is not safe in a multi-threaded program. When no
exception is being handled, \code{exc_type} is set to \code{None} and
the other two are undefined.
Since they are global variables, they are not specific to the
current thread, so their use is not safe in a multi-threaded
program. When no exception is being handled, \code{exc_type} is set
to \code{None} and the other two are undefined.
\end{datadesc}
\begin{datadesc}{exec_prefix}
A string giving the site-specific directory prefix where the
platform-dependent Python files are installed; by default, this is
also \code{'/usr/local'}. This can be set at build time with the
\longprogramopt{exec-prefix} argument to the
\program{configure} script. Specifically, all configuration files
(e.g. the \file{config.h} header file) are installed in the directory
\code{exec_prefix + '/lib/python\var{version}/config'}, and shared
library modules are installed in \code{exec_prefix +
'/lib/python\var{version}/lib-dynload'}, where \var{version} is equal
to \code{version[:3]}.
A string giving the site-specific directory prefix where the
platform-dependent Python files are installed; by default, this is
also \code{'/usr/local'}. This can be set at build time with the
\longprogramopt{exec-prefix} argument to the \program{configure}
script. Specifically, all configuration files (e.g. the
\file{config.h} header file) are installed in the directory
\code{exec_prefix + '/lib/python\var{version}/config'}, and shared
library modules are installed in \code{exec_prefix +
'/lib/python\var{version}/lib-dynload'}, where \var{version} is
equal to \code{version[:3]}.
\end{datadesc}
\begin{datadesc}{executable}
A string giving the name of the executable binary for the Python
interpreter, on systems where this makes sense.
A string giving the name of the executable binary for the Python
interpreter, on systems where this makes sense.
\end{datadesc}
\begin{funcdesc}{exit}{\optional{arg}}
Exit from Python. This is implemented by raising the
\exception{SystemExit} exception, so cleanup actions specified by
finally clauses of \keyword{try} statements are honored, and it is
possible to intercept the exit attempt at an outer level. The
optional argument \var{arg} can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer,
zero is considered ``successful termination'' and any nonzero value is
considered ``abnormal termination'' by shells and the like. Most
systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning
specific meanings to specific exit codes, but these are generally
underdeveloped; Unix programs generally use 2 for command line syntax
errors and 1 for all other kind of errors. If another type of object
is passed, \code{None} is equivalent to passing zero, and any other
object is printed to \code{sys.stderr} and results in an exit code of
1. In particular, \code{sys.exit("some error message")} is a quick
way to exit a program when an error occurs.
Exit from Python. This is implemented by raising the
\exception{SystemExit} exception, so cleanup actions specified by
finally clauses of \keyword{try} statements are honored, and it is
possible to intercept the exit attempt at an outer level. The
optional argument \var{arg} can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an
integer, zero is considered ``successful termination'' and any
nonzero value is considered ``abnormal termination'' by shells and
the like. Most systems require it to be in the range 0-127, and
produce undefined results otherwise. Some systems have a convention
for assigning specific meanings to specific exit codes, but these
are generally underdeveloped; Unix programs generally use 2 for
command line syntax errors and 1 for all other kind of errors. If
another type of object is passed, \code{None} is equivalent to
passing zero, and any other object is printed to \code{sys.stderr}
and results in an exit code of 1. In particular,
\code{sys.exit("some error message")} is a quick way to exit a
program when an error occurs.
\end{funcdesc}
\begin{datadesc}{exitfunc}
This value is not actually defined by the module, but can be set by
the user (or by a program) to specify a clean-up action at program
exit. When set, it should be a parameterless function. This function
will be called when the interpreter exits. Only one function may be
installed in this way; to allow multiple functions which will be called
at termination, use the \refmodule{atexit} module. Note: the exit function
is not called when the program is killed by a signal, when a Python
fatal internal error is detected, or when \code{os._exit()} is called.
exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Only one
function may be installed in this way; to allow multiple functions
which will be called at termination, use the \refmodule{atexit}
module. Note: the exit function is not called when the program is
killed by a signal, when a Python fatal internal error is detected,
or when \code{os._exit()} is called.
\end{datadesc}
\begin{funcdesc}{getdefaultencoding}{}
......@@ -189,34 +189,35 @@ way to exit a program when an error occurs.
\end{funcdesc}
\begin{funcdesc}{getrefcount}{object}
Return the reference count of the \var{object}. The count returned is
generally one higher than you might expect, because it includes the
(temporary) reference as an argument to \function{getrefcount()}.
Return the reference count of the \var{object}. The count returned
is generally one higher than you might expect, because it includes
the (temporary) reference as an argument to
\function{getrefcount()}.
\end{funcdesc}
\begin{funcdesc}{getrecursionlimit}{}
Return the current value of the recursion limit, the maximum depth of
the Python interpreter stack. This limit prevents infinite recursion
from causing an overflow of the C stack and crashing Python. It can
be set by \function{setrecursionlimit()}.
Return the current value of the recursion limit, the maximum depth
of the Python interpreter stack. This limit prevents infinite
recursion from causing an overflow of the C stack and crashing
Python. It can be set by \function{setrecursionlimit()}.
\end{funcdesc}
\begin{funcdesc}{_getframe}{\optional{depth}}
Return a frame object from the call stack. If optional integer
\var{depth} is given, return the frame object that many calls below
the top of the stack. If that is deeper than the call stack,
\exception{ValueError} is raised. The default for \var{depth} is
zero, returning the frame at the top of the call stack.
This function should be used for internal and specialized
purposes only.
Return a frame object from the call stack. If optional integer
\var{depth} is given, return the frame object that many calls below
the top of the stack. If that is deeper than the call stack,
\exception{ValueError} is raised. The default for \var{depth} is
zero, returning the frame at the top of the call stack.
This function should be used for internal and specialized purposes
only.
\end{funcdesc}
\begin{datadesc}{hexversion}
The version number encoded as a single integer. This is guaranteed to
increase with each version, including proper support for
non-production releases. For example, to test that the Python
interpreter is at least version 1.5.2, use:
The version number encoded as a single integer. This is guaranteed
to increase with each version, including proper support for
non-production releases. For example, to test that the Python
interpreter is at least version 1.5.2, use:
\begin{verbatim}
if sys.hexversion >= 0x010502F0:
......@@ -227,37 +228,36 @@ else:
...
\end{verbatim}
This is called \samp{hexversion} since it only really looks meaningful
when viewed as the result of passing it to the built-in
\function{hex()} function. The \code{version_info} value may be used
for a more human-friendly encoding of the same information.
\versionadded{1.5.2}
This is called \samp{hexversion} since it only really looks
meaningful when viewed as the result of passing it to the built-in
\function{hex()} function. The \code{version_info} value may be
used for a more human-friendly encoding of the same information.
\versionadded{1.5.2}
\end{datadesc}
\begin{datadesc}{last_type}
\dataline{last_value}
\dataline{last_traceback}
These three variables are not always defined; they are set when an
exception is not handled and the interpreter prints an error message
and a stack traceback. Their intended use is to allow an interactive
user to import a debugger module and engage in post-mortem debugging
without having to re-execute the command that caused the error.
(Typical use is \samp{import pdb; pdb.pm()} to enter the post-mortem
debugger; see the chapter ``The Python Debugger'' for more
information.)
\refstmodindex{pdb}
The meaning of the variables is the same
as that of the return values from \function{exc_info()} above.
(Since there is only one interactive thread, thread-safety is not a
concern for these variables, unlike for \code{exc_type} etc.)
These three variables are not always defined; they are set when an
exception is not handled and the interpreter prints an error message
and a stack traceback. Their intended use is to allow an
interactive user to import a debugger module and engage in
post-mortem debugging without having to re-execute the command that
caused the error. (Typical use is \samp{import pdb; pdb.pm()} to
enter the post-mortem debugger; see chapter \ref{debugger}, ``The
Python Debugger,'' for more information.)
The meaning of the variables is the same as that of the return
values from \function{exc_info()} above. (Since there is only one
interactive thread, thread-safety is not a concern for these
variables, unlike for \code{exc_type} etc.)
\end{datadesc}
\begin{datadesc}{maxint}
The largest positive integer supported by Python's regular integer
type. This is at least 2**31-1. The largest negative integer is
\code{-maxint-1} -- the asymmetry results from the use of 2's
complement binary arithmetic.
The largest positive integer supported by Python's regular integer
type. This is at least 2**31-1. The largest negative integer is
\code{-maxint-1} -- the asymmetry results from the use of 2's
complement binary arithmetic.
\end{datadesc}
\begin{datadesc}{modules}
......@@ -273,35 +273,34 @@ complement binary arithmetic.
\indexiii{module}{search}{path}
A list of strings that specifies the search path for modules.
Initialized from the environment variable \envvar{PYTHONPATH}, or an
installation-dependent default.
The first item of this list, \code{path[0]}, is the
directory containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the
interpreter is invoked interactively or if the script is read from
standard input), \code{path[0]} is the empty string, which directs
Python to search modules in the current directory first. Notice that
the script directory is inserted \emph{before} the entries inserted as
a result of \envvar{PYTHONPATH}.
installation-dependent default.
The first item of this list, \code{path[0]}, is the directory
containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the
interpreter is invoked interactively or if the script is read from
standard input), \code{path[0]} is the empty string, which directs
Python to search modules in the current directory first. Notice
that the script directory is inserted \emph{before} the entries
inserted as a result of \envvar{PYTHONPATH}.
\end{datadesc}
\begin{datadesc}{platform}
This string contains a platform identifier, e.g. \code{'sunos5'} or
\code{'linux1'}. This can be used to append platform-specific
components to \code{path}, for instance.
This string contains a platform identifier, e.g. \code{'sunos5'} or
\code{'linux1'}. This can be used to append platform-specific
components to \code{path}, for instance.
\end{datadesc}
\begin{datadesc}{prefix}
A string giving the site-specific directory prefix where the platform
independent Python files are installed; by default, this is the string
\code{'/usr/local'}. This can be set at build time with the
\longprogramopt{prefix} argument to the
\program{configure} script. The main collection of Python library
modules is installed in the directory \code{prefix +
'/lib/python\var{version}'} while the platform independent header
files (all except \file{config.h}) are stored in \code{prefix +
'/include/python\var{version}'}, where \var{version} is equal to
\code{version[:3]}.
A string giving the site-specific directory prefix where the
platform independent Python files are installed; by default, this is
the string \code{'/usr/local'}. This can be set at build time with
the \longprogramopt{prefix} argument to the \program{configure}
script. The main collection of Python library modules is installed
in the directory \code{prefix + '/lib/python\var{version}'} while
the platform independent header files (all except \file{config.h})
are stored in \code{prefix + '/include/python\var{version}'}, where
\var{version} is equal to \code{version[:3]}.
\end{datadesc}
\begin{datadesc}{ps1}
......@@ -311,20 +310,20 @@ files (all except \file{config.h}) are stored in \code{prefix +
Strings specifying the primary and secondary prompt of the
interpreter. These are only defined if the interpreter is in
interactive mode. Their initial values in this case are
\code{'>\code{>}> '} and \code{'... '}. If a non-string object is assigned
to either variable, its \function{str()} is re-evaluated each time
the interpreter prepares to read a new interactive command; this can
be used to implement a dynamic prompt.
\code{'>\code{>}> '} and \code{'... '}. If a non-string object is
assigned to either variable, its \function{str()} is re-evaluated
each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.
\end{datadesc}
\begin{funcdesc}{setcheckinterval}{interval}
Set the interpreter's ``check interval''. This integer value
determines how often the interpreter checks for periodic things such
as thread switches and signal handlers. The default is \code{10}, meaning
the check is performed every 10 Python virtual instructions. Setting
it to a larger value may increase performance for programs using
threads. Setting it to a value \code{<=} 0 checks every virtual instruction,
maximizing responsiveness as well as overhead.
Set the interpreter's ``check interval''. This integer value
determines how often the interpreter checks for periodic things such
as thread switches and signal handlers. The default is \code{10},
meaning the check is performed every 10 Python virtual instructions.
Setting it to a larger value may increase performance for programs
using threads. Setting it to a value \code{<=} 0 checks every
virtual instruction, maximizing responsiveness as well as overhead.
\end{funcdesc}
\begin{funcdesc}{setdefaultencoding}{name}
......@@ -347,91 +346,91 @@ maximizing responsiveness as well as overhead.
other things, this will enable a lazy resolving of symbols when
imporing a module, if called as \code{sys.setdlopenflags(0)}. To
share symols across extension modules, call as
\code{sys.setdlopenflags(dl.RTLD_NOW|dl.RTLD_GLOBAL)}. Symbolic
\code{sys.setdlopenflags(dl.RTLD_NOW | dl.RTLD_GLOBAL)}. Symbolic
names for the flag modules can be either found in the \refmodule{dl}
module, or in the \module{DLFCN} module. If \module{DLFCN} is not
available, it can be generated from \code{/usr/include/dlfcn.h}
using the \code{h2py} script.
available, it can be generated from \file{/usr/include/dlfcn.h}
using the \program{h2py} script.
Availability: \UNIX.
\versionadded{2.2}
\end{funcdesc}
\begin{funcdesc}{setprofile}{profilefunc}
Set the system's profile function, which allows you to implement a
Python source code profiler in Python. See the chapter on the
Python Profiler. The system's profile function
Set the system's profile function,\index{profile function} which
allows you to implement a Python source code profiler in
Python.\index{profiler} See chapter \ref{profile} for more
information on the Python profiler. The system's profile function
is called similarly to the system's trace function (see
\function{settrace()}), but it isn't called for each executed line of
code (only on call and return and when an exception occurs). Also,
its return value is not used, so it can just return \code{None}.
\function{settrace()}), but it isn't called for each executed line
of code (only on call and return and when an exception occurs).
Also, its return value is not used, so it can simply return
\code{None}.
\end{funcdesc}
\index{profile function}
\index{profiler}
\begin{funcdesc}{setrecursionlimit}{limit}
Set the maximum depth of the Python interpreter stack to \var{limit}.
This limit prevents infinite recursion from causing an overflow of the
C stack and crashing Python.
The highest possible limit is platform-dependent. A user may need to
set the limit higher when she has a program that requires deep
recursion and a platform that supports a higher limit. This should be
done with care, because a too-high limit can lead to a crash.
Set the maximum depth of the Python interpreter stack to
\var{limit}. This limit prevents infinite recursion from causing an
overflow of the C stack and crashing Python.
The highest possible limit is platform-dependent. A user may need
to set the limit higher when she has a program that requires deep
recursion and a platform that supports a higher limit. This should
be done with care, because a too-high limit can lead to a crash.
\end{funcdesc}
\begin{funcdesc}{settrace}{tracefunc}
Set the system's trace function, which allows you to implement a
Python source code debugger in Python. See section ``How It Works''
in the chapter on the Python Debugger.
Set the system's trace function,\index{trace function} which allows
you to implement a Python source code debugger in Python. See
section \ref{debugger-hooks}, ``How It Works,'' in the chapter on
the Python debugger.\index{debugger}
\end{funcdesc}
\index{trace function}
\index{debugger}
\begin{datadesc}{stdin}
\dataline{stdout}
\dataline{stderr}
File objects corresponding to the interpreter's standard input,
output and error streams. \code{stdin} is used for all
interpreter input except for scripts but including calls to
output and error streams. \code{stdin} is used for all interpreter
input except for scripts but including calls to
\function{input()}\bifuncindex{input} and
\function{raw_input()}\bifuncindex{raw_input}. \code{stdout} is used
for the output of \keyword{print} and expression statements and for the
prompts of \function{input()} and \function{raw_input()}. The interpreter's
own prompts and (almost all of) its error messages go to
\code{stderr}. \code{stdout} and \code{stderr} needn't
be built-in file objects: any object is acceptable as long as it has
a \method{write()} method that takes a string argument. (Changing these
objects doesn't affect the standard I/O streams of processes
\function{raw_input()}\bifuncindex{raw_input}. \code{stdout} is
used for the output of \keyword{print} and expression statements and
for the prompts of \function{input()} and \function{raw_input()}.
The interpreter's own prompts and (almost all of) its error messages
go to \code{stderr}. \code{stdout} and \code{stderr} needn't be
built-in file objects: any object is acceptable as long as it has a
\method{write()} method that takes a string argument. (Changing
these objects doesn't affect the standard I/O streams of processes
executed by \function{os.popen()}, \function{os.system()} or the
\function{exec*()} family of functions in the \refmodule{os} module.)
\refstmodindex{os}
\function{exec*()} family of functions in the \refmodule{os}
module.)
\end{datadesc}
\begin{datadesc}{__stdin__}
\dataline{__stdout__}
\dataline{__stderr__}
These objects contain the original values of \code{stdin},
\code{stderr} and \code{stdout} at the start of the program. They are
used during finalization, and could be useful to restore the actual
files to known working file objects in case they have been overwritten
with a broken object.
These objects contain the original values of \code{stdin},
\code{stderr} and \code{stdout} at the start of the program. They
are used during finalization, and could be useful to restore the
actual files to known working file objects in case they have been
overwritten with a broken object.
\end{datadesc}
\begin{datadesc}{tracebacklimit}
When this variable is set to an integer value, it determines the
maximum number of levels of traceback information printed when an
unhandled exception occurs. The default is \code{1000}. When set to
0 or less, all traceback information is suppressed and only the
exception type and value are printed.
When this variable is set to an integer value, it determines the
maximum number of levels of traceback information printed when an
unhandled exception occurs. The default is \code{1000}. When set
to \code{0} or less, all traceback information is suppressed and
only the exception type and value are printed.
\end{datadesc}
\begin{datadesc}{version}
A string containing the version number of the Python interpreter plus
additional information on the build number and compiler used. It has
a value of the form \code{'\var{version} (\#\var{build_number},
\var{build_date}, \var{build_time}) [\var{compiler}]'}. The first
three characters are used to identify the version in the installation
directories (where appropriate on each platform). An example:
A string containing the version number of the Python interpreter
plus additional information on the build number and compiler used.
It has a value of the form \code{'\var{version}
(\#\var{build_number}, \var{build_date}, \var{build_time})
[\var{compiler}]'}. The first three characters are used to identify
the version in the installation directories (where appropriate on
each platform). An example:
\begin{verbatim}
>>> import sys
......@@ -441,22 +440,22 @@ directories (where appropriate on each platform). An example:
\end{datadesc}
\begin{datadesc}{version_info}
A tuple containing the five components of the version number:
\var{major}, \var{minor}, \var{micro}, \var{releaselevel}, and
\var{serial}. All values except \var{releaselevel} are integers; the
release level is \code{'alpha'}, \code{'beta'},
\code{'candidate'}, or \code{'final'}. The \code{version_info} value
corresponding to the Python version 2.0 is
\code{(2, 0, 0, 'final', 0)}.
\versionadded{2.0}
A tuple containing the five components of the version number:
\var{major}, \var{minor}, \var{micro}, \var{releaselevel}, and
\var{serial}. All values except \var{releaselevel} are integers;
the release level is \code{'alpha'}, \code{'beta'},
\code{'candidate'}, or \code{'final'}. The \code{version_info}
value corresponding to the Python version 2.0 is \code{(2, 0, 0,
'final', 0)}.
\versionadded{2.0}
\end{datadesc}
\begin{datadesc}{winver}
The version number used to form registry keys on Windows platforms.
This is stored as string resource 1000 in the Python DLL. The value
is normally the first three characters of \constant{version}. It is
provided in the \module{sys} module for informational purposes;
modifying this value has no effect on the registry keys used by
Python.
Availability: Windows.
The version number used to form registry keys on Windows platforms.
This is stored as string resource 1000 in the Python DLL. The value
is normally the first three characters of \constant{version}. It is
provided in the \module{sys} module for informational purposes;
modifying this value has no effect on the registry keys used by
Python.
Availability: Windows.
\end{datadesc}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment