Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
C
cpython
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Batuhan Osman TASKAYA
cpython
Commits
a474afdd
Kaydet (Commit)
a474afdd
authored
Agu 09, 2016
tarafından
Steven D'Aprano
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
Add harmonic mean and tests.
üst
95e0df83
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
209 additions
and
12 deletions
+209
-12
statistics.py
Lib/statistics.py
+62
-4
test_statistics.py
Lib/test/test_statistics.py
+147
-8
No files found.
Lib/statistics.py
Dosyayı görüntüle @
a474afdd
...
...
@@ -28,6 +28,7 @@ Calculating averages
Function Description
================== =============================================
mean Arithmetic mean (average) of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
median_high High median of data.
...
...
@@ -95,16 +96,17 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
__all__
=
[
'StatisticsError'
,
'pstdev'
,
'pvariance'
,
'stdev'
,
'variance'
,
'median'
,
'median_low'
,
'median_high'
,
'median_grouped'
,
'mean'
,
'mode'
,
'mean'
,
'mode'
,
'harmonic_mean'
,
]
import
collections
import
decimal
import
math
import
numbers
from
fractions
import
Fraction
from
decimal
import
Decimal
from
itertools
import
groupby
from
itertools
import
groupby
,
chain
from
bisect
import
bisect_left
,
bisect_right
...
...
@@ -135,7 +137,8 @@ def _sum(data, start=0):
Some sources of round-off error will be avoided:
>>> _sum([1e50, 1, -1e50] * 1000) # Built-in sum returns zero.
# Built-in sum returns zero.
>>> _sum([1e50, 1, -1e50] * 1000)
(<class 'float'>, Fraction(1000, 1), 3000)
Fractions and Decimals are also supported:
...
...
@@ -291,6 +294,15 @@ def _find_rteq(a, l, x):
return
i
-
1
raise
ValueError
def
_fail_neg
(
values
,
errmsg
=
'negative value'
):
"""Iterate over values, failing if any are less than zero."""
for
x
in
values
:
if
x
<
0
:
raise
StatisticsError
(
errmsg
)
yield
x
# === Measures of central tendency (averages) ===
def
mean
(
data
):
...
...
@@ -319,6 +331,52 @@ def mean(data):
return
_convert
(
total
/
n
,
T
)
def
harmonic_mean
(
data
):
"""Return the harmonic mean of data.
The harmonic mean, sometimes called the subcontrary mean, is the
reciprocal of the arithmetic mean of the reciprocals of the data,
and is often appropriate when averaging quantities which are rates
or ratios, for example speeds. Example:
Suppose an investor purchases an equal value of shares in each of
three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
What is the average P/E ratio for the investor's portfolio?
>>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
3.6
Using the arithmetic mean would give an average of about 5.167, which
is too high.
If ``data`` is empty, or any element is less than zero,
``harmonic_mean`` will raise ``StatisticsError``.
"""
# For a justification for using harmonic mean for P/E ratios, see
# http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
# http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
if
iter
(
data
)
is
data
:
data
=
list
(
data
)
errmsg
=
'harmonic mean does not support negative values'
n
=
len
(
data
)
if
n
<
1
:
raise
StatisticsError
(
'harmonic_mean requires at least one data point'
)
elif
n
==
1
:
x
=
data
[
0
]
if
isinstance
(
x
,
(
numbers
.
Real
,
Decimal
)):
if
x
<
0
:
raise
StatisticsError
(
errmsg
)
return
x
else
:
raise
TypeError
(
'unsupported type'
)
try
:
T
,
total
,
count
=
_sum
(
1
/
x
for
x
in
_fail_neg
(
data
,
errmsg
))
except
ZeroDivisionError
:
return
0
assert
count
==
n
return
_convert
(
n
/
total
,
T
)
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
def
median
(
data
):
"""Return the median (middle value) of numeric data.
...
...
Lib/test/test_statistics.py
Dosyayı görüntüle @
a474afdd
...
...
@@ -21,6 +21,10 @@ import statistics
# === Helper functions and class ===
def
sign
(
x
):
"""Return -1.0 for negatives, including -0.0, otherwise +1.0."""
return
math
.
copysign
(
1
,
x
)
def
_nan_equal
(
a
,
b
):
"""Return True if a and b are both the same kind of NAN.
...
...
@@ -264,6 +268,13 @@ class NumericTestCase(unittest.TestCase):
# === Test the helpers ===
# ========================
class
TestSign
(
unittest
.
TestCase
):
"""Test that the helper function sign() works correctly."""
def
testZeroes
(
self
):
# Test that signed zeroes report their sign correctly.
self
.
assertEqual
(
sign
(
0.0
),
+
1
)
self
.
assertEqual
(
sign
(
-
0.0
),
-
1
)
# --- Tests for approx_equal ---
...
...
@@ -659,7 +670,7 @@ class DocTests(unittest.TestCase):
@unittest.skipIf
(
sys
.
flags
.
optimize
>=
2
,
"Docstrings are omitted with -OO and above"
)
def
test_doc_tests
(
self
):
failed
,
tried
=
doctest
.
testmod
(
statistics
)
failed
,
tried
=
doctest
.
testmod
(
statistics
,
optionflags
=
doctest
.
ELLIPSIS
)
self
.
assertGreater
(
tried
,
0
)
self
.
assertEqual
(
failed
,
0
)
...
...
@@ -971,6 +982,34 @@ class ConvertTest(unittest.TestCase):
self
.
assertTrue
(
_nan_equal
(
x
,
nan
))
class
FailNegTest
(
unittest
.
TestCase
):
"""Test _fail_neg private function."""
def
test_pass_through
(
self
):
# Test that values are passed through unchanged.
values
=
[
1
,
2.0
,
Fraction
(
3
),
Decimal
(
4
)]
new
=
list
(
statistics
.
_fail_neg
(
values
))
self
.
assertEqual
(
values
,
new
)
def
test_negatives_raise
(
self
):
# Test that negatives raise an exception.
for
x
in
[
1
,
2.0
,
Fraction
(
3
),
Decimal
(
4
)]:
seq
=
[
-
x
]
it
=
statistics
.
_fail_neg
(
seq
)
self
.
assertRaises
(
statistics
.
StatisticsError
,
next
,
it
)
def
test_error_msg
(
self
):
# Test that a given error message is used.
msg
=
"badness #
%
d"
%
random
.
randint
(
10000
,
99999
)
try
:
next
(
statistics
.
_fail_neg
([
-
1
],
msg
))
except
statistics
.
StatisticsError
as
e
:
errmsg
=
e
.
args
[
0
]
else
:
self
.
fail
(
"expected exception, but it didn't happen"
)
self
.
assertEqual
(
errmsg
,
msg
)
# === Tests for public functions ===
class
UnivariateCommonMixin
:
...
...
@@ -1082,13 +1121,13 @@ class UnivariateTypeMixin:
Not all tests to do with types need go in this class. Only those that
rely on the function returning the same type as its input data.
"""
def
test_types_conserved
(
self
):
# Test that functions keeps the same type as their data points.
# (Excludes mixed data types.) This only tests the type of the return
# result, not the value.
def
prepare_types_for_conservation_test
(
self
):
"""Return the types which are expected to be conserved."""
class
MyFloat
(
float
):
def
__truediv__
(
self
,
other
):
return
type
(
self
)(
super
()
.
__truediv__
(
other
))
def
__rtruediv__
(
self
,
other
):
return
type
(
self
)(
super
()
.
__rtruediv__
(
other
))
def
__sub__
(
self
,
other
):
return
type
(
self
)(
super
()
.
__sub__
(
other
))
def
__rsub__
(
self
,
other
):
...
...
@@ -1098,9 +1137,14 @@ class UnivariateTypeMixin:
def
__add__
(
self
,
other
):
return
type
(
self
)(
super
()
.
__add__
(
other
))
__radd__
=
__add__
return
(
float
,
Decimal
,
Fraction
,
MyFloat
)
def
test_types_conserved
(
self
):
# Test that functions keeps the same type as their data points.
# (Excludes mixed data types.) This only tests the type of the return
# result, not the value.
data
=
self
.
prepare_data
()
for
kind
in
(
float
,
Decimal
,
Fraction
,
MyFloat
):
for
kind
in
self
.
prepare_types_for_conservation_test
(
):
d
=
[
kind
(
x
)
for
x
in
data
]
result
=
self
.
func
(
d
)
self
.
assertIs
(
type
(
result
),
kind
)
...
...
@@ -1275,10 +1319,14 @@ class AverageMixin(UnivariateCommonMixin):
for
x
in
(
23
,
42.5
,
1.3e15
,
Fraction
(
15
,
19
),
Decimal
(
'0.28'
)):
self
.
assertEqual
(
self
.
func
([
x
]),
x
)
def
prepare_values_for_repeated_single_test
(
self
):
return
(
3.5
,
17
,
2.5e15
,
Fraction
(
61
,
67
),
Decimal
(
'4.9712'
))
def
test_repeated_single_value
(
self
):
# The average of a single repeated value is the value itself.
for
x
in
(
3.5
,
17
,
2.5e15
,
Fraction
(
61
,
67
),
Decimal
(
'4.9712'
)
):
for
x
in
self
.
prepare_values_for_repeated_single_test
(
):
for
count
in
(
2
,
5
,
10
,
20
):
with
self
.
subTest
(
x
=
x
,
count
=
count
):
data
=
[
x
]
*
count
self
.
assertEqual
(
self
.
func
(
data
),
x
)
...
...
@@ -1304,7 +1352,7 @@ class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
self
.
assertEqual
(
self
.
func
(
data
),
22.015625
)
def
test_decimals
(
self
):
# Test mean with
int
s.
# Test mean with
Decimal
s.
D
=
Decimal
data
=
[
D
(
"1.634"
),
D
(
"2.517"
),
D
(
"3.912"
),
D
(
"4.072"
),
D
(
"5.813"
)]
random
.
shuffle
(
data
)
...
...
@@ -1379,6 +1427,97 @@ class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
self
.
assertEqual
(
statistics
.
mean
([
tiny
]
*
n
),
tiny
)
class
TestHarmonicMean
(
NumericTestCase
,
AverageMixin
,
UnivariateTypeMixin
):
def
setUp
(
self
):
self
.
func
=
statistics
.
harmonic_mean
def
prepare_data
(
self
):
# Override mixin method.
values
=
super
()
.
prepare_data
()
values
.
remove
(
0
)
return
values
def
prepare_values_for_repeated_single_test
(
self
):
# Override mixin method.
return
(
3.5
,
17
,
2.5e15
,
Fraction
(
61
,
67
),
Decimal
(
'4.125'
))
def
test_zero
(
self
):
# Test that harmonic mean returns zero when given zero.
values
=
[
1
,
0
,
2
]
self
.
assertEqual
(
self
.
func
(
values
),
0
)
def
test_negative_error
(
self
):
# Test that harmonic mean raises when given a negative value.
exc
=
statistics
.
StatisticsError
for
values
in
([
-
1
],
[
1
,
-
2
,
3
]):
with
self
.
subTest
(
values
=
values
):
self
.
assertRaises
(
exc
,
self
.
func
,
values
)
def
test_ints
(
self
):
# Test harmonic mean with ints.
data
=
[
2
,
4
,
4
,
8
,
16
,
16
]
random
.
shuffle
(
data
)
self
.
assertEqual
(
self
.
func
(
data
),
6
*
4
/
5
)
def
test_floats_exact
(
self
):
# Test harmonic mean with some carefully chosen floats.
data
=
[
1
/
8
,
1
/
4
,
1
/
4
,
1
/
2
,
1
/
2
]
random
.
shuffle
(
data
)
self
.
assertEqual
(
self
.
func
(
data
),
1
/
4
)
self
.
assertEqual
(
self
.
func
([
0.25
,
0.5
,
1.0
,
1.0
]),
0.5
)
def
test_singleton_lists
(
self
):
# Test that harmonic mean([x]) returns (approximately) x.
for
x
in
range
(
1
,
101
):
if
x
in
(
49
,
93
,
98
,
99
):
self
.
assertApproxEqual
(
self
.
func
([
x
]),
x
,
tol
=
2e-14
)
else
:
self
.
assertEqual
(
self
.
func
([
x
]),
x
)
def
test_decimals_exact
(
self
):
# Test harmonic mean with some carefully chosen Decimals.
D
=
Decimal
self
.
assertEqual
(
self
.
func
([
D
(
15
),
D
(
30
),
D
(
60
),
D
(
60
)]),
D
(
30
))
data
=
[
D
(
"0.05"
),
D
(
"0.10"
),
D
(
"0.20"
),
D
(
"0.20"
)]
random
.
shuffle
(
data
)
self
.
assertEqual
(
self
.
func
(
data
),
D
(
"0.10"
))
data
=
[
D
(
"1.68"
),
D
(
"0.32"
),
D
(
"5.94"
),
D
(
"2.75"
)]
random
.
shuffle
(
data
)
self
.
assertEqual
(
self
.
func
(
data
),
D
(
66528
)
/
70723
)
def
test_fractions
(
self
):
# Test harmonic mean with Fractions.
F
=
Fraction
data
=
[
F
(
1
,
2
),
F
(
2
,
3
),
F
(
3
,
4
),
F
(
4
,
5
),
F
(
5
,
6
),
F
(
6
,
7
),
F
(
7
,
8
)]
random
.
shuffle
(
data
)
self
.
assertEqual
(
self
.
func
(
data
),
F
(
7
*
420
,
4029
))
def
test_inf
(
self
):
# Test harmonic mean with infinity.
values
=
[
2.0
,
float
(
'inf'
),
1.0
]
self
.
assertEqual
(
self
.
func
(
values
),
2.0
)
def
test_nan
(
self
):
# Test harmonic mean with NANs.
values
=
[
2.0
,
float
(
'nan'
),
1.0
]
self
.
assertTrue
(
math
.
isnan
(
self
.
func
(
values
)))
def
test_multiply_data_points
(
self
):
# Test multiplying every data point by a constant.
c
=
111
data
=
[
3.4
,
4.5
,
4.9
,
6.7
,
6.8
,
7.2
,
8.0
,
8.1
,
9.4
]
expected
=
self
.
func
(
data
)
*
c
result
=
self
.
func
([
x
*
c
for
x
in
data
])
self
.
assertEqual
(
result
,
expected
)
def
test_doubled_data
(
self
):
# Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z].
data
=
[
random
.
uniform
(
1
,
5
)
for
_
in
range
(
1000
)]
expected
=
self
.
func
(
data
)
actual
=
self
.
func
(
data
*
2
)
self
.
assertApproxEqual
(
actual
,
expected
)
class
TestMedian
(
NumericTestCase
,
AverageMixin
):
# Common tests for median and all median.* functions.
def
setUp
(
self
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment