Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
C
cpython
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Batuhan Osman TASKAYA
cpython
Commits
b93fff0a
Kaydet (Commit)
b93fff0a
authored
Eyl 28, 2009
tarafından
Mark Dickinson
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
Issue #3366: Add gamma function to math module.
(lgamma, erf and erfc to follow).
üst
ddfb6cdc
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
571 additions
and
35 deletions
+571
-35
math.rst
Doc/library/math.rst
+10
-0
math_testcases.txt
Lib/test/math_testcases.txt
+146
-0
test_math.py
Lib/test/test_math.py
+88
-0
NEWS
Misc/NEWS
+2
-0
mathmodule.c
Modules/mathmodule.c
+325
-35
No files found.
Doc/library/math.rst
Dosyayı görüntüle @
b93fff0a
...
...
@@ -308,6 +308,16 @@ Hyperbolic functions
Return the hyperbolic tangent of *x*.
Special functions
-----------------
.. function:: gamma(x)
Return the Gamma function at *x*.
.. versionadded:: 2.7
Constants
---------
...
...
Lib/test/math_testcases.txt
0 → 100644
Dosyayı görüntüle @
b93fff0a
-- Testcases for functions in math.
--
-- Each line takes the form:
--
-- <testid> <function> <input_value> -> <output_value> <flags>
--
-- where:
--
-- <testid> is a short name identifying the test,
--
-- <function> is the function to be tested (exp, cos, asinh, ...),
--
-- <input_value> is a string representing a floating-point value
--
-- <output_value> is the expected (ideal) output value, again
-- represented as a string.
--
-- <flags> is a list of the floating-point flags required by C99
--
-- The possible flags are:
--
-- divide-by-zero : raised when a finite input gives a
-- mathematically infinite result.
--
-- overflow : raised when a finite input gives a finite result that
-- is too large to fit in the usual range of an IEEE 754 double.
--
-- invalid : raised for invalid inputs (e.g., sqrt(-1))
--
-- ignore-sign : indicates that the sign of the result is
-- unspecified; e.g., if the result is given as inf,
-- then both -inf and inf should be accepted as correct.
--
-- Flags may appear in any order.
--
-- Lines beginning with '--' (like this one) start a comment, and are
-- ignored. Blank lines, or lines containing only whitespace, are also
-- ignored.
-- Many of the values below were computed with the help of
-- version 2.4 of the MPFR library for multiple-precision
-- floating-point computations with correct rounding. All output
-- values in this file are (modulo yet-to-be-discovered bugs)
-- correctly rounded, provided that each input and output decimal
-- floating-point value below is interpreted as a representation of
-- the corresponding nearest IEEE 754 double-precision value. See the
-- MPFR homepage at http://www.mpfr.org for more information about the
-- MPFR project.
---------------------------
-- gamma: Gamma function --
---------------------------
-- special values
gam0000 gamma 0.0 -> inf divide-by-zero
gam0001 gamma -0.0 -> -inf divide-by-zero
gam0002 gamma inf -> inf
gam0003 gamma -inf -> nan invalid
gam0004 gamma nan -> nan
-- negative integers inputs are invalid
gam0010 gamma -1 -> nan invalid
gam0011 gamma -2 -> nan invalid
gam0012 gamma -1e16 -> nan invalid
gam0013 gamma -1e300 -> nan invalid
-- small positive integers give factorials
gam0020 gamma 1 -> 1
gam0021 gamma 2 -> 1
gam0022 gamma 3 -> 2
gam0023 gamma 4 -> 6
gam0024 gamma 5 -> 24
gam0025 gamma 6 -> 120
-- half integers
gam0030 gamma 0.5 -> 1.7724538509055161
gam0031 gamma 1.5 -> 0.88622692545275805
gam0032 gamma 2.5 -> 1.3293403881791370
gam0033 gamma 3.5 -> 3.3233509704478426
gam0034 gamma -0.5 -> -3.5449077018110322
gam0035 gamma -1.5 -> 2.3632718012073548
gam0036 gamma -2.5 -> -0.94530872048294190
gam0037 gamma -3.5 -> 0.27008820585226911
-- values near 0
gam0040 gamma 0.1 -> 9.5135076986687306
gam0041 gamma 0.01 -> 99.432585119150602
gam0042 gamma 1e-8 -> 99999999.422784343
gam0043 gamma 1e-16 -> 10000000000000000
gam0044 gamma 1e-30 -> 9.9999999999999988e+29
gam0045 gamma 1e-160 -> 1.0000000000000000e+160
gam0046 gamma 1e-308 -> 1.0000000000000000e+308
gam0047 gamma 5.6e-309 -> 1.7857142857142848e+308
gam0048 gamma 5.5e-309 -> inf overflow
gam0049 gamma 1e-309 -> inf overflow
gam0050 gamma 1e-323 -> inf overflow
gam0051 gamma 5e-324 -> inf overflow
gam0060 gamma -0.1 -> -10.686287021193193
gam0061 gamma -0.01 -> -100.58719796441078
gam0062 gamma -1e-8 -> -100000000.57721567
gam0063 gamma -1e-16 -> -10000000000000000
gam0064 gamma -1e-30 -> -9.9999999999999988e+29
gam0065 gamma -1e-160 -> -1.0000000000000000e+160
gam0066 gamma -1e-308 -> -1.0000000000000000e+308
gam0067 gamma -5.6e-309 -> -1.7857142857142848e+308
gam0068 gamma -5.5e-309 -> -inf overflow
gam0069 gamma -1e-309 -> -inf overflow
gam0070 gamma -1e-323 -> -inf overflow
gam0071 gamma -5e-324 -> -inf overflow
-- values near negative integers
gam0080 gamma -0.99999999999999989 -> -9007199254740992.0
gam0081 gamma -1.0000000000000002 -> 4503599627370495.5
gam0082 gamma -1.9999999999999998 -> 2251799813685248.5
gam0083 gamma -2.0000000000000004 -> -1125899906842623.5
gam0084 gamma -100.00000000000001 -> -7.5400833348831090e-145
gam0085 gamma -99.999999999999986 -> 7.5400833348840962e-145
-- large inputs
gam0100 gamma 170 -> 4.2690680090047051e+304
gam0101 gamma 171 -> 7.2574156153079990e+306
gam0102 gamma 171.624 -> 1.7942117599248104e+308
gam0103 gamma 171.625 -> inf overflow
gam0104 gamma 172 -> inf overflow
gam0105 gamma 2000 -> inf overflow
gam0106 gamma 1.7e308 -> inf overflow
-- inputs for which gamma(x) is tiny
gam0120 gamma -100.5 -> -3.3536908198076787e-159
gam0121 gamma -160.5 -> -5.2555464470078293e-286
gam0122 gamma -170.5 -> -3.3127395215386074e-308
gam0123 gamma -171.5 -> 1.9316265431711902e-310
gam0124 gamma -176.5 -> -1.1956388629358166e-321
gam0125 gamma -177.5 -> 4.9406564584124654e-324
gam0126 gamma -178.5 -> -0.0
gam0127 gamma -179.5 -> 0.0
gam0128 gamma -201.0001 -> 0.0
gam0129 gamma -202.9999 -> -0.0
gam0130 gamma -1000.5 -> -0.0
gam0131 gamma -1000000000.3 -> -0.0
gam0132 gamma -4503599627370495.5 -> 0.0
-- inputs that cause problems for the standard reflection formula,
-- thanks to loss of accuracy in 1-x
gam0140 gamma -63.349078729022985 -> 4.1777971677761880e-88
gam0141 gamma -127.45117632943295 -> 1.1831110896236810e-214
Lib/test/test_math.py
Dosyayı görüntüle @
b93fff0a
...
...
@@ -7,6 +7,7 @@ import math
import
os
import
sys
import
random
import
struct
eps
=
1E-05
NAN
=
float
(
'nan'
)
...
...
@@ -29,8 +30,50 @@ if __name__ == '__main__':
else
:
file
=
__file__
test_dir
=
os
.
path
.
dirname
(
file
)
or
os
.
curdir
math_testcases
=
os
.
path
.
join
(
test_dir
,
'math_testcases.txt'
)
test_file
=
os
.
path
.
join
(
test_dir
,
'cmath_testcases.txt'
)
def
to_ulps
(
x
):
"""Convert a non-NaN float x to an integer, in such a way that
adjacent floats are converted to adjacent integers. Then
abs(ulps(x) - ulps(y)) gives the difference in ulps between two
floats.
The results from this function will only make sense on platforms
where C doubles are represented in IEEE 754 binary64 format.
"""
n
=
struct
.
unpack
(
'q'
,
struct
.
pack
(
'<d'
,
x
))[
0
]
if
n
<
0
:
n
=
~
(
n
+
2
**
63
)
return
n
def
parse_mtestfile
(
fname
):
"""Parse a file with test values
-- starts a comment
blank lines, or lines containing only a comment, are ignored
other lines are expected to have the form
id fn arg -> expected [flag]*
"""
with
open
(
fname
)
as
fp
:
for
line
in
fp
:
# strip comments, and skip blank lines
if
'--'
in
line
:
line
=
line
[:
line
.
index
(
'--'
)]
if
not
line
.
strip
():
continue
lhs
,
rhs
=
line
.
split
(
'->'
)
id
,
fn
,
arg
=
lhs
.
split
()
rhs_pieces
=
rhs
.
split
()
exp
=
rhs_pieces
[
0
]
flags
=
rhs_pieces
[
1
:]
yield
(
id
,
fn
,
float
(
arg
),
float
(
exp
),
flags
)
def
parse_testfile
(
fname
):
"""Parse a file with test values
...
...
@@ -887,6 +930,51 @@ class MathTests(unittest.TestCase):
self
.
fail
(
message
)
self
.
ftest
(
"
%
s:
%
s(
%
r)"
%
(
id
,
fn
,
ar
),
result
,
er
)
@unittest.skipUnless
(
float
.
__getformat__
(
"double"
)
.
startswith
(
"IEEE"
),
"test requires IEEE 754 doubles"
)
def
test_mtestfile
(
self
):
ALLOWED_ERROR
=
20
# permitted error, in ulps
fail_fmt
=
"{}:{}({!r}): expected {!r}, got {!r}"
failures
=
[]
for
id
,
fn
,
arg
,
expected
,
flags
in
parse_mtestfile
(
math_testcases
):
func
=
getattr
(
math
,
fn
)
if
'invalid'
in
flags
or
'divide-by-zero'
in
flags
:
expected
=
'ValueError'
elif
'overflow'
in
flags
:
expected
=
'OverflowError'
try
:
got
=
func
(
arg
)
except
ValueError
:
got
=
'ValueError'
except
OverflowError
:
got
=
'OverflowError'
diff_ulps
=
None
if
isinstance
(
got
,
float
)
and
isinstance
(
expected
,
float
):
if
math
.
isnan
(
expected
)
and
math
.
isnan
(
got
):
continue
if
not
math
.
isnan
(
expected
)
and
not
math
.
isnan
(
got
):
diff_ulps
=
to_ulps
(
expected
)
-
to_ulps
(
got
)
if
diff_ulps
<=
ALLOWED_ERROR
:
continue
if
isinstance
(
got
,
str
)
and
isinstance
(
expected
,
str
):
if
got
==
expected
:
continue
fail_msg
=
fail_fmt
.
format
(
id
,
fn
,
arg
,
expected
,
got
)
if
diff_ulps
is
not
None
:
fail_msg
+=
' ({} ulps)'
.
format
(
diff_ulps
)
failures
.
append
(
fail_msg
)
if
failures
:
self
.
fail
(
'Failures in test_mtestfile:
\n
'
+
'
\n
'
.
join
(
failures
))
def
test_main
():
from
doctest
import
DocFileSuite
suite
=
unittest
.
TestSuite
()
...
...
Misc/NEWS
Dosyayı görüntüle @
b93fff0a
...
...
@@ -1341,6 +1341,8 @@ C-API
Extension Modules
-----------------
- Issue #3366: Add gamma function to math module.
- Issue #6823: Allow time.strftime() to accept a tuple with a isdst field
outside of the range of [-1, 1] by normalizing the value to within that
range.
...
...
Modules/mathmodule.c
Dosyayı görüntüle @
b93fff0a
...
...
@@ -60,44 +60,265 @@ raised for division by zero and mod by zero.
extern
double
copysign
(
double
,
double
);
#endif
/* Call is_error when errno != 0, and where x is the result libm
* returned. is_error will usually set up an exception and return
* true (1), but may return false (0) without setting up an exception.
*/
static
int
is_error
(
double
x
)
/*
sin(pi*x), giving accurate results for all finite x (especially x
integral or close to an integer). This is here for use in the
reflection formula for the gamma function. It conforms to IEEE
754-2008 for finite arguments, but not for infinities or nans.
*/
static
const
double
pi
=
3
.
141592653589793238462643383279502884197
;
static
double
sinpi
(
double
x
)
{
int
result
=
1
;
/* presumption of guilt */
assert
(
errno
);
/* non-zero errno is a precondition for calling */
if
(
errno
==
EDOM
)
PyErr_SetString
(
PyExc_ValueError
,
"math domain error"
);
double
y
,
r
;
int
n
;
/* this function should only ever be called for finite arguments */
assert
(
Py_IS_FINITE
(
x
));
y
=
fmod
(
fabs
(
x
),
2
.
0
);
n
=
(
int
)
round
(
2
.
0
*
y
);
assert
(
0
<=
n
&&
n
<=
4
);
switch
(
n
)
{
case
0
:
r
=
sin
(
pi
*
y
);
break
;
case
1
:
r
=
cos
(
pi
*
(
y
-
0
.
5
));
break
;
case
2
:
/* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
-0.0 instead of 0.0 when y == 1.0. */
r
=
sin
(
pi
*
(
1
.
0
-
y
));
break
;
case
3
:
r
=
-
cos
(
pi
*
(
y
-
1
.
5
));
break
;
case
4
:
r
=
sin
(
pi
*
(
y
-
2
.
0
));
break
;
default:
assert
(
0
);
/* should never get here */
r
=
-
1.23e200
;
/* silence gcc warning */
}
return
copysign
(
1
.
0
,
x
)
*
r
;
}
else
if
(
errno
==
ERANGE
)
{
/* ANSI C generally requires libm functions to set ERANGE
* on overflow, but also generally *allows* them to set
* ERANGE on underflow too. There's no consistency about
* the latter across platforms.
* Alas, C99 never requires that errno be set.
* Here we suppress the underflow errors (libm functions
* should return a zero on underflow, and +- HUGE_VAL on
* overflow, so testing the result for zero suffices to
* distinguish the cases).
*
* On some platforms (Ubuntu/ia64) it seems that errno can be
* set to ERANGE for subnormal results that do *not* underflow
* to zero. So to be safe, we'll ignore ERANGE whenever the
* function result is less than one in absolute value.
*/
if
(
fabs
(
x
)
<
1
.
0
)
result
=
0
;
else
PyErr_SetString
(
PyExc_OverflowError
,
"math range error"
);
/* Implementation of the real gamma function. In extensive but non-exhaustive
random tests, this function proved accurate to within <= 10 ulps across the
entire float domain. Note that accuracy may depend on the quality of the
system math functions, the pow function in particular. Special cases
follow C99 annex F. The parameters and method are tailored to platforms
whose double format is the IEEE 754 binary64 format.
Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
and g=6.024680040776729583740234375; these parameters are amongst those
used by the Boost library. Following Boost (again), we re-express the
Lanczos sum as a rational function, and compute it that way. The
coefficients below were computed independently using MPFR, and have been
double-checked against the coefficients in the Boost source code.
For x < 0.0 we use the reflection formula.
There's one minor tweak that deserves explanation: Lanczos' formula for
Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
values, x+g-0.5 can be represented exactly. However, in cases where it
can't be represented exactly the small error in x+g-0.5 can be magnified
significantly by the pow and exp calls, especially for large x. A cheap
correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
involved in the computation of x+g-0.5 (that is, e = computed value of
x+g-0.5 - exact value of x+g-0.5). Here's the proof:
Correction factor
-----------------
Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
double, and e is tiny. Then:
pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
= pow(y, x-0.5)/exp(y) * C,
where the correction_factor C is given by
C = pow(1-e/y, x-0.5) * exp(e)
Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
Note that for accuracy, when computing r*C it's better to do
r + e*g/y*r;
than
r * (1 + e*g/y);
since the addition in the latter throws away most of the bits of
information in e*g/y.
*/
#define LANCZOS_N 13
static
const
double
lanczos_g
=
6
.
0246
80040776729583740234375
;
static
const
double
lanczos_g_minus_half
=
5
.
524680040776729583740234375
;
static
const
double
lanczos_num_coeffs
[
LANCZOS_N
]
=
{
23531376880
.
410759688572007674451636754734846804940
,
42919803642
.
649098768957899047001988850926355848959
,
35711959237
.
355668049440185451547166705960488635843
,
17921034426
.
03720
9699919755754458931112671403265390
,
6039542586
.
3520280050642916443072979210699388420708
,
1439720407
.
3117216736632230727949123939715485786772
,
248874557
.
86205415651146038641322942321632125127801
,
31426415
.
585400194380614231628318205362874684987640
,
2876370
.
6289353724412254090516208496135991145378768
,
186056
.
26539522349504029498971604569928220784236328
,
8071
.
6720023658162106380029022722506138218516325024
,
210
.
82427775157934587250973392071336271166969580291
,
2
.
5066282746310002701649081771338373386264310793408
};
/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
static
const
double
lanczos_den_coeffs
[
LANCZOS_N
]
=
{
0
.
0
,
39916800
.
0
,
120543840
.
0
,
150917976
.
0
,
105258076
.
0
,
45995730
.
0
,
13339535
.
0
,
2637558
.
0
,
357423
.
0
,
32670
.
0
,
1925
.
0
,
66
.
0
,
1
.
0
};
/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
#define NGAMMA_INTEGRAL 23
static
const
double
gamma_integral
[
NGAMMA_INTEGRAL
]
=
{
1
.
0
,
1
.
0
,
2
.
0
,
6
.
0
,
24
.
0
,
120
.
0
,
720
.
0
,
5040
.
0
,
40320
.
0
,
362880
.
0
,
3628800
.
0
,
39916800
.
0
,
479001600
.
0
,
6227020800
.
0
,
87178291200
.
0
,
1307674368000
.
0
,
20922789888000
.
0
,
355687428096000
.
0
,
6402373705728000
.
0
,
121645100408832000
.
0
,
2432902008176640000
.
0
,
51090942171709440000
.
0
,
1124000727777607680000
.
0
,
};
/* Lanczos' sum L_g(x), for positive x */
static
double
lanczos_sum
(
double
x
)
{
double
num
=
0
.
0
,
den
=
0
.
0
;
int
i
;
assert
(
x
>
0
.
0
);
/* evaluate the rational function lanczos_sum(x). For large
x, the obvious algorithm risks overflow, so we instead
rescale the denominator and numerator of the rational
function by x**(1-LANCZOS_N) and treat this as a
rational function in 1/x. This also reduces the error for
larger x values. The choice of cutoff point (5.0 below) is
somewhat arbitrary; in tests, smaller cutoff values than
this resulted in lower accuracy. */
if
(
x
<
5
.
0
)
{
for
(
i
=
LANCZOS_N
;
--
i
>=
0
;
)
{
num
=
num
*
x
+
lanczos_num_coeffs
[
i
];
den
=
den
*
x
+
lanczos_den_coeffs
[
i
];
}
}
else
/* Unexpected math error */
PyErr_SetFromErrno
(
PyExc_ValueError
);
return
result
;
else
{
for
(
i
=
0
;
i
<
LANCZOS_N
;
i
++
)
{
num
=
num
/
x
+
lanczos_num_coeffs
[
i
];
den
=
den
/
x
+
lanczos_den_coeffs
[
i
];
}
}
return
num
/
den
;
}
static
double
m_tgamma
(
double
x
)
{
double
absx
,
r
,
y
,
z
,
sqrtpow
;
/* special cases */
if
(
!
Py_IS_FINITE
(
x
))
{
if
(
Py_IS_NAN
(
x
)
||
x
>
0
.
0
)
return
x
;
/* tgamma(nan) = nan, tgamma(inf) = inf */
else
{
errno
=
EDOM
;
return
Py_NAN
;
/* tgamma(-inf) = nan, invalid */
}
}
if
(
x
==
0
.
0
)
{
errno
=
EDOM
;
return
1
.
0
/
x
;
/* tgamma(+-0.0) = +-inf, divide-by-zero */
}
/* integer arguments */
if
(
x
==
floor
(
x
))
{
if
(
x
<
0
.
0
)
{
errno
=
EDOM
;
/* tgamma(n) = nan, invalid for */
return
Py_NAN
;
/* negative integers n */
}
if
(
x
<=
NGAMMA_INTEGRAL
)
return
gamma_integral
[(
int
)
x
-
1
];
}
absx
=
fabs
(
x
);
/* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
if
(
absx
<
1e-20
)
{
r
=
1
.
0
/
x
;
if
(
Py_IS_INFINITY
(
r
))
errno
=
ERANGE
;
return
r
;
}
/* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
x > 200, and underflows to +-0.0 for x < -200, not a negative
integer. */
if
(
absx
>
200
.
0
)
{
if
(
x
<
0
.
0
)
{
return
0
.
0
/
sinpi
(
x
);
}
else
{
errno
=
ERANGE
;
return
Py_HUGE_VAL
;
}
}
y
=
absx
+
lanczos_g_minus_half
;
/* compute error in sum */
if
(
absx
>
lanczos_g_minus_half
)
{
/* note: the correction can be foiled by an optimizing
compiler that (incorrectly) thinks that an expression like
a + b - a - b can be optimized to 0.0. This shouldn't
happen in a standards-conforming compiler. */
double
q
=
y
-
absx
;
z
=
q
-
lanczos_g_minus_half
;
}
else
{
double
q
=
y
-
lanczos_g_minus_half
;
z
=
q
-
absx
;
}
z
=
z
*
lanczos_g
/
y
;
if
(
x
<
0
.
0
)
{
r
=
-
pi
/
sinpi
(
absx
)
/
absx
*
exp
(
y
)
/
lanczos_sum
(
absx
);
r
-=
z
*
r
;
if
(
absx
<
140
.
0
)
{
r
/=
pow
(
y
,
absx
-
0
.
5
);
}
else
{
sqrtpow
=
pow
(
y
,
absx
/
2
.
0
-
0
.
25
);
r
/=
sqrtpow
;
r
/=
sqrtpow
;
}
}
else
{
r
=
lanczos_sum
(
absx
)
/
exp
(
y
);
r
+=
z
*
r
;
if
(
absx
<
140
.
0
)
{
r
*=
pow
(
y
,
absx
-
0
.
5
);
}
else
{
sqrtpow
=
pow
(
y
,
absx
/
2
.
0
-
0
.
25
);
r
*=
sqrtpow
;
r
*=
sqrtpow
;
}
}
if
(
Py_IS_INFINITY
(
r
))
errno
=
ERANGE
;
return
r
;
}
/*
...
...
@@ -188,6 +409,46 @@ m_log10(double x)
}
/* Call is_error when errno != 0, and where x is the result libm
* returned. is_error will usually set up an exception and return
* true (1), but may return false (0) without setting up an exception.
*/
static
int
is_error
(
double
x
)
{
int
result
=
1
;
/* presumption of guilt */
assert
(
errno
);
/* non-zero errno is a precondition for calling */
if
(
errno
==
EDOM
)
PyErr_SetString
(
PyExc_ValueError
,
"math domain error"
);
else
if
(
errno
==
ERANGE
)
{
/* ANSI C generally requires libm functions to set ERANGE
* on overflow, but also generally *allows* them to set
* ERANGE on underflow too. There's no consistency about
* the latter across platforms.
* Alas, C99 never requires that errno be set.
* Here we suppress the underflow errors (libm functions
* should return a zero on underflow, and +- HUGE_VAL on
* overflow, so testing the result for zero suffices to
* distinguish the cases).
*
* On some platforms (Ubuntu/ia64) it seems that errno can be
* set to ERANGE for subnormal results that do *not* underflow
* to zero. So to be safe, we'll ignore ERANGE whenever the
* function result is less than one in absolute value.
*/
if
(
fabs
(
x
)
<
1
.
0
)
result
=
0
;
else
PyErr_SetString
(
PyExc_OverflowError
,
"math range error"
);
}
else
/* Unexpected math error */
PyErr_SetFromErrno
(
PyExc_ValueError
);
return
result
;
}
/*
math_1 is used to wrap a libm function f that takes a double
arguments and returns a double.
...
...
@@ -247,6 +508,26 @@ math_1(PyObject *arg, double (*func) (double), int can_overflow)
return
PyFloat_FromDouble
(
r
);
}
/* variant of math_1, to be used when the function being wrapped is known to
set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
errno = ERANGE for overflow). */
static
PyObject
*
math_1a
(
PyObject
*
arg
,
double
(
*
func
)
(
double
))
{
double
x
,
r
;
x
=
PyFloat_AsDouble
(
arg
);
if
(
x
==
-
1
.
0
&&
PyErr_Occurred
())
return
NULL
;
errno
=
0
;
PyFPE_START_PROTECT
(
"in math_1a"
,
return
0
);
r
=
(
*
func
)(
x
);
PyFPE_END_PROTECT
(
r
);
if
(
errno
&&
is_error
(
r
))
return
NULL
;
return
PyFloat_FromDouble
(
r
);
}
/*
math_2 is used to wrap a libm function f that takes two double
arguments and returns a double.
...
...
@@ -313,6 +594,12 @@ math_2(PyObject *args, double (*func) (double, double), char *funcname)
}\
PyDoc_STRVAR(math_##funcname##_doc, docstring);
#define FUNC1A(funcname, func, docstring) \
static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
return math_1a(args, func); \
}\
PyDoc_STRVAR(math_##funcname##_doc, docstring);
#define FUNC2(funcname, func, docstring) \
static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
return math_2(args, func, #funcname); \
...
...
@@ -350,6 +637,8 @@ FUNC1(fabs, fabs, 0,
FUNC1
(
floor
,
floor
,
0
,
"floor(x)
\n\n
Return the floor of x as a float.
\n
"
"This is the largest integral value <= x."
)
FUNC1A
(
gamma
,
m_tgamma
,
"gamma(x)
\n\n
Gamma function at x."
)
FUNC1
(
log1p
,
log1p
,
1
,
"log1p(x)
\n\n
Return the natural logarithm of 1+x (base e).
\n
\
The result is computed in a way which is accurate for x near zero."
)
...
...
@@ -1077,6 +1366,7 @@ static PyMethodDef math_methods[] = {
{
"fmod"
,
math_fmod
,
METH_VARARGS
,
math_fmod_doc
},
{
"frexp"
,
math_frexp
,
METH_O
,
math_frexp_doc
},
{
"fsum"
,
math_fsum
,
METH_O
,
math_fsum_doc
},
{
"gamma"
,
math_gamma
,
METH_O
,
math_gamma_doc
},
{
"hypot"
,
math_hypot
,
METH_VARARGS
,
math_hypot_doc
},
{
"isinf"
,
math_isinf
,
METH_O
,
math_isinf_doc
},
{
"isnan"
,
math_isnan
,
METH_O
,
math_isnan_doc
},
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment