Kaydet (Commit) e29862bc authored tarafından Tor Lillqvist's avatar Tor Lillqvist

PPC Mac support can go away now (again)

Change-Id: Ie1b2ab13eda584c48aaa0a4a0941f1be451697c1
üst 0ea9722f
......@@ -154,12 +154,6 @@ bridge_noncallexception_noopt_objects := callvirtualmethod
bridge_exception_objects := abi cpp2uno except uno2cpp
endif
else ifeq ($(OS)-$(CPUNAME),MACOSX-POWERPC)
bridges_SELECTED_BRIDGE := gcc3_macosx_powerpc
bridge_noopt_objects := uno2cpp
bridge_exception_objects := cpp2uno except
else ifeq ($(OS)-$(CPUNAME),SOLARIS-SPARC)
bridges_SELECTED_BRIDGE := gcc3_solaris_sparc
......
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include <typelib/typedescription.hxx>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/cppinterfaceproxy.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/vtablefactory.hxx"
#include "share.hxx"
using namespace ::com::sun::star::uno;
namespace
{
static typelib_TypeClass cpp2uno_call(
bridges::cpp_uno::shared::CppInterfaceProxy * pThis,
const typelib_TypeDescription * pMemberTypeDescr,
typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return
sal_Int32 nParams, typelib_MethodParameter * pParams,
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
int ng = 0; //number of gpr registers used
int nf = 0; //number of fpr regsiters used
void ** pCppStack; //temporary stack pointer
// gpreg: [ret *], this, [gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (properly aligned)]
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
if (pReturnTypeRef)
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
void * pUnoReturn = 0;
void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need
// handle optional return pointer
if (pReturnTypeDescr)
{
if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
{
pUnoReturn = pRegisterReturn; // direct way for simple types
}
else // complex return via ptr (pCppReturn)
{
pCppReturn = *gpreg;
gpreg++; //ovrflw++;
ng++;
pUnoReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pCppReturn); // direct way
}
}
// pop "this"
gpreg++; //ovrflw++;
ng++;
// stack space
OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
// parameters
void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams );
void ** pCppArgs = pUnoArgs + nParams;
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = (sal_Int32 *)(pUnoArgs + (2 * nParams));
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams));
sal_Int32 nTempIndices = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
// value
{
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_DOUBLE:
if (nf < 13) {
pCppArgs[nPos] = fpreg;
pUnoArgs[nPos] = fpreg;
nf++;
fpreg += 2;
} else {
if (((long)ovrflw) & 4) ovrflw++;
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw += 2;
}
break;
case typelib_TypeClass_FLOAT:
// fpreg are all double values so need to
// modify fpreg to be a single word float value
if (nf < 13) {
float tmp = (float) (*((double *)fpreg));
(*((float *) fpreg)) = tmp;
pCppArgs[nPos] = fpreg;
pUnoArgs[nPos] = fpreg;
nf++;
fpreg += 2;
} else {
#if 0 /* abi is not being followed correctly */
if (((long)ovrflw) & 4) ovrflw++;
float tmp = (float) (*((double *)ovrflw));
(*((float *) ovrflw)) = tmp;
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw += 2;
#else
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw += 1;
#endif
}
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
if (ng & 1) {
ng++;
gpreg++;
}
if (ng < 8) {
pCppArgs[nPos] = gpreg;
pUnoArgs[nPos] = gpreg;
ng += 2;
gpreg += 2;
} else {
if (((long)ovrflw) & 4) ovrflw++;
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw += 2;
}
break;
case typelib_TypeClass_BYTE:
case typelib_TypeClass_BOOLEAN:
if (ng < 8) {
pCppArgs[nPos] = (((char *)gpreg) + 3);
pUnoArgs[nPos] = (((char *)gpreg) + 3);
ng++;
gpreg++;
} else {
pCppArgs[nPos] = (((char *)ovrflw) + 3);
pUnoArgs[nPos] = (((char *)ovrflw) + 3);
ovrflw++;
}
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
if (ng < 8) {
pCppArgs[nPos] = (((char *)gpreg)+ 2);
pUnoArgs[nPos] = (((char *)gpreg)+ 2);
ng++;
gpreg++;
} else {
pCppArgs[nPos] = (((char *)ovrflw) + 2);
pUnoArgs[nPos] = (((char *)ovrflw) + 2);
ovrflw++;
}
break;
default:
if (ng < 8) {
pCppArgs[nPos] = gpreg;
pUnoArgs[nPos] = gpreg;
ng++;
gpreg++;
} else {
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw++;
}
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (ng < 8) {
pCppArgs[nPos] = *(void **)gpreg;
pCppStack = gpreg;
ng++;
gpreg++;
} else {
pCppArgs[nPos] = *(void **)ovrflw;
pCppStack = ovrflw;
ovrflw++;
}
if (! rParam.bIn) // is pure out
{
// uno out is unconstructed mem!
pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize );
pTempIndices[nTempIndices] = nPos;
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ),
*(void **)pCppStack, pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pUnoArgs[nPos] = *(void **)pCppStack;
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
}
// ExceptionHolder
uno_Any aUnoExc; // Any will be constructed by callee
uno_Any * pUnoExc = &aUnoExc;
// invoke uno dispatch call
(*pThis->getUnoI()->pDispatcher)( pThis->getUnoI(), pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc );
// in case an exception occurred...
if (pUnoExc)
{
// destruct temporary in/inout params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
if (pParams[nIndex].bIn) // is in/inout => was constructed
uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndices], 0 );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
CPPU_CURRENT_NAMESPACE::raiseException( &aUnoExc, pThis->getBridge()->getUno2Cpp() );
// has to destruct the any
// is here for dummy
return typelib_TypeClass_VOID;
}
else // else no exception occurred...
{
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bOut) // inout/out
{
// convert and assign
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
}
// destroy temp uno param
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return
if (pCppReturn) // has complex return
{
if (pUnoReturn != pCppReturn) // needs reconversion
{
uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr,
pThis->getBridge()->getUno2Cpp() );
// destroy temp uno return
uno_destructData( pUnoReturn, pReturnTypeDescr, 0 );
}
// complex return ptr is set to return reg
*(void **)pRegisterReturn = pCppReturn;
}
if (pReturnTypeDescr)
{
typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass;
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
return eRet;
}
else
return typelib_TypeClass_VOID;
}
}
static typelib_TypeClass cpp_mediate(
sal_Int32 nFunctionIndex,
sal_Int32 nVtableOffset,
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
OSL_ENSURE( sizeof(sal_Int32)==sizeof(void *), "### unexpected!" );
// gpreg: [ret *], this, [other gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (properly aligned)]
void * pThis;
if (nFunctionIndex & 0x80000000 )
{
nFunctionIndex &= 0x7fffffff;
pThis = gpreg[1];
}
else
{
pThis = gpreg[0];
}
pThis = static_cast< char * >(pThis) - nVtableOffset;
bridges::cpp_uno::shared::CppInterfaceProxy * pCppI
= bridges::cpp_uno::shared::CppInterfaceProxy::castInterfaceToProxy(
pThis);
typelib_InterfaceTypeDescription * pTypeDescr = pCppI->getTypeDescr();
OSL_ENSURE( nFunctionIndex < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" );
if (nFunctionIndex >= pTypeDescr->nMapFunctionIndexToMemberIndex)
{
throw RuntimeException( "illegal vtable index!", (XInterface *)pThis );
}
// determine called method
sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nFunctionIndex];
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### illegal member index!" );
TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] );
typelib_TypeClass eRet;
switch (aMemberDescr.get()->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nFunctionIndex)
{
// is GET method
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef,
0, 0, // no params
gpreg, fpreg, ovrflw, pRegisterReturn );
}
else
{
// is SET method
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
0, // indicates void return
1, &aParam,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
// is METHOD
switch (nFunctionIndex)
{
case 1: // acquire()
pCppI->acquireProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 2: // release()
pCppI->releaseProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( gpreg[2] )->getTypeLibType() );
if (pTD)
{
XInterface * pInterface = 0;
(*pCppI->getBridge()->getCppEnv()->getRegisteredInterface)(
pCppI->getBridge()->getCppEnv(),
(void **)&pInterface, pCppI->getOid().pData,
(typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( gpreg[0] ),
&pInterface, pTD, cpp_acquire );
pInterface->release();
TYPELIB_DANGER_RELEASE( pTD );
*(void **)pRegisterReturn = gpreg[0];
eRet = typelib_TypeClass_ANY;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->nParams,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pParams,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
default:
{
throw RuntimeException( "no member description found!", (XInterface *)pThis );
}
}
return eRet;
}
/**
* is called on incoming vtable calls
* (called by asm snippets)
*/
static void cpp_vtable_call( int nFunctionIndex, int nVtableOffset, void** gpregptr, void** fpregptr, void** ovrflw)
{
sal_Int32 gpreg[8];
memcpy(gpreg, gpregptr, 32);
double fpreg[13];
memcpy(fpreg, fpregptr, 13*8);
volatile long nRegReturn[2];
// fprintf(stderr,"in cpp_vtable_call nFunctionIndex is %x\n",nFunctionIndex);
// fprintf(stderr,"in cpp_vtable_call nVtableOffset is %x\n",nVtableOffset);
// fflush(stderr);
typelib_TypeClass aType =
cpp_mediate( nFunctionIndex, nVtableOffset, (void**)gpreg,
(void**)fpreg,
ovrflw, (sal_Int64*)nRegReturn );
switch( aType )
{
// move return value into register space
// (will be loaded by machine code snippet)
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
__asm__( "lbz r3,%0" : :
"m"(nRegReturn[0]) );
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
__asm__( "lhz r3,%0" : :
"m"(nRegReturn[0]) );
break;
case typelib_TypeClass_FLOAT:
__asm__( "lfs f1,%0" : :
"m" (*((float*)nRegReturn)) );
break;
case typelib_TypeClass_DOUBLE:
__asm__( "lfd f1,%0" : :
"m" (*((double*)nRegReturn)) );
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
__asm__( "lwz r4,%0" : :
"m"(nRegReturn[1]) );
// no break, fall through
default:
__asm__( "lwz r3,%0" : :
"m"(nRegReturn[0]) );
break;
}
}
int const codeSnippetSize = 136;
unsigned char * codeSnippet( unsigned char * code, sal_Int32 functionIndex, sal_Int32 vtableOffset,
bool simpleRetType)
{
// fprintf(stderr,"in codeSnippet functionIndex is %x\n", functionIndex);
// fprintf(stderr,"in codeSnippet vtableOffset is %x\n", vtableOffset);
// fflush(stderr);
if (! simpleRetType )
functionIndex |= 0x80000000;
unsigned long * p = (unsigned long *) code;
// OSL_ASSERT( sizeof (long) == 4 );
OSL_ASSERT((((unsigned long)code) & 0x3) == 0 ); //aligned to 4 otherwise a mistake
/* generate this code */
// # so first save gpr 3 to gpr 10 (aligned to 4)
// stw r3,-2048(r1)
// stw r4,-2044(r1)
// stw r5,-2040(r1)
// stw r6,-2036(r1)
// stw r7,-2032(r1)
// stw r8,-2028(r1)
// stw r9,-2024(r1)
// stw r10,-2020(r1)
// # next save fpr 1 to fpr 13 (aligned to 8)
// if dedicated floating point registers are used
// stfd f1,-2016(r1)
// stfd f2,-2008(r1)
// stfd f3,-2000(r1)
// stfd f4,-1992(r1)
// stfd f5,-1984(r1)
// stfd f6,-1976(r1)
// stfd f7,-1968(r1)
// stfd f8,-1960(r1)
// stfd f9,-1952(r1)
// stfd f10,-1944(r1)
// stfd f11,-1936(r1)
// stfd f12,-1928(r1)
// stfd f13,-1920(r1)
// # now here is where cpp_vtable_call must go
// lis r3,0xdead
// ori r3,r3,0xbeef
// mtctr r3
// # now load up the functionIndex
// lis r3,0xdead
// ori r3,r3,0xbeef
// # now load up the vtableOffset
// lis r4,0xdead
// ori r4,r4,0xbeef
// #now load up the pointer to the saved gpr registers
// addi r5,r1,-2048
// #now load up the pointer to the saved fpr registers
// addi r6,r1,-2016
// if no dedicated floating point registers are used than we have NULL
// pointer there
// li r6, 0
//
// #now load up the pointer to the overflow call stack
// addi r7,r1,24 # frame pointer + 24
// bctr
* p++ = 0x9061f800;
* p++ = 0x9081f804;
* p++ = 0x90a1f808;
* p++ = 0x90c1f80c;
* p++ = 0x90e1f810;
* p++ = 0x9101f814;
* p++ = 0x9121f818;
* p++ = 0x9141f81c;
* p++ = 0xd821f820;
* p++ = 0xd841f828;
* p++ = 0xd861f830;
* p++ = 0xd881f838;
* p++ = 0xd8a1f840;
* p++ = 0xd8c1f848;
* p++ = 0xd8e1f850;
* p++ = 0xd901f858;
* p++ = 0xd921f860;
* p++ = 0xd941f868;
* p++ = 0xd961f870;
* p++ = 0xd981f878;
* p++ = 0xd9a1f880;
* p++ = 0x3c600000 | (((unsigned long)cpp_vtable_call) >> 16);
* p++ = 0x60630000 | (((unsigned long)cpp_vtable_call) & 0x0000FFFF);
* p++ = 0x7c6903a6;
* p++ = 0x3c600000 | (((unsigned long)functionIndex) >> 16);
* p++ = 0x60630000 | (((unsigned long)functionIndex) & 0x0000FFFF);
* p++ = 0x3c800000 | (((unsigned long)vtableOffset) >> 16);
* p++ = 0x60840000 | (((unsigned long)vtableOffset) & 0x0000FFFF);
* p++ = 0x38a1f800;
* p++ = 0x38c1f820;
* p++ = 0x38e10018;
* p++ = 0x4e800420;
return (code + codeSnippetSize);
}
}
void bridges::cpp_uno::shared::VtableFactory::flushCode(unsigned char const * bptr, unsigned char const * eptr)
{
int const lineSize = 32;
for (unsigned char const * p = bptr; p < eptr + lineSize; p += lineSize) {
__asm__ volatile ("dcbst 0, %0" : : "r"(p) : "memory");
}
__asm__ volatile ("sync" : : : "memory");
for (unsigned char const * p = bptr; p < eptr + lineSize; p += lineSize) {
__asm__ volatile ("icbi 0, %0" : : "r"(p) : "memory");
}
__asm__ volatile ("isync" : : : "memory");
}
struct bridges::cpp_uno::shared::VtableFactory::Slot { void * fn; };
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::mapBlockToVtable(void * block)
{
return static_cast< Slot * >(block) + 2;
}
sal_Size bridges::cpp_uno::shared::VtableFactory::getBlockSize(
sal_Int32 slotCount)
{
return (slotCount + 2) * sizeof (Slot) + slotCount * codeSnippetSize;
}
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::initializeBlock(
void * block, sal_Int32 slotCount, sal_Int32,
typelib_InterfaceTypeDescription *)
{
Slot * slots = mapBlockToVtable(block);
slots[-2].fn = 0;
slots[-1].fn = 0;
return slots + slotCount;
}
unsigned char * bridges::cpp_uno::shared::VtableFactory::addLocalFunctions(
Slot ** slots, unsigned char * code,
typelib_InterfaceTypeDescription const * type, sal_Int32 functionOffset,
sal_Int32 functionCount, sal_Int32 vtableOffset)
{
(*slots) -= functionCount;
Slot * s = *slots;
// fprintf(stderr, "in addLocalFunctions functionOffset is %x\n",functionOffset);
// fprintf(stderr, "in addLocalFunctions vtableOffset is %x\n",vtableOffset);
// fflush(stderr);
for (sal_Int32 i = 0; i < type->nMembers; ++i) {
typelib_TypeDescription * member = 0;
TYPELIB_DANGER_GET(&member, type->ppMembers[i]);
OSL_ASSERT(member != 0);
switch (member->eTypeClass) {
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
// Getter:
(s++)->fn = code;
code = codeSnippet(
code, functionOffset++, vtableOffset,
bridges::cpp_uno::shared::isSimpleType(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->pAttributeTypeRef));
// Setter:
if (!reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->bReadOnly)
{
(s++)->fn = code;
code = codeSnippet(code, functionOffset++, vtableOffset, true);
}
break;
case typelib_TypeClass_INTERFACE_METHOD:
(s++)->fn = code;
code = codeSnippet(
code, functionOffset++, vtableOffset,
bridges::cpp_uno::shared::isSimpleType(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription * >(
member)->pReturnTypeRef));
break;
default:
OSL_ASSERT(false);
break;
}
TYPELIB_DANGER_RELEASE(member);
}
return code;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <stdio.h>
#include <dlfcn.h>
#include <cxxabi.h>
#include <boost/unordered_map.hpp>
#include <rtl/strbuf.hxx>
#include <rtl/ustrbuf.hxx>
#include <osl/diagnose.h>
#include <osl/mutex.hxx>
#include <com/sun/star/uno/genfunc.hxx>
#include <typelib/typedescription.hxx>
#include <uno/any2.h>
#include "share.hxx"
using namespace ::std;
using namespace ::osl;
using namespace ::rtl;
using namespace ::com::sun::star::uno;
using namespace ::__cxxabiv1;
namespace CPPU_CURRENT_NAMESPACE
{
void dummy_can_throw_anything( char const * )
{
}
static OUString toUNOname( char const * p )
{
#if OSL_DEBUG_LEVEL > 1
char const * start = p;
#endif
// example: N3com3sun4star4lang24IllegalArgumentExceptionE
OUStringBuffer buf( 64 );
OSL_ASSERT( 'N' == *p );
++p; // skip N
while ('E' != *p)
{
// read chars count
long n = (*p++ - '0');
while ('0' <= *p && '9' >= *p)
{
n *= 10;
n += (*p++ - '0');
}
buf.appendAscii( p, n );
p += n;
if ('E' != *p)
buf.append( '.' );
}
#if OSL_DEBUG_LEVEL > 1
OUString ret( buf.makeStringAndClear() );
OString c_ret( OUStringToOString( ret, RTL_TEXTENCODING_ASCII_US ) );
fprintf( stderr, "> toUNOname(): %s => %s\n", start, c_ret.getStr() );
return ret;
#else
return buf.makeStringAndClear();
#endif
}
class RTTI
{
typedef boost::unordered_map< OUString, type_info *, OUStringHash > t_rtti_map;
Mutex m_mutex;
t_rtti_map m_rttis;
t_rtti_map m_generatedRttis;
void * m_hApp;
public:
RTTI();
~RTTI();
type_info * getRTTI( typelib_CompoundTypeDescription * );
};
RTTI::RTTI()
: m_hApp( dlopen( 0, RTLD_LAZY ) )
{
}
RTTI::~RTTI()
{
dlclose( m_hApp );
}
type_info * RTTI::getRTTI( typelib_CompoundTypeDescription *pTypeDescr )
{
type_info * rtti;
OUString const & unoName = *(OUString const *)&pTypeDescr->aBase.pTypeName;
MutexGuard guard( m_mutex );
t_rtti_map::const_iterator iRttiFind( m_rttis.find( unoName ) );
if (iRttiFind == m_rttis.end())
{
// RTTI symbol
OStringBuffer buf( 64 );
buf.append( "_ZTIN" );
sal_Int32 index = 0;
do
{
OUString token( unoName.getToken( 0, '.', index ) );
buf.append( token.getLength() );
OString c_token( OUStringToOString( token, RTL_TEXTENCODING_ASCII_US ) );
buf.append( c_token );
}
while (index >= 0);
buf.append( 'E' );
OString symName( buf.makeStringAndClear() );
rtti = (type_info *)dlsym( m_hApp, symName.getStr() );
if (rtti)
{
pair< t_rtti_map::iterator, bool > insertion(
m_rttis.insert( t_rtti_map::value_type( unoName, rtti ) ) );
OSL_ENSURE( insertion.second, "### inserting new rtti failed?!" );
}
else
{
// try to lookup the symbol in the generated rtti map
t_rtti_map::const_iterator iFind( m_generatedRttis.find( unoName ) );
if (iFind == m_generatedRttis.end())
{
// we must generate it !
// symbol and rtti-name is nearly identical,
// the symbol is prefixed with _ZTI
char const * rttiName = symName.getStr() +4;
#if OSL_DEBUG_LEVEL > 1
fprintf( stderr,"generated rtti for %s\n", rttiName );
#endif
if (pTypeDescr->pBaseTypeDescription)
{
// ensure availability of base
type_info * base_rtti = getRTTI(
(typelib_CompoundTypeDescription *)pTypeDescr->pBaseTypeDescription );
rtti = new __si_class_type_info(
strdup( rttiName ), (__class_type_info *)base_rtti );
}
else
{
// this class has no base class
rtti = new __class_type_info( strdup( rttiName ) );
}
pair< t_rtti_map::iterator, bool > insertion(
m_generatedRttis.insert( t_rtti_map::value_type( unoName, rtti ) ) );
OSL_ENSURE( insertion.second, "### inserting new generated rtti failed?!" );
}
else // taking already generated rtti
{
rtti = iFind->second;
}
}
}
else
{
rtti = iRttiFind->second;
}
return rtti;
}
static void deleteException( void * pExc )
{
__cxa_exception const * header = ((__cxa_exception const *)pExc - 1);
typelib_TypeDescription * pTD = 0;
OUString unoName( toUNOname( header->exceptionType->name() ) );
::typelib_typedescription_getByName( &pTD, unoName.pData );
OSL_ENSURE( pTD, "### unknown exception type! leaving out destruction => leaking!!!" );
if (pTD)
{
::uno_destructData( pExc, pTD, cpp_release );
::typelib_typedescription_release( pTD );
}
}
void raiseException( uno_Any * pUnoExc, uno_Mapping * pUno2Cpp )
{
void * pCppExc;
type_info * rtti;
{
// construct cpp exception object
typelib_TypeDescription * pTypeDescr = 0;
TYPELIB_DANGER_GET( &pTypeDescr, pUnoExc->pType );
OSL_ASSERT( pTypeDescr );
if (! pTypeDescr)
terminate();
pCppExc = __cxa_allocate_exception( pTypeDescr->nSize );
::uno_copyAndConvertData( pCppExc, pUnoExc->pData, pTypeDescr, pUno2Cpp );
// destruct uno exception
::uno_any_destruct( pUnoExc, 0 );
// avoiding locked counts
static RTTI * s_rtti = 0;
if (! s_rtti)
{
MutexGuard guard( Mutex::getGlobalMutex() );
if (! s_rtti)
{
#ifdef LEAK_STATIC_DATA
s_rtti = new RTTI();
#else
static RTTI rtti_data;
s_rtti = &rtti_data;
#endif
}
}
rtti = (type_info *)s_rtti->getRTTI( (typelib_CompoundTypeDescription *) pTypeDescr );
TYPELIB_DANGER_RELEASE( pTypeDescr );
OSL_ENSURE( rtti, "### no rtti for throwing exception!" );
if (! rtti)
terminate();
}
__cxa_throw( pCppExc, rtti, deleteException );
}
void fillUnoException( __cxa_exception * header, uno_Any * pExc, uno_Mapping * pCpp2Uno )
{
OSL_ENSURE( header, "### no exception header!!!" );
if (! header)
terminate();
typelib_TypeDescription * pExcTypeDescr = 0;
OUString unoName( toUNOname( header->exceptionType->name() ) );
::typelib_typedescription_getByName( &pExcTypeDescr, unoName.pData );
OSL_ENSURE( pExcTypeDescr, "### can not get type description for exception!!!" );
if (! pExcTypeDescr)
terminate();
// construct uno exception any
::uno_any_constructAndConvert( pExc, header->adjustedPtr, pExcTypeDescr, pCpp2Uno );
::typelib_typedescription_release( pExcTypeDescr );
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifndef INCLUDED_BRIDGES_SOURCE_CPP_UNO_GCC3_MACOSX_POWERPC_SHARE_HXX
#define INCLUDED_BRIDGES_SOURCE_CPP_UNO_GCC3_MACOSX_POWERPC_SHARE_HXX
#include "uno/mapping.h"
#include <typeinfo>
#include <exception>
#include <cstddef>
namespace CPPU_CURRENT_NAMESPACE
{
void dummy_can_throw_anything( char const * );
// ----- following decl from libstdc++-v3/libsupc++/unwind-cxx.h and unwind.h
struct _Unwind_Exception
{
unsigned exception_class __attribute__((__mode__(__DI__)));
void * exception_cleanup;
unsigned private_1 __attribute__((__mode__(__word__)));
unsigned private_2 __attribute__((__mode__(__word__)));
} __attribute__((__aligned__));
struct __cxa_exception
{
::std::type_info *exceptionType;
void (*exceptionDestructor)(void *);
::std::unexpected_handler unexpectedHandler;
::std::terminate_handler terminateHandler;
__cxa_exception *nextException;
int handlerCount;
int handlerSwitchValue;
const unsigned char *actionRecord;
const unsigned char *languageSpecificData;
void *catchTemp;
void *adjustedPtr;
_Unwind_Exception unwindHeader;
};
extern "C" void *__cxa_allocate_exception(
std::size_t thrown_size ) throw();
extern "C" void __cxa_throw (
void *thrown_exception, std::type_info *tinfo, void (*dest) (void *) ) __attribute__((noreturn));
struct __cxa_eh_globals
{
__cxa_exception *caughtExceptions;
unsigned int uncaughtExceptions;
};
extern "C" __cxa_eh_globals *__cxa_get_globals () throw();
void raiseException(
uno_Any * pUnoExc, uno_Mapping * pUno2Cpp );
void fillUnoException(
__cxa_exception * header, uno_Any *, uno_Mapping * pCpp2Uno );
}
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sys/types.h>
#include <sys/malloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"
#include "share.hxx"
using namespace ::rtl;
using namespace ::com::sun::star::uno;
namespace
{
static void callVirtualMethod(
void * pAdjustedThisPtr,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeClass eReturnType,
char * pPT,
sal_Int32 * pStackLongs,
sal_Int32 nStackLongs)
{
// parameter list is mixed list of * and values
// reference parameters are pointers
// the basic idea here is to use gpr[8] as a storage area for
// the future values of registers r3 to r10 needed for the call,
// and similarly fpr[13] as a storage area for the future values
// of floating point registers f1 to f13
unsigned long * mfunc; // actual function to be invoked
int gpr[8]; // storage for gp registers, map to r3-r10
int off; // offset used to find function
double fpr[13]; // storage for fp registers, map to f1-f13
int f; // number of fprs mapped so far
double dret; // temporary function return values
int n; // number of gprs mapped so far
long *p; // pointer to parameter overflow area
int c; // character of parameter type being decoded
int iret, iret2;
// Because of the Power PC calling conventions we could be passing
// parameters in both register types and on the stack. To create the
// stack parameter area we need we now simply allocate local
// variable storage param[] that is at least the size of the parameter stack
// (more than enough space) which we can overwrite the parameters into.
// Note: This keeps us from having to decode the signature twice and
// prevents problems with later local variables.
// Note: could require up to 2*nStackLongs words of parameter stack area
// if the call has many float parameters (i.e. floats take up only 1
// word on the stack but double takes 2 words in parameter area in the
// stack frame .
// Update! floats on the outgoing parameter stack only take up 1 word
// (stfs is used) which is not correct according to the ABI but we
// will match what the compiler does until this is figured out
// this grows the current stack to the appropriate size
// and sets the outgoing stack pointer p to the right place
__asm__ __volatile__ (
"rlwinm %0,%0,3,3,28\n\t"
"addi %0,%0,22\n\t"
"rlwinm %0,%0,0,4,28\n\t"
"lwz r0,0(r1)\n\t"
"subf r1,%0,r1\n\t"
"stw r0,0(r1)\n\t"
: : "r" (nStackLongs) : "0" );
__asm__ __volatile__ ( "addi %0,r1,24" : "=r" (p) : );
// never called
// if (! pAdjustedThisPtr ) dummy_can_throw_anything("xxx"); // address something
// now begin to load the C++ function arguments into storage
n = 0;
f = 0;
// now we need to parse the entire signature string */
// until we get the END indicator */
// treat complex return pointer like any other parameter
#if OSL_DEBUG_LEVEL > 2
/* Let's figure out what is really going on here*/
fprintf(stderr,"callVirtualMethod parameters string is %s\n",pPT);
int k = nStackLongs;
long * q = (long *)pStackLongs;
while (k > 0) {
fprintf(stderr,"uno stack is: %x\n",*q);
k--;
q++;
}
#endif
/* parse the argument list up to the ending ) */
while (*pPT != 'X') {
c = *pPT;
switch (c) {
case 'D': /* type is double */
if (f < 13) {
fpr[f++] = *((double *)pStackLongs); /* store in register */
} else {
if (((long) p) & 4)
p++;
*p++ = *pStackLongs; /* or on the parameter stack */
*p++ = *(pStackLongs + 1);
}
pStackLongs += 2;
break;
case 'F': /* type is float */
/* this assumes that floats are stored as 1 32 bit word on param
stack and that if passed in parameter stack to C, should be
as double word.
Whoops: the abi is not actually followed by gcc, need to
store floats as a *single* word on outgoing parameter stack
to match what gcc actually does
*/
if (f < 13) {
fpr[f++] = *((float *)pStackLongs);
} else {
#if 0 /* if abi were followed */
if (((long) p) & 4)
p++;
*((double *)p) = *((float *)pStackLongs);
p += 2;
#else
*((float *)p) = *((float *)pStackLongs);
p += 1;
#endif
}
pStackLongs += 1;
break;
case 'H': /* type is long long */
if (n & 1) n++; /* note even elements gpr[] will map to
odd registers*/
if (n <= 6) {
gpr[n++] = *pStackLongs;
gpr[n++] = *(pStackLongs+1);
} else {
if (((long) p) & 4)
p++;
*p++ = *pStackLongs;
*p++ = *(pStackLongs+1);
}
pStackLongs += 2;
break;
case 'S':
if (n < 8) {
gpr[n++] = *((unsigned short*)pStackLongs);
} else {
*p++ = *((unsigned short *)pStackLongs);
}
pStackLongs += 1;
break;
case 'B':
if (n < 8) {
gpr[n++] = *((char *)pStackLongs);
} else {
*p++ = *((char *)pStackLongs);
}
pStackLongs += 1;
break;
default:
if (n < 8) {
gpr[n++] = *pStackLongs;
} else {
*p++ = *pStackLongs;
}
pStackLongs += 1;
break;
}
pPT++;
}
/* figure out the address of the function we need to invoke */
off = nVtableIndex;
off = off * 4; // 4 bytes per slot
mfunc = *((unsigned long **)pAdjustedThisPtr); // get the address of the vtable
mfunc = (unsigned long *)((char *)mfunc + off); // get the address from the vtable entry at offset
mfunc = *((unsigned long **)mfunc); // the function is stored at the address
typedef void (*FunctionCall)(sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32, sal_uInt32);
FunctionCall ptr = (FunctionCall)mfunc;
/* Set up the machine registers and invoke the function */
__asm__ __volatile__ (
"lwz r3, 0(%0)\n\t"
"lwz r4, 4(%0)\n\t"
"lwz r5, 8(%0)\n\t"
"lwz r6, 12(%0)\n\t"
"lwz r7, 16(%0)\n\t"
"lwz r8, 20(%0)\n\t"
"lwz r9, 24(%0)\n\t"
"lwz r10, 28(%0)\n\t"
"lfd f1, 0(%1)\n\t"
"lfd f2, 8(%1)\n\t"
"lfd f3, 16(%1)\n\t"
"lfd f4, 24(%1)\n\t"
"lfd f5, 32(%1)\n\t"
"lfd f6, 40(%1)\n\t"
"lfd f7, 48(%1)\n\t"
"lfd f8, 56(%1)\n\t"
"lfd f9, 64(%1)\n\t"
"lfd f10, 72(%1)\n\t"
"lfd f11, 80(%1)\n\t"
"lfd f12, 88(%1)\n\t"
"lfd f13, 96(%1)\n\t"
: : "r" (gpr), "r" (fpr)
: "0", "3", "4", "5", "6", "7", "8", "9", "10",
"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"
);
// tell gcc that r3 to r10 are not available to it for doing the TOC and exception munge on the func call
register sal_uInt32 r3 __asm__("r3");
register sal_uInt32 r4 __asm__("r4");
register sal_uInt32 r5 __asm__("r5");
register sal_uInt32 r6 __asm__("r6");
register sal_uInt32 r7 __asm__("r7");
register sal_uInt32 r8 __asm__("r8");
register sal_uInt32 r9 __asm__("r9");
register sal_uInt32 r10 __asm__("r10");
(*ptr)(r3, r4, r5, r6, r7, r8, r9, r10);
__asm__ __volatile__ (
"mr %0,r3\n\t"
"mr %1,r4\n\t"
"fmr %2,f1\n\t"
: "=r" (iret), "=r" (iret2), "=f" (dret)
: );
switch( eReturnType )
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
((long*)pRegisterReturn)[0] = iret;
((long*)pRegisterReturn)[1] = iret2;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
((long*)pRegisterReturn)[0] = iret;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*(unsigned short*)pRegisterReturn = (unsigned short)iret;
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*(unsigned char*)pRegisterReturn = (unsigned char)iret;
break;
case typelib_TypeClass_FLOAT:
*(float*)pRegisterReturn = (float)dret;
break;
case typelib_TypeClass_DOUBLE:
*(double*)pRegisterReturn = dret;
break;
default:
break;
}
}
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
char * pCppStack =
(char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
char * pCppStackStart = pCppStack;
// need to know parameter types for callVirtualMethod so generate a signature string
char * pParamType = (char *) alloca(nParams+2);
char * pPT = pParamType;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
// OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
if (pReturnTypeDescr)
{
if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
{
pCppReturn = pUnoReturn; // direct way for simple types
}
else
{
// complex return via ptr
pCppReturn = *(void **)pCppStack =
(bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize ): pUnoReturn); // direct way
*pPT++ = 'I'; //signify that a complex return type on stack
pCppStack += sizeof(void *);
}
}
// push this
void* pAdjustedThisPtr = reinterpret_cast< void **>(pThis->getCppI()) + aVtableSlot.offset;
*(void**)pCppStack = pAdjustedThisPtr;
pCppStack += sizeof( void* );
*pPT++ = 'I';
// stack space
// OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
// args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndices = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
// we need to know type of each param so that we know whether to use
// gpr or fpr to pass in parameters:
// Key: I - int, long, pointer, etc means pass in gpr
// B - byte value passed in gpr
// S - short value passed in gpr
// F - float value pass in fpr
// D - double value pass in fpr
// H - long long int pass in proper pairs of gpr (3,4) (5,6), etc
// X - indicates end of parameter description string
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*pPT++ = 'I';
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
*pPT++ = 'S';
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*pPT++ = 'B';
break;
case typelib_TypeClass_FLOAT:
*pPT++ = 'F';
break;
case typelib_TypeClass_DOUBLE:
*pPT++ = 'D';
pCppStack += sizeof(sal_Int32); // extra long
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*pPT++ = 'H';
pCppStack += sizeof(sal_Int32); // extra long
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
*(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// KBH: FIXME: is this the right way to pass these
*pPT++='I';
}
pCppStack += sizeof(sal_Int32); // standard parameter length
}
// terminate the signature string
*pPT++='X';
*pPT=0;
try
{
OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 3), "UNALIGNED STACK !!! (Please DO panic)" );
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr->eTypeClass, pParamType,
(sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) );
// NO exception occurred...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions,
*ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName("void");
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; //get then set method
cpp_call(
pThis, aVtableSlot,
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
pThis->pBridge->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString("illegal member type description!"),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
......@@ -3960,12 +3960,6 @@ darwin*)
OS=IOS
SDKDIR=sdk
;;
powerpc*)
CPUNAME=POWERPC
RTL_ARCH=PowerPC
PLATFORMID=macosx_powerpc
OUTPATH=unxmacxp
;;
i*86)
AC_MSG_ERROR([Can't build 64-bit code in 32-bit OS])
CPUNAME=INTEL
......
# -*- Mode: makefile-gmake; tab-width: 4; indent-tabs-mode: t -*-
#
# This file is part of the LibreOffice project.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
#*************************************************************************
gb_CPUDEFS := -DPPC
gb_COMPILERDEFAULTOPTFLAGS := -O2
include $(GBUILDDIR)/platform/macosx.mk
# vim: set noet sw=4 ts=4:
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment