DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model
DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with reinforcement learning (RL) to enhance thinking capability. DeepSeek-R1 attains results on par with OpenAI's o1 design on numerous standards, including MATH-500 and SWE-bench.
DeepSeek-R1 is based on DeepSeek-V3, a mix of professionals (MoE) design recently open-sourced by DeepSeek. This base model is fine-tuned utilizing Group Relative Policy Optimization (GRPO), a reasoning-oriented variation of RL. The research group also performed understanding distillation from DeepSeek-R1 to open-source Qwen and Llama designs and released several versions of each; these designs outshine bigger designs, consisting of GPT-4, on math and coding benchmarks.
[DeepSeek-R1 is] the first action toward improving language design reasoning capabilities utilizing pure support knowing (RL). Our objective is to check out the potential of LLMs to establish reasoning abilities with no supervised data, focusing on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a vast array of jobs, consisting of imaginative writing, general concern answering, modifying, summarization, and more. Additionally, DeepSeek-R1 demonstrates outstanding performance on tasks needing long-context understanding, substantially surpassing DeepSeek-V3 on long-context criteria.
To develop the model, DeepSeek started with DeepSeek-V3 as a base. They initially tried fine-tuning it only with RL, and without any supervised fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have also released. This model shows strong thinking efficiency, however" effective reasoning habits, it deals with a number of issues. For instance, DeepSeek-R1-Zero battles with difficulties like poor readability and language blending."
To address this, the team used a brief stage of SFT to avoid the "cold start" issue of RL. They collected several thousand examples of chain-of-thought reasoning to utilize in SFT of DeepSeek-V3 before running RL. After the RL procedure assembled, they then collected more SFT data using rejection sampling, leading to a dataset of 800k samples. This dataset was utilized for further fine-tuning and to produce the distilled designs from Llama and Qwen.
DeepSeek assessed their model on a variety of thinking, higgledy-piggledy.xyz math, and coding criteria and compared it to other models, including Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outshined all of them on several of the criteria, including AIME 2024 and MATH-500.
DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report
Within a few days of its release, the announced that DeepSeek-R1 was ranked # 3 overall in the arena and # 1 in coding and math. It was likewise tied for # 1 with o1 in "Hard Prompt with Style Control" category.
Django framework co-creator Simon Willison blogged about his explores among the DeepSeek distilled Llama designs on his blog site:
Each action starts with a ... pseudo-XML tag containing the chain of idea used to assist create the action. [Given the timely] "a joke about a pelican and a walrus who run a tea space together" ... It then thought for 20 paragraphs before outputting the joke! ... [T] he joke is dreadful. But the procedure of arriving was such an interesting insight into how these new designs work.
Andrew Ng's newsletter The Batch discussed DeepSeek-R1:
DeepSeek is rapidly emerging as a strong contractor of open models. Not only are these designs fantastic entertainers, however their license allows use of their outputs for distillation, potentially pressing forward the state of the art for language designs (and multimodal designs) of all sizes.
The DeepSeek-R1 designs are available on HuggingFace.
About the Author
Anthony Alford
Rate this Article
This material remains in the AI, ML & Data Engineering topic
Related Topics:
- AI, ML & Data Engineering
- Generative AI
- Large language models
- Related Editorial
Related Sponsored Content
- [eBook] Getting Started with Azure Kubernetes Service
Related Sponsor
Free services for AI apps. Are you all set to try out advanced innovations? You can start developing intelligent apps with complimentary Azure app, information, and AI services to reduce upfront expenses. Discover more.
How could we improve? Take the InfoQ reader study
Each year, we look for feedback from our readers to help us enhance InfoQ. Would you mind spending 2 minutes to share your feedback in our short survey? Your feedback will straight assist us continually develop how we support you. The InfoQ Team Take the survey
Related Content
The InfoQ Newsletter
A round-up of recently's material on InfoQ sent out every Tuesday. Join a community of over 250,000 senior designers.