Skip to content

  • Projeler
  • Gruplar
  • Parçacıklar
  • Yardım
    • Yükleniyor...
  • Oturum aç / Kaydol
H
hcmis
  • Proje
    • Proje
    • Ayrıntılar
    • Etkinlik
    • Cycle Analytics
  • Konular (issue) 48
    • Konular (issue) 48
    • Liste
    • Pano
    • Etiketler
    • Kilometre Taşları
  • Birleştirme (merge) Talepleri 0
    • Birleştirme (merge) Talepleri 0
  • CI / CD
    • CI / CD
    • İş akışları (pipeline)
    • İşler
    • Zamanlamalar
  • Paketler
    • Paketler
  • Wiki
    • Wiki
  • Parçacıklar
    • Parçacıklar
  • Üyeler
    • Üyeler
  • Collapse sidebar
  • Etkinlik
  • Yeni bir konu (issue) oluştur
  • İşler
  • Konu (issue) Panoları
  • Alisia Copland
  • hcmis
  • Issues
  • #39

Closed
Open
Opened May 28, 2025 by Alisia Copland@alisia88e7397
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with reinforcement knowing (RL) to enhance reasoning ability. DeepSeek-R1 attains outcomes on par with OpenAI's o1 design on several benchmarks, setiathome.berkeley.edu consisting of MATH-500 and SWE-bench.

DeepSeek-R1 is based upon DeepSeek-V3, a mixture of experts (MoE) model just recently open-sourced by DeepSeek. This base model is fine-tuned using Group Relative Policy Optimization (GRPO), a of RL. The research study team also performed knowledge distillation from DeepSeek-R1 to open-source Qwen and Llama designs and launched a number of variations of each; these designs outshine larger models, including GPT-4, on math and coding benchmarks.

[DeepSeek-R1 is] the first action towards enhancing language design thinking capabilities using pure reinforcement knowing (RL). Our goal is to explore the potential of LLMs to develop thinking abilities with no supervised data, wiki.snooze-hotelsoftware.de focusing on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a vast array of jobs, including innovative writing, basic question answering, yewiki.org modifying, summarization, and more. Additionally, DeepSeek-R1 demonstrates outstanding performance on tasks requiring long-context understanding, significantly outperforming DeepSeek-V3 on long-context benchmarks.

To establish the design, DeepSeek began with DeepSeek-V3 as a base. They initially tried fine-tuning it just with RL, and with no monitored fine-tuning (SFT), producing a design called DeepSeek-R1-Zero, which they have actually also released. This design shows strong reasoning efficiency, however" powerful thinking habits, it deals with a number of problems. For example, DeepSeek-R1-Zero deals with challenges like bad readability and language blending."

To resolve this, the group used a short stage of SFT to prevent the "cold start" issue of RL. They collected numerous thousand examples of chain-of-thought reasoning to use in SFT of DeepSeek-V3 before running RL. After the RL process assembled, they then gathered more SFT data using rejection sampling, wiki.lafabriquedelalogistique.fr leading to a dataset of 800k samples. This dataset was used for further fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek examined their model on a range of reasoning, mathematics, and coding standards and compared it to other models, including Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 surpassed all of them on numerous of the standards, including AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a couple of days of its release, the LMArena announced that DeepSeek-R1 was ranked # 3 total in the arena and # 1 in coding and math. It was also tied for # 1 with o1 in "Hard Prompt with Style Control" classification.

Django structure co-creator Simon Willison wrote about his explores among the DeepSeek distilled Llama models on his blog site:

Each action begins with a ... pseudo-XML tag containing the chain of thought utilized to help produce the response. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then believed for 20 paragraphs before outputting the joke! ... [T] he joke is dreadful. But the procedure of arriving was such an intriguing insight into how these brand-new designs work.

Andrew Ng's newsletter The Batch wrote about DeepSeek-R1:

DeepSeek is quickly becoming a strong contractor of open models. Not just are these designs great entertainers, but their license allows usage of their outputs for distillation, possibly pushing forward the cutting-edge for language designs (and multimodal designs) of all sizes.

The DeepSeek-R1 designs are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This content remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering - Generative AI

  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Beginning with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to try out cutting-edge innovations? You can begin constructing intelligent apps with totally free Azure app, data, and AI services to reduce upfront costs. Find out more.

    How could we enhance? Take the InfoQ reader survey

    Each year, we look for feedback from our readers to help us improve InfoQ. Would you mind spending 2 minutes to share your feedback in our short survey? Your feedback will straight help us constantly evolve how we support you. The InfoQ Team Take the study

    Related Content

    The InfoQ Newsletter

    A round-up of last week's content on InfoQ sent every Tuesday. Join a community of over 250,000 senior designers.
Atanan Kişi
Şuna ata
Hiçbiri
Kilometre taşı
Hiçbiri
Kilometre taşı ata
Zaman takibi
None
Sona erme tarihi
Bitiş tarihi yok
0
Etiketler
Hiçbiri
Etiket ata
  • Proje etiketlerini görüntüle
Referans: alisia88e7397/hcmis#39