Skip to content

  • Projeler
  • Gruplar
  • Parçacıklar
  • Yardım
    • Yükleniyor...
  • Oturum aç / Kaydol
H
hcmis
  • Proje
    • Proje
    • Ayrıntılar
    • Etkinlik
    • Cycle Analytics
  • Konular (issue) 48
    • Konular (issue) 48
    • Liste
    • Pano
    • Etiketler
    • Kilometre Taşları
  • Birleştirme (merge) Talepleri 0
    • Birleştirme (merge) Talepleri 0
  • CI / CD
    • CI / CD
    • İş akışları (pipeline)
    • İşler
    • Zamanlamalar
  • Paketler
    • Paketler
  • Wiki
    • Wiki
  • Parçacıklar
    • Parçacıklar
  • Üyeler
    • Üyeler
  • Collapse sidebar
  • Etkinlik
  • Yeni bir konu (issue) oluştur
  • İşler
  • Konu (issue) Panoları
  • Alisia Copland
  • hcmis
  • Issues
  • #47

Closed
Open
Opened Haz 02, 2025 by Alisia Copland@alisia88e7397
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library developed to help with the development of support learning algorithms. It aimed to standardize how environments are specified in AI research, making published research study more quickly reproducible [24] [144] while supplying users with a basic interface for engaging with these environments. In 2022, new developments of Gym have been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement knowing (RL) research study on video games [147] utilizing RL algorithms and study generalization. Prior RL research study focused mainly on optimizing agents to fix single tasks. Gym Retro gives the ability to generalize between games with comparable concepts however different looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents initially lack understanding of how to even stroll, but are provided the objectives of learning to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing procedure, the agents discover how to adapt to altering conditions. When an agent is then removed from this virtual environment and placed in a brand-new virtual environment with high winds, the agent braces to remain upright, suggesting it had actually learned how to stabilize in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents could produce an intelligence "arms race" that might increase an agent's capability to work even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a group of 5 OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that learn to play against human gamers at a high ability level completely through trial-and-error algorithms. Before ending up being a group of 5, the first public presentation took place at The International 2017, the annual premiere champion competition for the video game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live one-on-one match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually discovered by playing against itself for 2 weeks of genuine time, and that the knowing software application was an action in the direction of creating software application that can handle complex jobs like a surgeon. [152] [153] The system uses a form of support knowing, as the bots discover in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an opponent and taking map objectives. [154] [155] [156]
By June 2018, the capability of the bots expanded to play together as a full group of 5, and they were able to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibition matches against professional gamers, but ended up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champs of the video game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public appearance came later on that month, where they played in 42,729 total video games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the challenges of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has actually shown making use of deep reinforcement learning (DRL) agents to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses machine learning to train a Shadow Hand, a human-like robotic hand, to manipulate physical items. [167] It learns totally in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI tackled the object orientation problem by utilizing domain randomization, a simulation approach which exposes the learner to a variety of experiences instead of trying to fit to truth. The set-up for Dactyl, aside from having motion tracking video cameras, also has RGB cams to permit the robot to manipulate an arbitrary object by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could solve a Rubik's Cube. The robotic had the ability to solve the puzzle 60% of the time. Objects like the Rubik's Cube present complicated physics that is harder to model. OpenAI did this by enhancing the toughness of Dactyl to perturbations by using Automatic Domain Randomization (ADR), a simulation method of creating gradually more challenging environments. ADR varies from manual domain randomization by not requiring a human to specify randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing brand-new AI designs established by OpenAI" to let designers call on it for "any English language AI task". [170] [171]
Text generation

The business has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")

The initial paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his coworkers, and released in preprint on OpenAI's site on June 11, 2018. [173] It showed how a generative model of language might obtain world knowledge and process long-range dependences by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language model and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with only restricted demonstrative versions at first released to the public. The complete version of GPT-2 was not immediately launched due to concern about prospective abuse, including applications for writing fake news. [174] Some experts revealed uncertainty that GPT-2 positioned a significant danger.

In response to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to discover "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the innovation to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the complete variation of the GPT-2 language design. [177] Several websites host interactive demonstrations of various circumstances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose learners, highlighted by GPT-2 attaining state-of-the-art precision and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not additional trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It avoids certain concerns encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and disgaeawiki.info the follower to GPT-2. [182] [183] [184] OpenAI specified that the full variation of GPT-3 contained 175 billion parameters, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 models with as couple of as 125 million parameters were likewise trained). [186]
OpenAI mentioned that GPT-3 was successful at certain "meta-learning" tasks and might generalize the purpose of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer knowing in between English and Romanian, and in between English and German. [184]
GPT-3 significantly enhanced benchmark outcomes over GPT-2. OpenAI warned that such scaling-up of language designs might be approaching or encountering the essential ability constraints of predictive language designs. [187] Pre-training GPT-3 needed a number of thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not instantly launched to the public for issues of possible abuse, although OpenAI planned to enable gain access to through a paid cloud API after a two-month totally free private beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the model can develop working code in over a lots shows languages, many efficiently in Python. [192]
Several issues with problems, style defects and security vulnerabilities were cited. [195] [196]
GitHub Copilot has actually been accused of giving off copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would stop support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the upgraded technology passed a simulated law school bar examination with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also read, evaluate or produce as much as 25,000 words of text, and compose code in all significant programs languages. [200]
Observers reported that the of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has actually declined to reveal different technical details and data about GPT-4, such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and released GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained state-of-the-art results in voice, multilingual, and vision standards, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially useful for enterprises, startups and developers looking for to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini designs, which have actually been created to take more time to think of their responses, leading to greater accuracy. These designs are particularly effective in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 reasoning model. OpenAI likewise unveiled o3-mini, a lighter and much faster variation of OpenAI o3. Since December 21, wiki.dulovic.tech 2024, this model is not available for public usage. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the chance to obtain early access to these designs. [214] The design is called o3 instead of o2 to prevent confusion with telecoms companies O2. [215]
Deep research study

Deep research study is an agent established by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 model to carry out comprehensive web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With searching and Python tools made it possible for, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to evaluate the semantic resemblance in between text and images. It can especially be used for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that develops images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to translate natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of an unfortunate capybara") and create matching images. It can develop images of sensible objects ("a stained-glass window with an image of a blue strawberry") in addition to things that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an upgraded version of the design with more reasonable outcomes. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a brand-new basic system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more powerful design better able to produce images from complicated descriptions without manual timely engineering and render complicated details like hands and text. [221] It was released to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can generate videos based on brief detailed triggers [223] along with extend existing videos forwards or in reverse in time. [224] It can generate videos with resolution up to 1920x1080 or 1080x1920. The maximal length of created videos is unidentified.

Sora's development group called it after the Japanese word for "sky", to represent its "unlimited creative potential". [223] Sora's technology is an adaptation of the innovation behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos along with copyrighted videos accredited for that purpose, but did not expose the number or the exact sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, specifying that it could produce videos up to one minute long. It also shared a technical report highlighting the techniques utilized to train the model, and the model's abilities. [225] It acknowledged a few of its shortcomings, including struggles simulating complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "remarkable", but kept in mind that they must have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, noteworthy entertainment-industry figures have revealed significant interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry expressed his astonishment at the technology's capability to create reasonable video from text descriptions, citing its potential to change storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had actually decided to stop briefly strategies for broadening his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition model. [228] It is trained on a big dataset of varied audio and is likewise a multi-task design that can carry out multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can produce tunes with 10 instruments in 15 designs. According to The Verge, a tune produced by MuseNet tends to start fairly but then fall into mayhem the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were used as early as 2020 for the web mental thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs tune samples. OpenAI mentioned the tunes "reveal local musical coherence [and] follow traditional chord patterns" however acknowledged that the songs do not have "familiar larger musical structures such as choruses that duplicate" which "there is a significant space" between Jukebox and human-generated music. The Verge stated "It's technologically excellent, even if the outcomes seem like mushy versions of tunes that might feel familiar", while Business Insider mentioned "surprisingly, some of the resulting songs are catchy and sound genuine". [234] [235] [236]
User user interfaces

Debate Game

In 2018, OpenAI introduced the Debate Game, which teaches makers to debate toy issues in front of a human judge. The function is to research study whether such a method may assist in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and nerve cell of eight neural network models which are typically studied in interpretability. [240] Microscope was produced to evaluate the features that form inside these neural networks quickly. The designs consisted of are AlexNet, VGG-19, different versions of Inception, and different versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool developed on top of GPT-3 that provides a conversational interface that permits users to ask concerns in natural language. The system then reacts with a response within seconds.

Atanan Kişi
Şuna ata
Hiçbiri
Kilometre taşı
Hiçbiri
Kilometre taşı ata
Zaman takibi
None
Sona erme tarihi
Bitiş tarihi yok
0
Etiketler
Hiçbiri
Etiket ata
  • Proje etiketlerini görüntüle
Referans: alisia88e7397/hcmis#47