Skip to content

  • Projeler
  • Gruplar
  • Parçacıklar
  • Yardım
    • Yükleniyor...
  • Oturum aç / Kaydol
A
aravis
  • Proje
    • Proje
    • Ayrıntılar
    • Etkinlik
    • Cycle Analytics
  • Konular (issue) 1
    • Konular (issue) 1
    • Liste
    • Pano
    • Etiketler
    • Kilometre Taşları
  • Birleştirme (merge) Talepleri 0
    • Birleştirme (merge) Talepleri 0
  • CI / CD
    • CI / CD
    • İş akışları (pipeline)
    • İşler
    • Zamanlamalar
  • Paketler
    • Paketler
  • Wiki
    • Wiki
  • Parçacıklar
    • Parçacıklar
  • Üyeler
    • Üyeler
  • Collapse sidebar
  • Etkinlik
  • Yeni bir konu (issue) oluştur
  • İşler
  • Konu (issue) Panoları
  • Chasity Sayre
  • aravis
  • Issues
  • #1

Closed
Open
Opened Şub 26, 2025 by Chasity Sayre@chasitysayre2
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion criteria to build, experiment, larsaluarna.se and hb9lc.org properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that utilizes reinforcement finding out to enhance thinking abilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential identifying feature is its support knowing (RL) step, which was utilized to improve the model's reactions beyond the basic pre-training and tweak procedure. By including RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually enhancing both relevance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, suggesting it's geared up to break down complicated questions and factor through them in a detailed manner. This assisted reasoning procedure permits the model to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually caught the market's attention as a flexible text-generation model that can be integrated into numerous workflows such as agents, logical reasoning and information interpretation jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion parameters, allowing efficient inference by routing inquiries to the most pertinent expert "clusters." This method allows the design to specialize in various problem domains while maintaining total performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more efficient models to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and assess designs against essential safety requirements. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit increase, develop a limit boost demand and connect to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For guidelines, see Set up approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, prevent damaging content, and assess models against key security criteria. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design responses deployed on Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the last outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, wiki.asexuality.org total the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and choose the DeepSeek-R1 design.

The model detail page offers essential details about the design's capabilities, pricing structure, and execution standards. You can find detailed use directions, consisting of sample API calls and code snippets for combination. The design supports numerous text generation tasks, consisting of material development, code generation, and question answering, using its reinforcement discovering optimization and CoT reasoning abilities. The page likewise includes release options and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a number of instances (in between 1-100). 6. For example type, choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can configure advanced security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service function approvals, and encryption settings. For many use cases, the default settings will work well. However, for production releases, you may desire to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the deployment is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive user interface where you can try out different triggers and adjust design criteria like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal results. For instance, material for reasoning.

This is an excellent method to check out the model's thinking and text generation abilities before integrating it into your applications. The play area supplies instant feedback, assisting you comprehend how the model reacts to various inputs and letting you fine-tune your triggers for ideal results.

You can rapidly evaluate the model in the play area through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually developed the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up inference parameters, and sends out a demand to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two practical techniques: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to assist you pick the technique that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design internet browser shows available designs, with details like the company name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card shows essential details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if suitable), showing that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the model

    5. Choose the design card to view the design details page.

    The model details page consists of the following details:

    - The design name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the design, it's advised to review the model details and license terms to validate compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the automatically produced name or produce a custom-made one.
  1. For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of instances (default: 1). Selecting appropriate circumstances types and counts is important for expense and pediascape.science efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for forum.batman.gainedge.org precision. For this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The deployment process can take several minutes to finish.

    When deployment is total, your endpoint status will change to InService. At this point, the design is prepared to accept inference requests through the endpoint. You can keep track of the implementation development on the SageMaker console Endpoints page, which will show relevant metrics and bio.rogstecnologia.com.br status details. When the implementation is total, you can conjure up the model utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get started with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Tidy up

    To avoid unwanted charges, complete the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the design utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases.
  5. In the Managed deployments area, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious options using AWS services and accelerated compute. Currently, he is focused on establishing methods for fine-tuning and optimizing the reasoning efficiency of big language models. In his free time, Vivek enjoys hiking, watching movies, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing options that help clients accelerate their AI journey and unlock company value.
Atanan Kişi
Şuna ata
Hiçbiri
Kilometre taşı
Hiçbiri
Kilometre taşı ata
Zaman takibi
None
Sona erme tarihi
Bitiş tarihi yok
0
Etiketler
Hiçbiri
Etiket ata
  • Proje etiketlerini görüntüle
Referans: chasitysayre2/aravis#1