Skip to content

  • Projeler
  • Gruplar
  • Parçacıklar
  • Yardım
    • Yükleniyor...
  • Oturum aç / Kaydol
N
nikmaos
  • Proje
    • Proje
    • Ayrıntılar
    • Etkinlik
    • Cycle Analytics
  • Konular (issue) 1
    • Konular (issue) 1
    • Liste
    • Pano
    • Etiketler
    • Kilometre Taşları
  • Birleştirme (merge) Talepleri 0
    • Birleştirme (merge) Talepleri 0
  • CI / CD
    • CI / CD
    • İş akışları (pipeline)
    • İşler
    • Zamanlamalar
  • Paketler
    • Paketler
  • Wiki
    • Wiki
  • Parçacıklar
    • Parçacıklar
  • Üyeler
    • Üyeler
  • Collapse sidebar
  • Etkinlik
  • Yeni bir konu (issue) oluştur
  • İşler
  • Konu (issue) Panoları
  • Chu Stuckey
  • nikmaos
  • Issues
  • #1

Closed
Open
Opened Nis 02, 2025 by Chu Stuckey@chustuckey498
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with reinforcement learning (RL) to enhance reasoning capability. DeepSeek-R1 attains results on par with OpenAI's o1 design on numerous standards, including MATH-500 and SWE-bench.

DeepSeek-R1 is based upon DeepSeek-V3, a mix of specialists (MoE) design recently open-sourced by DeepSeek. This base design is fine-tuned utilizing Group Relative Policy Optimization (GRPO), a reasoning-oriented version of RL. The research study team also carried out knowledge distillation from DeepSeek-R1 to open-source Qwen and Llama designs and launched numerous variations of each; these designs surpass bigger designs, consisting of GPT-4, on and coding standards.

[DeepSeek-R1 is] the initial step toward enhancing language design thinking abilities using pure support learning (RL). Our goal is to check out the capacity of LLMs to develop reasoning abilities with no monitored data, concentrating on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a wide variety of jobs, including creative writing, basic question answering, modifying, summarization, and more. Additionally, DeepSeek-R1 shows impressive performance on tasks needing long-context understanding, significantly exceeding DeepSeek-V3 on long-context standards.

To establish the design, DeepSeek started with DeepSeek-V3 as a base. They first tried fine-tuning it just with RL, and with no monitored fine-tuning (SFT), producing a design called DeepSeek-R1-Zero, which they have actually likewise launched. This model shows strong reasoning efficiency, but" effective reasoning habits, it deals with numerous problems. For instance, DeepSeek-R1-Zero has problem with obstacles like poor readability and language mixing."

To resolve this, the team utilized a short phase of SFT to avoid the "cold start" problem of RL. They gathered a number of thousand examples of chain-of-thought thinking to use in SFT of DeepSeek-V3 before running RL. After the RL procedure converged, they then collected more SFT data using rejection tasting, forum.batman.gainedge.org leading to a dataset of 800k samples. This dataset was used for more fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek examined their design on a range of thinking, mathematics, and coding standards and compared it to other designs, consisting of Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outshined all of them on numerous of the standards, including AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a few days of its release, the LMArena announced that DeepSeek-R1 was ranked # 3 total in the arena and # 1 in coding and math. It was also connected for # 1 with o1 in "Hard Prompt with Style Control" category.

Django framework co-creator Simon Willison blogged about his try outs one of the DeepSeek distilled Llama models on his blog site:

Each reaction begins with a ... pseudo-XML tag containing the chain of idea used to help create the reaction. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then believed for 20 paragraphs before outputting the joke! ... [T] he joke is terrible. But the process of arriving was such a fascinating insight into how these brand-new designs work.

Andrew Ng's newsletter The Batch discussed DeepSeek-R1:

DeepSeek is quickly becoming a strong builder of open designs. Not just are these designs great entertainers, but their license permits use of their outputs for distillation, potentially pushing forward the cutting-edge for language designs (and multimodal models) of all sizes.

The DeepSeek-R1 models are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This content remains in the AI, ML & Data Engineering topic

Related Topics:

- AI, ML & Data Engineering - Generative AI

  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Starting with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to experiment with cutting-edge innovations? You can start developing smart apps with complimentary Azure app, information, and AI services to decrease upfront expenses. Discover more.

    How could we enhance? Take the InfoQ reader survey

    Each year, we seek feedback from our readers to assist us improve InfoQ. Would you mind spending 2 minutes to share your feedback in our brief study? Your feedback will straight assist us continually develop how we support you. The InfoQ Team Take the study

    Related Content

    The InfoQ Newsletter

    A round-up of recently's material on InfoQ sent every Tuesday. Join a neighborhood of over 250,000 senior designers.
Atanan Kişi
Şuna ata
Hiçbiri
Kilometre taşı
Hiçbiri
Kilometre taşı ata
Zaman takibi
None
Sona erme tarihi
Bitiş tarihi yok
0
Etiketler
Hiçbiri
Etiket ata
  • Proje etiketlerini görüntüle
Referans: chustuckey498/nikmaos#1