Skip to content

  • Projeler
  • Gruplar
  • Parçacıklar
  • Yardım
    • Yükleniyor...
  • Oturum aç / Kaydol
H
hisystem
  • Proje
    • Proje
    • Ayrıntılar
    • Etkinlik
    • Cycle Analytics
  • Konular (issue) 9
    • Konular (issue) 9
    • Liste
    • Pano
    • Etiketler
    • Kilometre Taşları
  • Birleştirme (merge) Talepleri 0
    • Birleştirme (merge) Talepleri 0
  • CI / CD
    • CI / CD
    • İş akışları (pipeline)
    • İşler
    • Zamanlamalar
  • Paketler
    • Paketler
  • Wiki
    • Wiki
  • Parçacıklar
    • Parçacıklar
  • Üyeler
    • Üyeler
  • Collapse sidebar
  • Etkinlik
  • Yeni bir konu (issue) oluştur
  • İşler
  • Konu (issue) Panoları
  • Danilo Rollins
  • hisystem
  • Issues
  • #6

Closed
Open
Opened Şub 13, 2025 by Danilo Rollins@danilorollins7
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to help with the advancement of reinforcement knowing algorithms. It aimed to standardize how environments are defined in AI research, making published research more easily reproducible [24] [144] while supplying users with an easy interface for connecting with these environments. In 2022, brand-new developments of Gym have been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement learning (RL) research study on computer game [147] utilizing RL algorithms and study generalization. Prior RL research focused mainly on enhancing agents to solve single tasks. Gym Retro gives the ability to generalize in between games with similar concepts however various looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives initially lack knowledge of how to even stroll, but are given the objectives of discovering to move and to press the opposing representative out of the ring. [148] Through this adversarial learning process, the representatives discover how to adapt to changing conditions. When a representative is then removed from this virtual environment and put in a brand-new virtual environment with high winds, the agent braces to remain upright, recommending it had discovered how to stabilize in a generalized way. [148] [149] OpenAI's Igor raovatonline.org Mordatch argued that competitors between representatives might create an intelligence "arms race" that could increase a representative's ability to function even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a group of 5 OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that find out to play against human players at a high ability level entirely through experimental algorithms. Before becoming a team of 5, the very first public presentation occurred at The International 2017, the annual best champion competition for the video game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had learned by playing against itself for 2 weeks of real time, and that the learning software application was an action in the direction of creating software that can handle complex jobs like a cosmetic surgeon. [152] [153] The system utilizes a form of reinforcement learning, as the bots find out with time by playing against themselves numerous times a day for months, and are rewarded for actions such as eliminating an enemy and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a complete group of 5, and they had the ability to defeat groups of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against professional players, but ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champions of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public appearance came later on that month, where they played in 42,729 total video games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the difficulties of AI systems in multiplayer online battle arena (MOBA) games and how OpenAI Five has demonstrated the usage of deep support learning (DRL) representatives to attain superhuman skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes device finding out to train a Shadow Hand, a human-like robot hand, to manipulate physical items. [167] It discovers completely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI dealt with the things orientation problem by using domain randomization, a simulation technique which exposes the student to a variety of experiences rather than trying to fit to reality. The set-up for Dactyl, aside from having movement tracking cams, also has RGB cams to permit the robotic to control an approximate object by seeing it. In 2018, OpenAI revealed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could resolve a Rubik's Cube. The robotic had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to design. OpenAI did this by enhancing the robustness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation approach of producing progressively more challenging environments. ADR differs from manual domain randomization by not requiring a human to specify randomization ranges. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI models established by OpenAI" to let developers contact it for "any English language AI task". [170] [171]
Text generation

The business has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")

The initial paper on generative pre-training of a transformer-based language design was written by Alec Radford and his coworkers, and released in preprint on OpenAI's website on June 11, 2018. [173] It demonstrated how a generative design of language might obtain world knowledge and procedure long-range dependencies by pre-training on a varied corpus with long stretches of contiguous text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language model and the successor to OpenAI's initial GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with only minimal demonstrative versions initially released to the public. The complete version of GPT-2 was not immediately launched due to concern about prospective misuse, consisting of applications for composing fake news. [174] Some experts expressed uncertainty that GPT-2 posed a considerable threat.

In action to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to identify "neural phony news". [175] Other scientists, such as Jeremy Howard, it-viking.ch cautioned of "the technology to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the total variation of the GPT-2 language design. [177] Several websites host interactive presentations of various circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue not being watched language designs to be general-purpose learners, highlighted by GPT-2 attaining state-of-the-art accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not further trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It avoids certain problems encoding vocabulary with word tokens by using byte pair encoding. This permits representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI mentioned that the full version of GPT-3 contained 175 billion parameters, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 models with as few as 125 million specifications were likewise trained). [186]
OpenAI mentioned that GPT-3 was successful at certain "meta-learning" jobs and could generalize the purpose of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer learning between English and Romanian, and between English and German. [184]
GPT-3 significantly enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language models could be approaching or experiencing the fundamental capability constraints of predictive language models. [187] Pre-training GPT-3 required numerous thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not right away launched to the general public for concerns of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month totally free personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified exclusively to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the model can create working code in over a dozen programs languages, a lot of effectively in Python. [192]
Several concerns with glitches, style flaws and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been implicated of releasing copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would terminate assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They announced that the upgraded technology passed a simulated law school bar exam with a rating around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might likewise read, examine or produce up to 25,000 words of text, and write code in all significant programming languages. [200]
Observers reported that the iteration of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based model, with the caution that GPT-4 retained a few of the issues with earlier modifications. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has decreased to expose numerous technical details and data about GPT-4, such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained state-of-the-art outcomes in voice, multilingual, and vision standards, setting brand-new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be especially helpful for business, startups and designers seeking to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have actually been designed to take more time to think about their actions, leading to higher accuracy. These designs are especially reliable in science, coding, and reasoning tasks, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 thinking model. OpenAI also unveiled o3-mini, a lighter and much faster version of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the chance to obtain early access to these models. [214] The design is called o3 rather than o2 to prevent confusion with telecommunications companies O2. [215]
Deep research study

Deep research is a representative developed by OpenAI, unveiled on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to perform extensive web browsing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools made it possible for, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic similarity between text and images. It can especially be used for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to analyze natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of an unfortunate capybara") and create corresponding images. It can develop images of realistic things ("a stained-glass window with a picture of a blue strawberry") as well as items that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an upgraded variation of the model with more sensible results. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a new basic system for converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective design better able to produce images from complicated descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was launched to the public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can produce videos based upon brief detailed triggers [223] as well as extend existing videos forwards or backwards in time. [224] It can produce videos with resolution approximately 1920x1080 or 1080x1920. The optimum length of created videos is unidentified.

Sora's development group called it after the Japanese word for "sky", to symbolize its "unlimited innovative capacity". [223] Sora's innovation is an adjustment of the innovation behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos as well as copyrighted videos licensed for that function, however did not reveal the number or the precise sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, specifying that it could produce videos as much as one minute long. It also shared a technical report highlighting the approaches utilized to train the model, and the design's abilities. [225] It acknowledged some of its drawbacks, consisting of struggles mimicing complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "outstanding", however kept in mind that they must have been cherry-picked and may not represent Sora's normal output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, significant entertainment-industry figures have actually shown substantial interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry revealed his awe at the innovation's ability to generate reasonable video from text descriptions, citing its prospective to reinvent storytelling and raovatonline.org material creation. He said that his enjoyment about Sora's possibilities was so strong that he had actually decided to stop briefly prepare for broadening his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment design. [228] It is trained on a big dataset of varied audio and is also a multi-task design that can carry out multilingual speech acknowledgment as well as speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can create tunes with 10 instruments in 15 styles. According to The Verge, a song produced by MuseNet tends to begin fairly however then fall under chaos the longer it plays. [230] [231] In pop culture, initial applications of this tool were utilized as early as 2020 for the web psychological thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, yewiki.org and a bit of lyrics and outputs tune samples. OpenAI specified the songs "reveal regional musical coherence [and] follow conventional chord patterns" however acknowledged that the tunes lack "familiar larger musical structures such as choruses that repeat" and that "there is a significant gap" between Jukebox and human-generated music. The Verge mentioned "It's technically remarkable, even if the results seem like mushy versions of songs that might feel familiar", while Business Insider specified "remarkably, some of the resulting tunes are catchy and sound legitimate". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI introduced the Debate Game, which teaches devices to debate toy problems in front of a human judge. The purpose is to research whether such a method may help in auditing AI decisions and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and nerve cell of 8 neural network designs which are often in interpretability. [240] Microscope was developed to evaluate the features that form inside these neural networks quickly. The designs consisted of are AlexNet, VGG-19, different variations of Inception, and various versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an expert system tool constructed on top of GPT-3 that supplies a conversational interface that allows users to ask concerns in natural language. The system then responds with a response within seconds.

Atanan Kişi
Şuna ata
Hiçbiri
Kilometre taşı
Hiçbiri
Kilometre taşı ata
Zaman takibi
None
Sona erme tarihi
Bitiş tarihi yok
0
Etiketler
Hiçbiri
Etiket ata
  • Proje etiketlerini görüntüle
Referans: danilorollins7/hisystem#6