Skip to content

  • Projeler
  • Gruplar
  • Parçacıklar
  • Yardım
    • Yükleniyor...
  • Oturum aç / Kaydol
K
kirmizigulyazilim
  • Proje
    • Proje
    • Ayrıntılar
    • Etkinlik
    • Cycle Analytics
  • Konular (issue) 4
    • Konular (issue) 4
    • Liste
    • Pano
    • Etiketler
    • Kilometre Taşları
  • Birleştirme (merge) Talepleri 0
    • Birleştirme (merge) Talepleri 0
  • CI / CD
    • CI / CD
    • İş akışları (pipeline)
    • İşler
    • Zamanlamalar
  • Paketler
    • Paketler
  • Wiki
    • Wiki
  • Parçacıklar
    • Parçacıklar
  • Üyeler
    • Üyeler
  • Collapse sidebar
  • Etkinlik
  • Yeni bir konu (issue) oluştur
  • İşler
  • Konu (issue) Panoları
  • Dorris Duras
  • kirmizigulyazilim
  • Issues
  • #2

Closed
Open
Opened Şub 07, 2025 by Dorris Duras@dorrisduras72
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled versions of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support discovering to enhance thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial distinguishing feature is its support knowing (RL) step, which was utilized to fine-tune the model's responses beyond the basic pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately improving both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, suggesting it's equipped to break down complex inquiries and reason through them in a detailed way. This guided thinking procedure allows the design to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has captured the industry's attention as a flexible text-generation model that can be incorporated into various workflows such as agents, sensible thinking and data analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion criteria, making it possible for effective inference by routing inquiries to the most relevant expert "clusters." This approach enables the model to concentrate on various issue domains while maintaining general efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 model to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective designs to simulate the behavior and reasoning patterns of the larger DeepSeek-R1 design, using it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this model with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent harmful content, and examine models against essential security criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create several guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation boost, produce a limitation boost request and reach out to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For directions, see Set up permissions to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, prevent hazardous content, and examine designs against essential security requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic flow involves the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 design.

The design detail page supplies necessary details about the design's abilities, rates structure, and implementation standards. You can discover detailed usage guidelines, including sample API calls and code snippets for combination. The design supports numerous text generation jobs, consisting of content creation, code generation, and concern answering, utilizing its reinforcement discovering optimization and CoT reasoning abilities. The page likewise includes deployment alternatives and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, pick Deploy.

You will be triggered to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, go into a number of instances (in between 1-100). 6. For Instance type, select your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For the majority of utilize cases, the default settings will work well. However, for production releases, you may wish to examine these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the implementation is total, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive interface where you can try out different triggers and change model criteria like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum outcomes. For instance, material for inference.

This is an outstanding method to check out the design's reasoning and text generation abilities before incorporating it into your applications. The playground offers instant feedback, assisting you understand how the model reacts to various inputs and letting you tweak your prompts for optimal results.

You can quickly evaluate the design in the playground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, sets up reasoning parameters, and sends out a request to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 hassle-free approaches: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both approaches to help you choose the approach that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design internet browser shows available designs, with details like the supplier name and model abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each model card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be registered with Amazon Bedrock, wiki.whenparked.com permitting you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to see the model details page.

    The design details page includes the following details:

    - The model name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the model, it's suggested to examine the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the immediately created name or create a customized one.
  1. For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For trademarketclassifieds.com Initial instance count, get in the number of instances (default: 1). Selecting appropriate instance types and counts is vital for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The release procedure can take several minutes to finish.

    When release is complete, your endpoint status will alter to InService. At this point, the model is ready to accept reasoning demands through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will display relevant metrics and forum.batman.gainedge.org status details. When the release is complete, you can invoke the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and higgledy-piggledy.xyz utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, bytes-the-dust.com you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, finish the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases.
  5. In the Managed releases section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build innovative solutions using AWS services and sped up calculate. Currently, he is concentrated on establishing techniques for fine-tuning and enhancing the inference performance of big language designs. In his downtime, Vivek takes pleasure in hiking, enjoying motion pictures, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, intelligence and generative AI center. She is enthusiastic about constructing services that assist clients accelerate their AI journey and unlock company worth.
Atanan Kişi
Şuna ata
Hiçbiri
Kilometre taşı
Hiçbiri
Kilometre taşı ata
Zaman takibi
None
Sona erme tarihi
Bitiş tarihi yok
0
Etiketler
Hiçbiri
Etiket ata
  • Proje etiketlerini görüntüle
Referans: dorrisduras72/kirmizigulyazilim#2