Skip to content

  • Projeler
  • Gruplar
  • Parçacıklar
  • Yardım
    • Yükleniyor...
  • Oturum aç / Kaydol
J
jobspage
  • Proje
    • Proje
    • Ayrıntılar
    • Etkinlik
    • Cycle Analytics
  • Konular (issue) 1
    • Konular (issue) 1
    • Liste
    • Pano
    • Etiketler
    • Kilometre Taşları
  • Birleştirme (merge) Talepleri 0
    • Birleştirme (merge) Talepleri 0
  • CI / CD
    • CI / CD
    • İş akışları (pipeline)
    • İşler
    • Zamanlamalar
  • Paketler
    • Paketler
  • Wiki
    • Wiki
  • Parçacıklar
    • Parçacıklar
  • Üyeler
    • Üyeler
  • Collapse sidebar
  • Etkinlik
  • Yeni bir konu (issue) oluştur
  • İşler
  • Konu (issue) Panoları
  • Holley Gerace
  • jobspage
  • Issues
  • #1

Closed
Open
Opened May 30, 2025 by Holley Gerace@holleygerace68
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to improve thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential differentiating function is its support learning (RL) action, which was utilized to refine the design's responses beyond the standard pre-training and tweak procedure. By including RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, eventually improving both importance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, suggesting it's equipped to break down complicated questions and factor through them in a detailed way. This assisted reasoning process enables the model to produce more precise, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually recorded the market's attention as a flexible text-generation model that can be incorporated into various workflows such as agents, logical thinking and data analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion parameters, enabling effective inference by routing questions to the most relevant specialist "clusters." This technique permits the model to specialize in various issue domains while maintaining overall efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller, more effective models to imitate the habits and reasoning patterns of the larger DeepSeek-R1 model, using it as an instructor model.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this model with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to present safeguards, avoid damaging content, and assess models against essential security criteria. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to different use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit increase, develop a limit increase demand and reach out to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For guidelines, see Set up permissions to use guardrails for material filtering.

Implementing with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, prevent damaging material, and evaluate models against key safety criteria. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to evaluate user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, pipewiki.org and yewiki.org specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 model.

The design detail page offers important details about the model's abilities, prices structure, and execution guidelines. You can find detailed usage directions, consisting of sample API calls and code snippets for combination. The design supports numerous text generation jobs, including material creation, code generation, and question answering, using its reinforcement learning optimization and CoT thinking abilities. The page also includes deployment choices and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, pick Deploy.

You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a number of circumstances (in between 1-100). 6. For Instance type, pick your instance type. For larsaluarna.se ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can set up innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role permissions, and encryption settings. For most utilize cases, the default settings will work well. However, for production implementations, you might want to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the deployment is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in playground to access an interactive user interface where you can try out various prompts and adjust design criteria like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal outcomes. For example, content for reasoning.

This is an outstanding way to check out the design's thinking and text generation capabilities before integrating it into your applications. The playground offers immediate feedback, assisting you understand how the design responds to numerous inputs and letting you fine-tune your prompts for optimal results.

You can quickly check the model in the play area through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference specifications, and sends out a demand to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML solutions that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 hassle-free methods: using the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both approaches to help you choose the method that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model internet browser shows available models, with details like the service provider name and model abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card reveals key details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if relevant), suggesting that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to see the design details page.

    The model details page consists of the following details:

    - The model name and company details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you release the model, it's recommended to evaluate the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, utilize the immediately generated name or produce a custom one.
  1. For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of instances (default: 1). Selecting appropriate instance types and counts is vital for cost and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the design.

    The release process can take numerous minutes to complete.

    When deployment is complete, your endpoint status will change to InService. At this point, the model is prepared to accept reasoning requests through the endpoint. You can keep an eye on the implementation progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is total, you can conjure up the model using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Clean up

    To prevent unwanted charges, complete the steps in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace implementations.
  5. In the Managed deployments section, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the correct deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build ingenious solutions using AWS services and sped up compute. Currently, he is focused on establishing strategies for fine-tuning and enhancing the inference efficiency of big language designs. In his free time, Vivek takes pleasure in hiking, enjoying films, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing solutions that assist customers accelerate their AI journey and unlock organization value.
Atanan Kişi
Şuna ata
Hiçbiri
Kilometre taşı
Hiçbiri
Kilometre taşı ata
Zaman takibi
None
Sona erme tarihi
Bitiş tarihi yok
0
Etiketler
Hiçbiri
Etiket ata
  • Proje etiketlerini görüntüle
Referans: holleygerace68/jobspage#1