enum.rst 22.5 KB
Newer Older
1 2 3 4
:mod:`enum` --- Support for enumerations
========================================

.. module:: enum
5 6
   :synopsis: Implementation of an enumeration class.

7 8 9 10 11
.. :moduleauthor:: Ethan Furman <ethan@stoneleaf.us>
.. :sectionauthor:: Barry Warsaw <barry@python.org>,
.. :sectionauthor:: Eli Bendersky <eliben@gmail.com>,
.. :sectionauthor:: Ethan Furman <ethan@stoneleaf.us>

12 13
.. versionadded:: 3.4

14 15 16 17
**Source code:** :source:`Lib/enum.py`

----------------

18 19 20 21 22 23 24
An enumeration is a set of symbolic names (members) bound to unique,
constant values.  Within an enumeration, the members can be compared
by identity, and the enumeration itself can be iterated over.


Module Contents
---------------
25 26

This module defines two enumeration classes that can be used to define unique
27
sets of names and values: :class:`Enum` and :class:`IntEnum`.  It also defines
28 29 30 31 32
one decorator, :func:`unique`.

.. class:: Enum

    Base class for creating enumerated constants.  See section
33
    `Functional API`_ for an alternate construction syntax.
34 35 36 37 38 39 40 41 42

.. class:: IntEnum

    Base class for creating enumerated constants that are also
    subclasses of :class:`int`.

.. function:: unique

    Enum class decorator that ensures only one name is bound to any one value.
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57

Creating an Enum
----------------

Enumerations are created using the :keyword:`class` syntax, which makes them
easy to read and write.  An alternative creation method is described in
`Functional API`_.  To define an enumeration, subclass :class:`Enum` as
follows::

    >>> from enum import Enum
    >>> class Color(Enum):
    ...     red = 1
    ...     green = 2
    ...     blue = 3
58
    ...
59

60 61
.. note:: Nomenclature

62 63 64 65 66 67
  - The class :class:`Color` is an *enumeration* (or *enum*)
  - The attributes :attr:`Color.red`, :attr:`Color.green`, etc., are
    *enumeration members* (or *enum members*).
  - The enum members have *names* and *values* (the name of
    :attr:`Color.red` is ``red``, the value of :attr:`Color.blue` is
    ``3``, etc.)
68

69 70 71 72 73 74
.. note::

    Even though we use the :keyword:`class` syntax to create Enums, Enums
    are not normal Python classes.  See `How are Enums different?`_ for
    more details.

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Enumeration members have human readable string representations::

    >>> print(Color.red)
    Color.red

...while their ``repr`` has more information::

    >>> print(repr(Color.red))
    <Color.red: 1>

The *type* of an enumeration member is the enumeration it belongs to::

    >>> type(Color.red)
    <enum 'Color'>
    >>> isinstance(Color.green, Color)
    True
    >>>

Enum members also have a property that contains just their item name::

    >>> print(Color.red.name)
    red

Enumerations support iteration, in definition order::

    >>> class Shake(Enum):
101 102 103 104
    ...     vanilla = 7
    ...     chocolate = 4
    ...     cookies = 9
    ...     mint = 3
105 106
    ...
    >>> for shake in Shake:
107
    ...     print(shake)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    ...
    Shake.vanilla
    Shake.chocolate
    Shake.cookies
    Shake.mint

Enumeration members are hashable, so they can be used in dictionaries and sets::

    >>> apples = {}
    >>> apples[Color.red] = 'red delicious'
    >>> apples[Color.green] = 'granny smith'
    >>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
    True


123 124
Programmatic access to enumeration members and their attributes
---------------------------------------------------------------
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

Sometimes it's useful to access members in enumerations programmatically (i.e.
situations where ``Color.red`` won't do because the exact color is not known
at program-writing time).  ``Enum`` allows such access::

    >>> Color(1)
    <Color.red: 1>
    >>> Color(3)
    <Color.blue: 3>

If you want to access enum members by *name*, use item access::

    >>> Color['red']
    <Color.red: 1>
    >>> Color['green']
    <Color.green: 2>

142
If you have an enum member and need its :attr:`name` or :attr:`value`::
143 144 145 146 147 148 149

    >>> member = Color.red
    >>> member.name
    'red'
    >>> member.value
    1

150 151 152 153 154 155 156

Duplicating enum members and values
-----------------------------------

Having two enum members with the same name is invalid::

    >>> class Shape(Enum):
157 158
    ...     square = 2
    ...     square = 3
159 160 161 162 163 164 165 166 167 168 169
    ...
    Traceback (most recent call last):
    ...
    TypeError: Attempted to reuse key: 'square'

However, two enum members are allowed to have the same value.  Given two members
A and B with the same value (and A defined first), B is an alias to A.  By-value
lookup of the value of A and B will return A.  By-name lookup of B will also
return A::

    >>> class Shape(Enum):
170 171 172 173
    ...     square = 2
    ...     diamond = 1
    ...     circle = 3
    ...     alias_for_square = 2
174 175 176 177 178 179 180 181
    ...
    >>> Shape.square
    <Shape.square: 2>
    >>> Shape.alias_for_square
    <Shape.square: 2>
    >>> Shape(2)
    <Shape.square: 2>

182 183 184 185 186 187
.. note::

    Attempting to create a member with the same name as an already
    defined attribute (another member, a method, etc.) or attempting to create
    an attribute with the same name as a member is not allowed.

188 189

Ensuring unique enumeration values
190
----------------------------------
191 192 193 194 195 196 197 198 199 200 201 202 203 204

By default, enumerations allow multiple names as aliases for the same value.
When this behavior isn't desired, the following decorator can be used to
ensure each value is used only once in the enumeration:

.. decorator:: unique

A :keyword:`class` decorator specifically for enumerations.  It searches an
enumeration's :attr:`__members__` gathering any aliases it finds; if any are
found :exc:`ValueError` is raised with the details::

    >>> from enum import Enum, unique
    >>> @unique
    ... class Mistake(Enum):
205 206 207 208 209
    ...     one = 1
    ...     two = 2
    ...     three = 3
    ...     four = 3
    ...
210 211 212 213 214 215
    Traceback (most recent call last):
    ...
    ValueError: duplicate values found in <enum 'Mistake'>: four -> three


Iteration
216
---------
217

218 219 220 221 222 223 224 225 226 227
Iterating over the members of an enum does not provide the aliases::

    >>> list(Shape)
    [<Shape.square: 2>, <Shape.diamond: 1>, <Shape.circle: 3>]

The special attribute ``__members__`` is an ordered dictionary mapping names
to members.  It includes all names defined in the enumeration, including the
aliases::

    >>> for name, member in Shape.__members__.items():
228
    ...     name, member
229 230 231 232 233 234 235 236 237 238 239 240
    ...
    ('square', <Shape.square: 2>)
    ('diamond', <Shape.diamond: 1>)
    ('circle', <Shape.circle: 3>)
    ('alias_for_square', <Shape.square: 2>)

The ``__members__`` attribute can be used for detailed programmatic access to
the enumeration members.  For example, finding all the aliases::

    >>> [name for name, member in Shape.__members__.items() if member.name != name]
    ['alias_for_square']

241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
Comparisons
-----------

Enumeration members are compared by identity::

    >>> Color.red is Color.red
    True
    >>> Color.red is Color.blue
    False
    >>> Color.red is not Color.blue
    True

Ordered comparisons between enumeration values are *not* supported.  Enum
members are not integers (but see `IntEnum`_ below)::

    >>> Color.red < Color.blue
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: unorderable types: Color() < Color()

Equality comparisons are defined though::

    >>> Color.blue == Color.red
    False
    >>> Color.blue != Color.red
    True
    >>> Color.blue == Color.blue
    True

Comparisons against non-enumeration values will always compare not equal
272
(again, :class:`IntEnum` was explicitly designed to behave differently, see
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
below)::

    >>> Color.blue == 2
    False


Allowed members and attributes of enumerations
----------------------------------------------

The examples above use integers for enumeration values.  Using integers is
short and handy (and provided by default by the `Functional API`_), but not
strictly enforced.  In the vast majority of use-cases, one doesn't care what
the actual value of an enumeration is.  But if the value *is* important,
enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as
usual.  If we have this enumeration::

    >>> class Mood(Enum):
292 293 294 295 296 297
    ...     funky = 1
    ...     happy = 3
    ...
    ...     def describe(self):
    ...         # self is the member here
    ...         return self.name, self.value
298
    ...
299 300
    ...     def __str__(self):
    ...         return 'my custom str! {0}'.format(self.value)
301
    ...
302 303 304 305
    ...     @classmethod
    ...     def favorite_mood(cls):
    ...         # cls here is the enumeration
    ...         return cls.happy
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    ...

Then::

    >>> Mood.favorite_mood()
    <Mood.happy: 3>
    >>> Mood.happy.describe()
    ('happy', 3)
    >>> str(Mood.funky)
    'my custom str! 1'

The rules for what is allowed are as follows: _sunder_ names (starting and
ending with a single underscore) are reserved by enum and cannot be used;
all other attributes defined within an enumeration will become members of this
enumeration, with the exception of *__dunder__* names and descriptors (methods
are also descriptors).

Note:  if your enumeration defines :meth:`__new__` and/or :meth:`__init__` then
whatever value(s) were given to the enum member will be passed into those
methods.  See `Planet`_ for an example.


Restricted subclassing of enumerations
--------------------------------------

Subclassing an enumeration is allowed only if the enumeration does not define
any members.  So this is forbidden::

    >>> class MoreColor(Color):
335 336
    ...     pink = 17
    ...
337 338 339 340 341 342 343
    Traceback (most recent call last):
    ...
    TypeError: Cannot extend enumerations

But this is allowed::

    >>> class Foo(Enum):
344 345
    ...     def some_behavior(self):
    ...         pass
346 347
    ...
    >>> class Bar(Foo):
348 349
    ...     happy = 1
    ...     sad = 2
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    ...

Allowing subclassing of enums that define members would lead to a violation of
some important invariants of types and instances.  On the other hand, it makes
sense to allow sharing some common behavior between a group of enumerations.
(See `OrderedEnum`_ for an example.)


Pickling
--------

Enumerations can be pickled and unpickled::

    >>> from test.test_enum import Fruit
    >>> from pickle import dumps, loads
    >>> Fruit.tomato is loads(dumps(Fruit.tomato))
    True

The usual restrictions for pickling apply: picklable enums must be defined in
the top level of a module, since unpickling requires them to be importable
from that module.

372
.. note::
373

374 375
    With pickle protocol version 4 it is possible to easily pickle enums
    nested in other classes.
376

377 378 379
It is possible to modify how Enum members are pickled/unpickled by defining
:meth:`__reduce_ex__` in the enumeration class.

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

Functional API
--------------

The :class:`Enum` class is callable, providing the following functional API::

    >>> Animal = Enum('Animal', 'ant bee cat dog')
    >>> Animal
    <enum 'Animal'>
    >>> Animal.ant
    <Animal.ant: 1>
    >>> Animal.ant.value
    1
    >>> list(Animal)
    [<Animal.ant: 1>, <Animal.bee: 2>, <Animal.cat: 3>, <Animal.dog: 4>]

396 397
The semantics of this API resemble :class:`~collections.namedtuple`. The first
argument of the call to :class:`Enum` is the name of the enumeration.
398 399 400 401 402 403 404 405 406

The second argument is the *source* of enumeration member names.  It can be a
whitespace-separated string of names, a sequence of names, a sequence of
2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to
values.  The last two options enable assigning arbitrary values to
enumerations; the others auto-assign increasing integers starting with 1.  A
new class derived from :class:`Enum` is returned.  In other words, the above
assignment to :class:`Animal` is equivalent to::

407
    >>> class Animal(Enum):
408 409 410 411 412
    ...     ant = 1
    ...     bee = 2
    ...     cat = 3
    ...     dog = 4
    ...
413

414 415 416 417
The reason for defaulting to ``1`` as the starting number and not ``0`` is
that ``0`` is ``False`` in a boolean sense, but enum members all evaluate
to ``True``.

418 419 420 421 422 423
Pickling enums created with the functional API can be tricky as frame stack
implementation details are used to try and figure out which module the
enumeration is being created in (e.g. it will fail if you use a utility
function in separate module, and also may not work on IronPython or Jython).
The solution is to specify the module name explicitly as follows::

424
    >>> Animal = Enum('Animal', 'ant bee cat dog', module=__name__)
425

426 427
.. warning::

428
    If ``module`` is not supplied, and Enum cannot determine what it is,
429 430 431
    the new Enum members will not be unpicklable; to keep errors closer to
    the source, pickling will be disabled.

432
The new pickle protocol 4 also, in some circumstances, relies on
433
:attr:`__qualname__` being set to the location where pickle will be able
434 435 436
to find the class.  For example, if the class was made available in class
SomeData in the global scope::

437
    >>> Animal = Enum('Animal', 'ant bee cat dog', qualname='SomeData.Animal')
438

439 440 441 442
The complete signature is::

    Enum(value='NewEnumName', names=<...>, *, module='...', qualname='...', type=<mixed-in class>)

443
:value: What the new Enum class will record as its name.
444

445
:names: The Enum members.  This can be a whitespace or comma separated string
446
  (values will start at 1)::
447

448
    'red green blue' | 'red,green,blue' | 'red, green, blue'
449

450 451 452 453
  or an iterator of names::

    ['red', 'green', 'blue']

454
  or an iterator of (name, value) pairs::
455 456 457

    [('cyan', 4), ('magenta', 5), ('yellow', 6)]

458
  or a mapping::
459

460
    {'chartreuse': 7, 'sea_green': 11, 'rosemary': 42}
461

462
:module: name of module where new Enum class can be found.
463

464
:qualname: where in module new Enum class can be found.
465

466
:type: type to mix in to new Enum class.
467

468

469
Derived Enumerations
470
--------------------
471 472

IntEnum
473
^^^^^^^
474 475 476 477 478 479 480 481

A variation of :class:`Enum` is provided which is also a subclass of
:class:`int`.  Members of an :class:`IntEnum` can be compared to integers;
by extension, integer enumerations of different types can also be compared
to each other::

    >>> from enum import IntEnum
    >>> class Shape(IntEnum):
482 483
    ...     circle = 1
    ...     square = 2
484 485
    ...
    >>> class Request(IntEnum):
486 487
    ...     post = 1
    ...     get = 2
488 489 490 491 492 493 494 495 496 497 498
    ...
    >>> Shape == 1
    False
    >>> Shape.circle == 1
    True
    >>> Shape.circle == Request.post
    True

However, they still can't be compared to standard :class:`Enum` enumerations::

    >>> class Shape(IntEnum):
499 500
    ...     circle = 1
    ...     square = 2
501 502
    ...
    >>> class Color(Enum):
503 504
    ...     red = 1
    ...     green = 2
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    ...
    >>> Shape.circle == Color.red
    False

:class:`IntEnum` values behave like integers in other ways you'd expect::

    >>> int(Shape.circle)
    1
    >>> ['a', 'b', 'c'][Shape.circle]
    'b'
    >>> [i for i in range(Shape.square)]
    [0, 1]

For the vast majority of code, :class:`Enum` is strongly recommended,
since :class:`IntEnum` breaks some semantic promises of an enumeration (by
being comparable to integers, and thus by transitivity to other
unrelated enumerations).  It should be used only in special cases where
there's no other choice; for example, when integer constants are
replaced with enumerations and backwards compatibility is required with code
that still expects integers.


Others
528
^^^^^^
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

While :class:`IntEnum` is part of the :mod:`enum` module, it would be very
simple to implement independently::

    class IntEnum(int, Enum):
        pass

This demonstrates how similar derived enumerations can be defined; for example
a :class:`StrEnum` that mixes in :class:`str` instead of :class:`int`.

Some rules:

1. When subclassing :class:`Enum`, mix-in types must appear before
   :class:`Enum` itself in the sequence of bases, as in the :class:`IntEnum`
   example above.
2. While :class:`Enum` can have members of any type, once you mix in an
   additional type, all the members must have values of that type, e.g.
   :class:`int` above.  This restriction does not apply to mix-ins which only
   add methods and don't specify another data type such as :class:`int` or
   :class:`str`.
3. When another data type is mixed in, the :attr:`value` attribute is *not the
550
   same* as the enum member itself, although it is equivalent and will compare
551
   equal.
552 553 554
4. %-style formatting:  `%s` and `%r` call :class:`Enum`'s :meth:`__str__` and
   :meth:`__repr__` respectively; other codes (such as `%i` or `%h` for
   IntEnum) treat the enum member as its mixed-in type.
555
5. :meth:`str.__format__` (or :func:`format`) will use the mixed-in
556 557
   type's :meth:`__format__`.  If the :class:`Enum`'s :func:`str` or
   :func:`repr` is desired use the `!s` or `!r` :class:`str` format codes.
558 559 560


Interesting examples
561
--------------------
562 563 564 565 566 567 568 569

While :class:`Enum` and :class:`IntEnum` are expected to cover the majority of
use-cases, they cannot cover them all.  Here are recipes for some different
types of enumerations that can be used directly, or as examples for creating
one's own.


AutoNumber
570
^^^^^^^^^^
571 572 573 574 575 576 577

Avoids having to specify the value for each enumeration member::

    >>> class AutoNumber(Enum):
    ...     def __new__(cls):
    ...         value = len(cls.__members__) + 1
    ...         obj = object.__new__(cls)
578
    ...         obj._value_ = value
579 580 581 582 583 584 585 586 587 588
    ...         return obj
    ...
    >>> class Color(AutoNumber):
    ...     red = ()
    ...     green = ()
    ...     blue = ()
    ...
    >>> Color.green.value == 2
    True

589 590 591 592
.. note::

    The :meth:`__new__` method, if defined, is used during creation of the Enum
    members; it is then replaced by Enum's :meth:`__new__` which is used after
593
    class creation for lookup of existing members.
594

595 596

OrderedEnum
597
^^^^^^^^^^^
598 599 600 601 602 603 604 605

An ordered enumeration that is not based on :class:`IntEnum` and so maintains
the normal :class:`Enum` invariants (such as not being comparable to other
enumerations)::

    >>> class OrderedEnum(Enum):
    ...     def __ge__(self, other):
    ...         if self.__class__ is other.__class__:
606
    ...             return self.value >= other.value
607 608 609
    ...         return NotImplemented
    ...     def __gt__(self, other):
    ...         if self.__class__ is other.__class__:
610
    ...             return self.value > other.value
611 612 613
    ...         return NotImplemented
    ...     def __le__(self, other):
    ...         if self.__class__ is other.__class__:
614
    ...             return self.value <= other.value
615 616 617
    ...         return NotImplemented
    ...     def __lt__(self, other):
    ...         if self.__class__ is other.__class__:
618
    ...             return self.value < other.value
619 620 621 622 623 624 625 626 627 628 629 630 631
    ...         return NotImplemented
    ...
    >>> class Grade(OrderedEnum):
    ...     A = 5
    ...     B = 4
    ...     C = 3
    ...     D = 2
    ...     F = 1
    ...
    >>> Grade.C < Grade.A
    True


632
DuplicateFreeEnum
633
^^^^^^^^^^^^^^^^^
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

Raises an error if a duplicate member name is found instead of creating an
alias::

    >>> class DuplicateFreeEnum(Enum):
    ...     def __init__(self, *args):
    ...         cls = self.__class__
    ...         if any(self.value == e.value for e in cls):
    ...             a = self.name
    ...             e = cls(self.value).name
    ...             raise ValueError(
    ...                 "aliases not allowed in DuplicateFreeEnum:  %r --> %r"
    ...                 % (a, e))
    ...
    >>> class Color(DuplicateFreeEnum):
    ...     red = 1
    ...     green = 2
    ...     blue = 3
    ...     grene = 2
653
    ...
654 655 656 657 658 659 660
    Traceback (most recent call last):
    ...
    ValueError: aliases not allowed in DuplicateFreeEnum:  'grene' --> 'green'

.. note::

    This is a useful example for subclassing Enum to add or change other
661
    behaviors as well as disallowing aliases.  If the only desired change is
Ezio Melotti's avatar
Ezio Melotti committed
662
    disallowing aliases, the :func:`unique` decorator can be used instead.
663 664


665
Planet
666
^^^^^^
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

If :meth:`__new__` or :meth:`__init__` is defined the value of the enum member
will be passed to those methods::

    >>> class Planet(Enum):
    ...     MERCURY = (3.303e+23, 2.4397e6)
    ...     VENUS   = (4.869e+24, 6.0518e6)
    ...     EARTH   = (5.976e+24, 6.37814e6)
    ...     MARS    = (6.421e+23, 3.3972e6)
    ...     JUPITER = (1.9e+27,   7.1492e7)
    ...     SATURN  = (5.688e+26, 6.0268e7)
    ...     URANUS  = (8.686e+25, 2.5559e7)
    ...     NEPTUNE = (1.024e+26, 2.4746e7)
    ...     def __init__(self, mass, radius):
    ...         self.mass = mass       # in kilograms
    ...         self.radius = radius   # in meters
    ...     @property
    ...     def surface_gravity(self):
    ...         # universal gravitational constant  (m3 kg-1 s-2)
    ...         G = 6.67300E-11
    ...         return G * self.mass / (self.radius * self.radius)
    ...
    >>> Planet.EARTH.value
    (5.976e+24, 6378140.0)
    >>> Planet.EARTH.surface_gravity
    9.802652743337129
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737


How are Enums different?
------------------------

Enums have a custom metaclass that affects many aspects of both derived Enum
classes and their instances (members).


Enum Classes
^^^^^^^^^^^^

The :class:`EnumMeta` metaclass is responsible for providing the
:meth:`__contains__`, :meth:`__dir__`, :meth:`__iter__` and other methods that
allow one to do things with an :class:`Enum` class that fail on a typical
class, such as `list(Color)` or `some_var in Color`.  :class:`EnumMeta` is
responsible for ensuring that various other methods on the final :class:`Enum`
class are correct (such as :meth:`__new__`, :meth:`__getnewargs__`,
:meth:`__str__` and :meth:`__repr__`)


Enum Members (aka instances)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The most interesting thing about Enum members is that they are singletons.
:class:`EnumMeta` creates them all while it is creating the :class:`Enum`
class itself, and then puts a custom :meth:`__new__` in place to ensure
that no new ones are ever instantiated by returning only the existing
member instances.


Finer Points
^^^^^^^^^^^^

Enum members are instances of an Enum class, and even though they are
accessible as `EnumClass.member`, they are not accessible directly from
the member::

    >>> Color.red
    <Color.red: 1>
    >>> Color.red.blue
    Traceback (most recent call last):
    ...
    AttributeError: 'Color' object has no attribute 'blue'

738
Likewise, the :attr:`__members__` is only available on the class.
739

740 741 742
If you give your :class:`Enum` subclass extra methods, like the `Planet`_
class above, those methods will show up in a :func:`dir` of the member,
but not of the class::
743 744 745 746 747 748

    >>> dir(Planet)
    ['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS', '__class__', '__doc__', '__members__', '__module__']
    >>> dir(Planet.EARTH)
    ['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value']

749 750 751 752 753 754 755 756
The :meth:`__new__` method will only be used for the creation of the
:class:`Enum` members -- after that it is replaced.  Any custom :meth:`__new__`
method must create the object and set the :attr:`_value_` attribute
appropriately.

If you wish to change how :class:`Enum` members are looked up you should either
write a helper function or a :func:`classmethod` for the :class:`Enum`
subclass.