timeit.rst 12.7 KB
Newer Older
1 2 3 4 5 6
:mod:`timeit` --- Measure execution time of small code snippets
===============================================================

.. module:: timeit
   :synopsis: Measure the execution time of small code snippets.

7
**Source code:** :source:`Lib/timeit.py`
8 9 10 11 12

.. index::
   single: Benchmarking
   single: Performance

Raymond Hettinger's avatar
Raymond Hettinger committed
13 14
--------------

15
This module provides a simple way to time small bits of Python code. It has both
16
a :ref:`timeit-command-line-interface` as well as a :ref:`callable <python-interface>`
17 18 19
one.  It avoids a number of common traps for measuring execution times.
See also Tim Peters' introduction to the "Algorithms" chapter in the *Python
Cookbook*, published by O'Reilly.
20 21


22 23
Basic Examples
--------------
24

25
The following example shows how the :ref:`timeit-command-line-interface`
26
can be used to compare three different expressions:
27

28
.. code-block:: shell-session
29

30
   $ python3 -m timeit '"-".join(str(n) for n in range(100))'
31
   10000 loops, best of 5: 30.2 usec per loop
32
   $ python3 -m timeit '"-".join([str(n) for n in range(100)])'
33
   10000 loops, best of 5: 27.5 usec per loop
34
   $ python3 -m timeit '"-".join(map(str, range(100)))'
35
   10000 loops, best of 5: 23.2 usec per loop
36

37
This can be achieved from the :ref:`python-interface` with::
38

39 40
   >>> import timeit
   >>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)
41
   0.3018611848820001
42
   >>> timeit.timeit('"-".join([str(n) for n in range(100)])', number=10000)
43
   0.2727368790656328
44
   >>> timeit.timeit('"-".join(map(str, range(100)))', number=10000)
45 46
   0.23702679807320237

47 48 49 50

Note however that :mod:`timeit` will automatically determine the number of
repetitions only when the command-line interface is used.  In the
:ref:`timeit-examples` section you can find more advanced examples.
51 52


53
.. _python-interface:
54

55 56
Python Interface
----------------
57

58
The module defines three convenience functions and a public class:
59 60


61
.. function:: timeit(stmt='pass', setup='pass', timer=<default timer>, number=1000000, globals=None)
62

63 64
   Create a :class:`Timer` instance with the given statement, *setup* code and
   *timer* function and run its :meth:`.timeit` method with *number* executions.
65 66 67 68 69
   The optional *globals* argument specifies a namespace in which to execute the
   code.

   .. versionchanged:: 3.5
      The optional *globals* parameter was added.
70 71


72
.. function:: repeat(stmt='pass', setup='pass', timer=<default timer>, repeat=5, number=1000000, globals=None)
73

74 75
   Create a :class:`Timer` instance with the given statement, *setup* code and
   *timer* function and run its :meth:`.repeat` method with the given *repeat*
76 77
   count and *number* executions.  The optional *globals* argument specifies a
   namespace in which to execute the code.
78

79 80
   .. versionchanged:: 3.5
      The optional *globals* parameter was added.
81

82 83 84
   .. versionchanged:: 3.7
      Default value of *repeat* changed from 3 to 5.

85
.. function:: default_timer()
86

Ezio Melotti's avatar
Ezio Melotti committed
87
   The default timer, which is always :func:`time.perf_counter`.
88

Ezio Melotti's avatar
Ezio Melotti committed
89 90
   .. versionchanged:: 3.3
      :func:`time.perf_counter` is now the default timer.
91 92


93
.. class:: Timer(stmt='pass', setup='pass', timer=<timer function>, globals=None)
94

95
   Class for timing execution speed of small code snippets.
96

97 98 99 100
   The constructor takes a statement to be timed, an additional statement used
   for setup, and a timer function.  Both statements default to ``'pass'``;
   the timer function is platform-dependent (see the module doc string).
   *stmt* and *setup* may also contain multiple statements separated by ``;``
101 102 103
   or newlines, as long as they don't contain multi-line string literals.  The
   statement will by default be executed within timeit's namespace; this behavior
   can be controlled by passing a namespace to *globals*.
104

105
   To measure the execution time of the first statement, use the :meth:`.timeit`
106 107
   method.  The :meth:`.repeat` and :meth:`.autorange` methods are convenience
   methods to call :meth:`.timeit` multiple times.
108

109 110
   The execution time of *setup* is excluded from the overall timed execution run.

111 112 113 114
   The *stmt* and *setup* parameters can also take objects that are callable
   without arguments.  This will embed calls to them in a timer function that
   will then be executed by :meth:`.timeit`.  Note that the timing overhead is a
   little larger in this case because of the extra function calls.
115

116 117
   .. versionchanged:: 3.5
      The optional *globals* parameter was added.
118

119
   .. method:: Timer.timeit(number=1000000)
120

121 122 123 124 125 126
      Time *number* executions of the main statement.  This executes the setup
      statement once, and then returns the time it takes to execute the main
      statement a number of times, measured in seconds as a float.
      The argument is the number of times through the loop, defaulting to one
      million.  The main statement, the setup statement and the timer function
      to be used are passed to the constructor.
127

128
      .. note::
129

130 131
         By default, :meth:`.timeit` temporarily turns off :term:`garbage
         collection` during the timing.  The advantage of this approach is that
132
         it makes independent timings more comparable.  The disadvantage is
133 134 135
         that GC may be an important component of the performance of the
         function being measured.  If so, GC can be re-enabled as the first
         statement in the *setup* string.  For example::
136

137
            timeit.Timer('for i in range(10): oct(i)', 'gc.enable()').timeit()
138

139

140
   .. method:: Timer.autorange(callback=None)
141

142
      Automatically determine how many times to call :meth:`.timeit`.
143

144 145 146 147 148
      This is a convenience function that calls :meth:`.timeit` repeatedly
      so that the total time >= 0.2 second, returning the eventual
      (number of loops, time taken for that number of loops). It calls
      :meth:`.timeit` with increasing numbers from the sequence 1, 2, 5,
      10, 20, 50, ... until the time taken is at least 0.2 second.
149

150 151
      If *callback* is given and is not ``None``, it will be called after
      each trial with two arguments: ``callback(number, time_taken)``.
152

153
      .. versionadded:: 3.6
154

155

156
   .. method:: Timer.repeat(repeat=5, number=1000000)
157

158
      Call :meth:`.timeit` a few times.
159

160 161 162 163
      This is a convenience function that calls the :meth:`.timeit` repeatedly,
      returning a list of results.  The first argument specifies how many times
      to call :meth:`.timeit`.  The second argument specifies the *number*
      argument for :meth:`.timeit`.
164

165
      .. note::
166

167 168 169 170 171 172 173 174 175
         It's tempting to calculate mean and standard deviation from the result
         vector and report these.  However, this is not very useful.
         In a typical case, the lowest value gives a lower bound for how fast
         your machine can run the given code snippet; higher values in the
         result vector are typically not caused by variability in Python's
         speed, but by other processes interfering with your timing accuracy.
         So the :func:`min` of the result is probably the only number you
         should be interested in.  After that, you should look at the entire
         vector and apply common sense rather than statistics.
176

177 178 179
      .. versionchanged:: 3.7
         Default value of *repeat* changed from 3 to 5.

180

181 182 183 184 185 186 187 188 189
   .. method:: Timer.print_exc(file=None)

      Helper to print a traceback from the timed code.

      Typical use::

         t = Timer(...)       # outside the try/except
         try:
             t.timeit(...)    # or t.repeat(...)
190
         except Exception:
191 192 193 194 195 196 197
             t.print_exc()

      The advantage over the standard traceback is that source lines in the
      compiled template will be displayed.  The optional *file* argument directs
      where the traceback is sent; it defaults to :data:`sys.stderr`.


198
.. _timeit-command-line-interface:
199 200

Command-Line Interface
201 202 203 204
----------------------

When called as a program from the command line, the following form is used::

205
   python -m timeit [-n N] [-r N] [-u U] [-s S] [-h] [statement ...]
206

207 208 209 210 211
Where the following options are understood:

.. program:: timeit

.. cmdoption:: -n N, --number=N
212 213 214

   how many times to execute 'statement'

215 216
.. cmdoption:: -r N, --repeat=N

217
   how many times to repeat the timer (default 5)
218

219 220 221 222
.. cmdoption:: -s S, --setup=S

   statement to be executed once initially (default ``pass``)

223 224 225 226 227 228 229
.. cmdoption:: -p, --process

   measure process time, not wallclock time, using :func:`time.process_time`
   instead of :func:`time.perf_counter`, which is the default

   .. versionadded:: 3.3

230 231
.. cmdoption:: -u, --unit=U

232
    specify a time unit for timer output; can select nsec, usec, msec, or sec
233 234 235

   .. versionadded:: 3.5

236 237
.. cmdoption:: -v, --verbose

238 239
   print raw timing results; repeat for more digits precision

240 241
.. cmdoption:: -h, --help

242 243 244 245 246 247 248 249 250 251
   print a short usage message and exit

A multi-line statement may be given by specifying each line as a separate
statement argument; indented lines are possible by enclosing an argument in
quotes and using leading spaces.  Multiple :option:`-s` options are treated
similarly.

If :option:`-n` is not given, a suitable number of loops is calculated by trying
successive powers of 10 until the total time is at least 0.2 seconds.

252 253 254
:func:`default_timer` measurements can be affected by other programs running on
the same machine, so the best thing to do when accurate timing is necessary is
to repeat the timing a few times and use the best time.  The :option:`-r`
255
option is good for this; the default of 5 repetitions is probably enough in
256
most cases.  You can use :func:`time.process_time` to measure CPU time.
257 258 259 260 261

.. note::

   There is a certain baseline overhead associated with executing a pass statement.
   The code here doesn't try to hide it, but you should be aware of it.  The
262 263
   baseline overhead can be measured by invoking the program without arguments,
   and it might differ between Python versions.
264 265


266
.. _timeit-examples:
267 268 269 270

Examples
--------

271 272
It is possible to provide a setup statement that is executed only once at the beginning:

273
.. code-block:: shell-session
274 275

   $ python -m timeit -s 'text = "sample string"; char = "g"'  'char in text'
276
   5000000 loops, best of 5: 0.0877 usec per loop
277
   $ python -m timeit -s 'text = "sample string"; char = "g"'  'text.find(char)'
278
   1000000 loops, best of 5: 0.342 usec per loop
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

::

   >>> import timeit
   >>> timeit.timeit('char in text', setup='text = "sample string"; char = "g"')
   0.41440500499993504
   >>> timeit.timeit('text.find(char)', setup='text = "sample string"; char = "g"')
   1.7246671520006203

The same can be done using the :class:`Timer` class and its methods::

   >>> import timeit
   >>> t = timeit.Timer('char in text', setup='text = "sample string"; char = "g"')
   >>> t.timeit()
   0.3955516149999312
   >>> t.repeat()
295
   [0.40183617287970225, 0.37027556854118704, 0.38344867356679524, 0.3712595970846668, 0.37866875250654886]
296 297 298 299 300 301


The following examples show how to time expressions that contain multiple lines.
Here we compare the cost of using :func:`hasattr` vs. :keyword:`try`/:keyword:`except`
to test for missing and present object attributes:

302
.. code-block:: shell-session
303

304
   $ python -m timeit 'try:' '  str.__bool__' 'except AttributeError:' '  pass'
305
   20000 loops, best of 5: 15.7 usec per loop
306
   $ python -m timeit 'if hasattr(str, "__bool__"): pass'
307
   50000 loops, best of 5: 4.26 usec per loop
308

309
   $ python -m timeit 'try:' '  int.__bool__' 'except AttributeError:' '  pass'
310
   200000 loops, best of 5: 1.43 usec per loop
311
   $ python -m timeit 'if hasattr(int, "__bool__"): pass'
312
   100000 loops, best of 5: 2.23 usec per loop
313 314 315 316

::

   >>> import timeit
317
   >>> # attribute is missing
318 319 320 321 322 323
   >>> s = """\
   ... try:
   ...     str.__bool__
   ... except AttributeError:
   ...     pass
   ... """
324 325 326 327 328 329 330
   >>> timeit.timeit(stmt=s, number=100000)
   0.9138244460009446
   >>> s = "if hasattr(str, '__bool__'): pass"
   >>> timeit.timeit(stmt=s, number=100000)
   0.5829014980008651
   >>>
   >>> # attribute is present
331 332 333 334 335 336
   >>> s = """\
   ... try:
   ...     int.__bool__
   ... except AttributeError:
   ...     pass
   ... """
337 338 339 340 341 342
   >>> timeit.timeit(stmt=s, number=100000)
   0.04215312199994514
   >>> s = "if hasattr(int, '__bool__'): pass"
   >>> timeit.timeit(stmt=s, number=100000)
   0.08588060699912603

343 344

To give the :mod:`timeit` module access to functions you define, you can pass a
345
*setup* parameter which contains an import statement::
346 347

   def test():
348
       """Stupid test function"""
349
       L = [i for i in range(100)]
350

351
   if __name__ == '__main__':
352 353
       import timeit
       print(timeit.timeit("test()", setup="from __main__ import test"))
354 355 356 357 358 359 360 361 362 363 364 365 366 367

Another option is to pass :func:`globals` to the  *globals* parameter, which will cause the code
to be executed within your current global namespace.  This can be more convenient
than individually specifying imports::

   def f(x):
       return x**2
   def g(x):
       return x**4
   def h(x):
       return x**8

   import timeit
   print(timeit.timeit('[func(42) for func in (f,g,h)]', globals=globals()))