wsgiref.rst 31.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
:mod:`wsgiref` --- WSGI Utilities and Reference Implementation
==============================================================

.. module:: wsgiref
   :synopsis: WSGI Utilities and Reference Implementation.
.. moduleauthor:: Phillip J. Eby <pje@telecommunity.com>
.. sectionauthor:: Phillip J. Eby <pje@telecommunity.com>


The Web Server Gateway Interface (WSGI) is a standard interface between web
server software and web applications written in Python. Having a standard
interface makes it easy to use an application that supports WSGI with a number
of different web servers.

Only authors of web servers and programming frameworks need to know every detail
and corner case of the WSGI design.  You don't need to understand every detail
of WSGI just to install a WSGI application or to write a web application using
an existing framework.

:mod:`wsgiref` is a reference implementation of the WSGI specification that can
be used to add WSGI support to a web server or framework.  It provides utilities
for manipulating WSGI environment variables and response headers, base classes
for implementing WSGI servers, a demo HTTP server that serves WSGI applications,
and a validation tool that checks WSGI servers and applications for conformance
25
to the WSGI specification (:pep:`3333`).
26 27 28 29

See http://www.wsgi.org for more information about WSGI, and links to tutorials
and other resources.

30
.. XXX If you're just trying to write a web application...
31 32 33 34 35 36 37 38 39 40 41


:mod:`wsgiref.util` -- WSGI environment utilities
-------------------------------------------------

.. module:: wsgiref.util
   :synopsis: WSGI environment utilities.


This module provides a variety of utility functions for working with WSGI
environments.  A WSGI environment is a dictionary containing HTTP request
42
variables as described in :pep:`3333`.  All of the functions taking an *environ*
43
parameter expect a WSGI-compliant dictionary to be supplied; please see
44
:pep:`3333` for a detailed specification.
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


.. function:: guess_scheme(environ)

   Return a guess for whether ``wsgi.url_scheme`` should be "http" or "https", by
   checking for a ``HTTPS`` environment variable in the *environ* dictionary.  The
   return value is a string.

   This function is useful when creating a gateway that wraps CGI or a CGI-like
   protocol such as FastCGI.  Typically, servers providing such protocols will
   include a ``HTTPS`` variable with a value of "1" "yes", or "on" when a request
   is received via SSL.  So, this function returns "https" if such a value is
   found, and "http" otherwise.


60
.. function:: request_uri(environ, include_query=True)
61 62

   Return the full request URI, optionally including the query string, using the
63
   algorithm found in the "URL Reconstruction" section of :pep:`3333`.  If
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
   *include_query* is false, the query string is not included in the resulting URI.


.. function:: application_uri(environ)

   Similar to :func:`request_uri`, except that the ``PATH_INFO`` and
   ``QUERY_STRING`` variables are ignored.  The result is the base URI of the
   application object addressed by the request.


.. function:: shift_path_info(environ)

   Shift a single name from ``PATH_INFO`` to ``SCRIPT_NAME`` and return the name.
   The *environ* dictionary is *modified* in-place; use a copy if you need to keep
   the original ``PATH_INFO`` or ``SCRIPT_NAME`` intact.

   If there are no remaining path segments in ``PATH_INFO``, ``None`` is returned.

   Typically, this routine is used to process each portion of a request URI path,
   for example to treat the path as a series of dictionary keys. This routine
   modifies the passed-in environment to make it suitable for invoking another WSGI
   application that is located at the target URI. For example, if there is a WSGI
   application at ``/foo``, and the request URI path is ``/foo/bar/baz``, and the
   WSGI application at ``/foo`` calls :func:`shift_path_info`, it will receive the
   string "bar", and the environment will be updated to be suitable for passing to
   a WSGI application at ``/foo/bar``.  That is, ``SCRIPT_NAME`` will change from
   ``/foo`` to ``/foo/bar``, and ``PATH_INFO`` will change from ``/bar/baz`` to
   ``/baz``.

   When ``PATH_INFO`` is just a "/", this routine returns an empty string and
   appends a trailing slash to ``SCRIPT_NAME``, even though empty path segments are
   normally ignored, and ``SCRIPT_NAME`` doesn't normally end in a slash.  This is
   intentional behavior, to ensure that an application can tell the difference
   between URIs ending in ``/x`` from ones ending in ``/x/`` when using this
   routine to do object traversal.


.. function:: setup_testing_defaults(environ)

   Update *environ* with trivial defaults for testing purposes.

   This routine adds various parameters required for WSGI, including ``HTTP_HOST``,
   ``SERVER_NAME``, ``SERVER_PORT``, ``REQUEST_METHOD``, ``SCRIPT_NAME``,
107
   ``PATH_INFO``, and all of the :pep:`3333`\ -defined ``wsgi.*`` variables.  It
108 109 110 111 112 113 114
   only supplies default values, and does not replace any existing settings for
   these variables.

   This routine is intended to make it easier for unit tests of WSGI servers and
   applications to set up dummy environments.  It should NOT be used by actual WSGI
   servers or applications, since the data is fake!

115 116 117 118 119 120 121 122 123 124
   Example usage::

      from wsgiref.util import setup_testing_defaults
      from wsgiref.simple_server import make_server

      # A relatively simple WSGI application. It's going to print out the
      # environment dictionary after being updated by setup_testing_defaults
      def simple_app(environ, start_response):
          setup_testing_defaults(environ)

125 126
          status = '200 OK'
          headers = [('Content-type', 'text/plain; charset=utf-8')]
127 128 129

          start_response(status, headers)

130 131
          ret = [("%s: %s\n" % (key, value)).encode("utf-8")
                 for key, value in environ.items()]
132 133 134
          return ret

      httpd = make_server('', 8000, simple_app)
135
      print("Serving on port 8000...")
136 137 138
      httpd.serve_forever()


139 140 141 142 143 144 145 146 147 148
In addition to the environment functions above, the :mod:`wsgiref.util` module
also provides these miscellaneous utilities:


.. function:: is_hop_by_hop(header_name)

   Return true if 'header_name' is an HTTP/1.1 "Hop-by-Hop" header, as defined by
   :rfc:`2616`.


149
.. class:: FileWrapper(filelike, blksize=8192)
150

151
   A wrapper to convert a file-like object to an :term:`iterator`.  The resulting objects
152 153 154
   support both :meth:`__getitem__` and :meth:`__iter__` iteration styles, for
   compatibility with Python 2.1 and Jython. As the object is iterated over, the
   optional *blksize* parameter will be repeatedly passed to the *filelike*
155 156
   object's :meth:`read` method to obtain bytestrings to yield.  When :meth:`read`
   returns an empty bytestring, iteration is ended and is not resumable.
157 158 159 160 161

   If *filelike* has a :meth:`close` method, the returned object will also have a
   :meth:`close` method, and it will invoke the *filelike* object's :meth:`close`
   method when called.

162 163
   Example usage::

164
      from io import StringIO
165 166 167 168 169 170
      from wsgiref.util import FileWrapper

      # We're using a StringIO-buffer for as the file-like object
      filelike = StringIO("This is an example file-like object"*10)
      wrapper = FileWrapper(filelike, blksize=5)

171
      for chunk in wrapper:
172
          print(chunk)
173 174


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

:mod:`wsgiref.headers` -- WSGI response header tools
----------------------------------------------------

.. module:: wsgiref.headers
   :synopsis: WSGI response header tools.


This module provides a single class, :class:`Headers`, for convenient
manipulation of WSGI response headers using a mapping-like interface.


.. class:: Headers(headers)

   Create a mapping-like object wrapping *headers*, which must be a list of header
190
   name/value tuples as described in :pep:`3333`.
191 192 193

   :class:`Headers` objects support typical mapping operations including
   :meth:`__getitem__`, :meth:`get`, :meth:`__setitem__`, :meth:`setdefault`,
194
   :meth:`__delitem__` and :meth:`__contains__`.  For each of
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
   these methods, the key is the header name (treated case-insensitively), and the
   value is the first value associated with that header name.  Setting a header
   deletes any existing values for that header, then adds a new value at the end of
   the wrapped header list.  Headers' existing order is generally maintained, with
   new headers added to the end of the wrapped list.

   Unlike a dictionary, :class:`Headers` objects do not raise an error when you try
   to get or delete a key that isn't in the wrapped header list. Getting a
   nonexistent header just returns ``None``, and deleting a nonexistent header does
   nothing.

   :class:`Headers` objects also support :meth:`keys`, :meth:`values`, and
   :meth:`items` methods.  The lists returned by :meth:`keys` and :meth:`items` can
   include the same key more than once if there is a multi-valued header.  The
   ``len()`` of a :class:`Headers` object is the same as the length of its
   :meth:`items`, which is the same as the length of the wrapped header list.  In
   fact, the :meth:`items` method just returns a copy of the wrapped header list.

213
   Calling ``bytes()`` on a :class:`Headers` object returns a formatted bytestring
214 215
   suitable for transmission as HTTP response headers.  Each header is placed on a
   line with its value, separated by a colon and a space. Each line is terminated
216 217
   by a carriage return and line feed, and the bytestring is terminated with a
   blank line.
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

   In addition to their mapping interface and formatting features, :class:`Headers`
   objects also have the following methods for querying and adding multi-valued
   headers, and for adding headers with MIME parameters:


   .. method:: Headers.get_all(name)

      Return a list of all the values for the named header.

      The returned list will be sorted in the order they appeared in the original
      header list or were added to this instance, and may contain duplicates.  Any
      fields deleted and re-inserted are always appended to the header list.  If no
      fields exist with the given name, returns an empty list.


   .. method:: Headers.add_header(name, value, **_params)

      Add a (possibly multi-valued) header, with optional MIME parameters specified
      via keyword arguments.

      *name* is the header field to add.  Keyword arguments can be used to set MIME
      parameters for the header field.  Each parameter must be a string or ``None``.
      Underscores in parameter names are converted to dashes, since dashes are illegal
      in Python identifiers, but many MIME parameter names include dashes.  If the
      parameter value is a string, it is added to the header value parameters in the
      form ``name="value"``. If it is ``None``, only the parameter name is added.
      (This is used for MIME parameters without a value.)  Example usage::

         h.add_header('content-disposition', 'attachment', filename='bud.gif')

      The above will add a header that looks like this::

         Content-Disposition: attachment; filename="bud.gif"


:mod:`wsgiref.simple_server` -- a simple WSGI HTTP server
---------------------------------------------------------

.. module:: wsgiref.simple_server
   :synopsis: A simple WSGI HTTP server.


261
This module implements a simple HTTP server (based on :mod:`http.server`)
262 263 264 265 266 267 268 269
that serves WSGI applications.  Each server instance serves a single WSGI
application on a given host and port.  If you want to serve multiple
applications on a single host and port, you should create a WSGI application
that parses ``PATH_INFO`` to select which application to invoke for each
request.  (E.g., using the :func:`shift_path_info` function from
:mod:`wsgiref.util`.)


270
.. function:: make_server(host, port, app, server_class=WSGIServer, handler_class=WSGIRequestHandler)
271 272 273 274

   Create a new WSGI server listening on *host* and *port*, accepting connections
   for *app*.  The return value is an instance of the supplied *server_class*, and
   will process requests using the specified *handler_class*.  *app* must be a WSGI
275
   application object, as defined by :pep:`3333`.
276 277 278 279 280 281

   Example usage::

      from wsgiref.simple_server import make_server, demo_app

      httpd = make_server('', 8000, demo_app)
282
      print("Serving HTTP on port 8000...")
283 284 285 286 287

      # Respond to requests until process is killed
      httpd.serve_forever()

      # Alternative: serve one request, then exit
288
      httpd.handle_request()
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303


.. function:: demo_app(environ, start_response)

   This function is a small but complete WSGI application that returns a text page
   containing the message "Hello world!" and a list of the key/value pairs provided
   in the *environ* parameter.  It's useful for verifying that a WSGI server (such
   as :mod:`wsgiref.simple_server`) is able to run a simple WSGI application
   correctly.


.. class:: WSGIServer(server_address, RequestHandlerClass)

   Create a :class:`WSGIServer` instance.  *server_address* should be a
   ``(host,port)`` tuple, and *RequestHandlerClass* should be the subclass of
304
   :class:`http.server.BaseHTTPRequestHandler` that will be used to process
305 306 307 308 309
   requests.

   You do not normally need to call this constructor, as the :func:`make_server`
   function can handle all the details for you.

310
   :class:`WSGIServer` is a subclass of :class:`http.server.HTTPServer`, so all
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
   of its methods (such as :meth:`serve_forever` and :meth:`handle_request`) are
   available. :class:`WSGIServer` also provides these WSGI-specific methods:


   .. method:: WSGIServer.set_app(application)

      Sets the callable *application* as the WSGI application that will receive
      requests.


   .. method:: WSGIServer.get_app()

      Returns the currently-set application callable.

   Normally, however, you do not need to use these additional methods, as
   :meth:`set_app` is normally called by :func:`make_server`, and the
   :meth:`get_app` exists mainly for the benefit of request handler instances.


.. class:: WSGIRequestHandler(request, client_address, server)

   Create an HTTP handler for the given *request* (i.e. a socket), *client_address*
   (a ``(host,port)`` tuple), and *server* (:class:`WSGIServer` instance).

   You do not need to create instances of this class directly; they are
   automatically created as needed by :class:`WSGIServer` objects.  You can,
   however, subclass this class and supply it as a *handler_class* to the
   :func:`make_server` function.  Some possibly relevant methods for overriding in
   subclasses:


   .. method:: WSGIRequestHandler.get_environ()

      Returns a dictionary containing the WSGI environment for a request.  The default
      implementation copies the contents of the :class:`WSGIServer` object's
      :attr:`base_environ` dictionary attribute and then adds various headers derived
      from the HTTP request.  Each call to this method should return a new dictionary
      containing all of the relevant CGI environment variables as specified in
349
      :pep:`3333`.
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378


   .. method:: WSGIRequestHandler.get_stderr()

      Return the object that should be used as the ``wsgi.errors`` stream. The default
      implementation just returns ``sys.stderr``.


   .. method:: WSGIRequestHandler.handle()

      Process the HTTP request.  The default implementation creates a handler instance
      using a :mod:`wsgiref.handlers` class to implement the actual WSGI application
      interface.


:mod:`wsgiref.validate` --- WSGI conformance checker
----------------------------------------------------

.. module:: wsgiref.validate
   :synopsis: WSGI conformance checker.


When creating new WSGI application objects, frameworks, servers, or middleware,
it can be useful to validate the new code's conformance using
:mod:`wsgiref.validate`.  This module provides a function that creates WSGI
application objects that validate communications between a WSGI server or
gateway and a WSGI application object, to check both sides for protocol
conformance.

379
Note that this utility does not guarantee complete :pep:`3333` compliance; an
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
absence of errors from this module does not necessarily mean that errors do not
exist.  However, if this module does produce an error, then it is virtually
certain that either the server or application is not 100% compliant.

This module is based on the :mod:`paste.lint` module from Ian Bicking's "Python
Paste" library.


.. function:: validator(application)

   Wrap *application* and return a new WSGI application object.  The returned
   application will forward all requests to the original *application*, and will
   check that both the *application* and the server invoking it are conforming to
   the WSGI specification and to RFC 2616.

   Any detected nonconformance results in an :exc:`AssertionError` being raised;
   note, however, that how these errors are handled is server-dependent.  For
   example, :mod:`wsgiref.simple_server` and other servers based on
   :mod:`wsgiref.handlers` (that don't override the error handling methods to do
   something else) will simply output a message that an error has occurred, and
   dump the traceback to ``sys.stderr`` or some other error stream.

   This wrapper may also generate output using the :mod:`warnings` module to
   indicate behaviors that are questionable but which may not actually be
404
   prohibited by :pep:`3333`.  Unless they are suppressed using Python command-line
405 406 407 408
   options or the :mod:`warnings` API, any such warnings will be written to
   ``sys.stderr`` (*not* ``wsgi.errors``, unless they happen to be the same
   object).

409 410 411 412 413
   Example usage::

      from wsgiref.validate import validator
      from wsgiref.simple_server import make_server

414
      # Our callable object which is intentionally not compliant to the
415 416
      # standard, so the validator is going to break
      def simple_app(environ, start_response):
417 418
          status = '200 OK' # HTTP Status
          headers = [('Content-type', 'text/plain')] # HTTP Headers
419 420 421 422
          start_response(status, headers)

          # This is going to break because we need to return a list, and
          # the validator is going to inform us
423
          return b"Hello World"
424 425 426 427 428

      # This is the application wrapped in a validator
      validator_app = validator(simple_app)

      httpd = make_server('', 8000, validator_app)
429
      print("Listening on port 8000....")
430 431
      httpd.serve_forever()

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

:mod:`wsgiref.handlers` -- server/gateway base classes
------------------------------------------------------

.. module:: wsgiref.handlers
   :synopsis: WSGI server/gateway base classes.


This module provides base handler classes for implementing WSGI servers and
gateways.  These base classes handle most of the work of communicating with a
WSGI application, as long as they are given a CGI-like environment, along with
input, output, and error streams.


.. class:: CGIHandler()

   CGI-based invocation via ``sys.stdin``, ``sys.stdout``, ``sys.stderr`` and
   ``os.environ``.  This is useful when you have a WSGI application and want to run
   it as a CGI script.  Simply invoke ``CGIHandler().run(app)``, where ``app`` is
   the WSGI application object you wish to invoke.

   This class is a subclass of :class:`BaseCGIHandler` that sets ``wsgi.run_once``
   to true, ``wsgi.multithread`` to false, and ``wsgi.multiprocess`` to true, and
   always uses :mod:`sys` and :mod:`os` to obtain the necessary CGI streams and
   environment.


459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
.. class:: IISCGIHandler()

   A specialized alternative to :class:`CGIHandler`, for use when deploying on
   Microsoft's IIS web server, without having set the config allowPathInfo
   option (IIS>=7) or metabase allowPathInfoForScriptMappings (IIS<7).

   By default, IIS gives a ``PATH_INFO`` that duplicates the ``SCRIPT_NAME`` at
   the front, causing problems for WSGI applications that wish to implement
   routing. This handler strips any such duplicated path.

   IIS can be configured to pass the correct ``PATH_INFO``, but this causes
   another bug where ``PATH_TRANSLATED`` is wrong. Luckily this variable is
   rarely used and is not guaranteed by WSGI. On IIS<7, though, the
   setting can only be made on a vhost level, affecting all other script
   mappings, many of which break when exposed to the ``PATH_TRANSLATED`` bug.
   For this reason IIS<7 is almost never deployed with the fix. (Even IIS7
   rarely uses it because there is still no UI for it.)

   There is no way for CGI code to tell whether the option was set, so a
   separate handler class is provided.  It is used in the same way as
   :class:`CGIHandler`, i.e., by calling ``IISCGIHandler().run(app)``, where
   ``app`` is the WSGI application object you wish to invoke.

   .. versionadded:: 3.2


485
.. class:: BaseCGIHandler(stdin, stdout, stderr, environ, multithread=True, multiprocess=False)
486 487 488 489 490 491 492 493 494 495 496 497 498 499

   Similar to :class:`CGIHandler`, but instead of using the :mod:`sys` and
   :mod:`os` modules, the CGI environment and I/O streams are specified explicitly.
   The *multithread* and *multiprocess* values are used to set the
   ``wsgi.multithread`` and ``wsgi.multiprocess`` flags for any applications run by
   the handler instance.

   This class is a subclass of :class:`SimpleHandler` intended for use with
   software other than HTTP "origin servers".  If you are writing a gateway
   protocol implementation (such as CGI, FastCGI, SCGI, etc.) that uses a
   ``Status:`` header to send an HTTP status, you probably want to subclass this
   instead of :class:`SimpleHandler`.


500
.. class:: SimpleHandler(stdin, stdout, stderr, environ, multithread=True, multiprocess=False)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

   Similar to :class:`BaseCGIHandler`, but designed for use with HTTP origin
   servers.  If you are writing an HTTP server implementation, you will probably
   want to subclass this instead of :class:`BaseCGIHandler`

   This class is a subclass of :class:`BaseHandler`.  It overrides the
   :meth:`__init__`, :meth:`get_stdin`, :meth:`get_stderr`, :meth:`add_cgi_vars`,
   :meth:`_write`, and :meth:`_flush` methods to support explicitly setting the
   environment and streams via the constructor.  The supplied environment and
   streams are stored in the :attr:`stdin`, :attr:`stdout`, :attr:`stderr`, and
   :attr:`environ` attributes.


.. class:: BaseHandler()

   This is an abstract base class for running WSGI applications.  Each instance
   will handle a single HTTP request, although in principle you could create a
   subclass that was reusable for multiple requests.

   :class:`BaseHandler` instances have only one method intended for external use:


   .. method:: BaseHandler.run(app)

      Run the specified WSGI application, *app*.

   All of the other :class:`BaseHandler` methods are invoked by this method in the
   process of running the application, and thus exist primarily to allow
   customizing the process.

   The following methods MUST be overridden in a subclass:


   .. method:: BaseHandler._write(data)

536
      Buffer the bytes *data* for transmission to the client.  It's okay if this
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
      method actually transmits the data; :class:`BaseHandler` just separates write
      and flush operations for greater efficiency when the underlying system actually
      has such a distinction.


   .. method:: BaseHandler._flush()

      Force buffered data to be transmitted to the client.  It's okay if this method
      is a no-op (i.e., if :meth:`_write` actually sends the data).


   .. method:: BaseHandler.get_stdin()

      Return an input stream object suitable for use as the ``wsgi.input`` of the
      request currently being processed.


   .. method:: BaseHandler.get_stderr()

      Return an output stream object suitable for use as the ``wsgi.errors`` of the
      request currently being processed.


   .. method:: BaseHandler.add_cgi_vars()

      Insert CGI variables for the current request into the :attr:`environ` attribute.

   Here are some other methods and attributes you may wish to override. This list
   is only a summary, however, and does not include every method that can be
   overridden.  You should consult the docstrings and source code for additional
   information before attempting to create a customized :class:`BaseHandler`
   subclass.

   Attributes and methods for customizing the WSGI environment:


   .. attribute:: BaseHandler.wsgi_multithread

      The value to be used for the ``wsgi.multithread`` environment variable.  It
      defaults to true in :class:`BaseHandler`, but may have a different default (or
      be set by the constructor) in the other subclasses.


   .. attribute:: BaseHandler.wsgi_multiprocess

      The value to be used for the ``wsgi.multiprocess`` environment variable.  It
      defaults to true in :class:`BaseHandler`, but may have a different default (or
      be set by the constructor) in the other subclasses.


   .. attribute:: BaseHandler.wsgi_run_once

      The value to be used for the ``wsgi.run_once`` environment variable.  It
      defaults to false in :class:`BaseHandler`, but :class:`CGIHandler` sets it to
      true by default.


   .. attribute:: BaseHandler.os_environ

      The default environment variables to be included in every request's WSGI
      environment.  By default, this is a copy of ``os.environ`` at the time that
      :mod:`wsgiref.handlers` was imported, but subclasses can either create their own
      at the class or instance level.  Note that the dictionary should be considered
      read-only, since the default value is shared between multiple classes and
      instances.


   .. attribute:: BaseHandler.server_software

      If the :attr:`origin_server` attribute is set, this attribute's value is used to
      set the default ``SERVER_SOFTWARE`` WSGI environment variable, and also to set a
      default ``Server:`` header in HTTP responses.  It is ignored for handlers (such
      as :class:`BaseCGIHandler` and :class:`CGIHandler`) that are not HTTP origin
      servers.

612
      .. versionchanged:: 3.3
613 614
         The term "Python" is replaced with implementation specific term like
         "CPython", "Jython" etc.
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

   .. method:: BaseHandler.get_scheme()

      Return the URL scheme being used for the current request.  The default
      implementation uses the :func:`guess_scheme` function from :mod:`wsgiref.util`
      to guess whether the scheme should be "http" or "https", based on the current
      request's :attr:`environ` variables.


   .. method:: BaseHandler.setup_environ()

      Set the :attr:`environ` attribute to a fully-populated WSGI environment.  The
      default implementation uses all of the above methods and attributes, plus the
      :meth:`get_stdin`, :meth:`get_stderr`, and :meth:`add_cgi_vars` methods and the
      :attr:`wsgi_file_wrapper` attribute.  It also inserts a ``SERVER_SOFTWARE`` key
      if not present, as long as the :attr:`origin_server` attribute is a true value
      and the :attr:`server_software` attribute is set.

   Methods and attributes for customizing exception handling:


   .. method:: BaseHandler.log_exception(exc_info)

      Log the *exc_info* tuple in the server log.  *exc_info* is a ``(type, value,
      traceback)`` tuple.  The default implementation simply writes the traceback to
      the request's ``wsgi.errors`` stream and flushes it.  Subclasses can override
      this method to change the format or retarget the output, mail the traceback to
      an administrator, or whatever other action may be deemed suitable.


   .. attribute:: BaseHandler.traceback_limit

      The maximum number of frames to include in tracebacks output by the default
      :meth:`log_exception` method.  If ``None``, all frames are included.


   .. method:: BaseHandler.error_output(environ, start_response)

      This method is a WSGI application to generate an error page for the user.  It is
      only invoked if an error occurs before headers are sent to the client.

      This method can access the current error information using ``sys.exc_info()``,
      and should pass that information to *start_response* when calling it (as
658
      described in the "Error Handling" section of :pep:`3333`).
659 660 661 662 663 664 665 666 667 668 669 670 671 672

      The default implementation just uses the :attr:`error_status`,
      :attr:`error_headers`, and :attr:`error_body` attributes to generate an output
      page.  Subclasses can override this to produce more dynamic error output.

      Note, however, that it's not recommended from a security perspective to spit out
      diagnostics to any old user; ideally, you should have to do something special to
      enable diagnostic output, which is why the default implementation doesn't
      include any.


   .. attribute:: BaseHandler.error_status

      The HTTP status used for error responses.  This should be a status string as
673
      defined in :pep:`3333`; it defaults to a 500 code and message.
674 675 676 677 678


   .. attribute:: BaseHandler.error_headers

      The HTTP headers used for error responses.  This should be a list of WSGI
679
      response headers (``(name, value)`` tuples), as described in :pep:`3333`.  The
680 681 682 683 684
      default list just sets the content type to ``text/plain``.


   .. attribute:: BaseHandler.error_body

685
      The error response body.  This should be an HTTP response body bytestring. It
686 687 688
      defaults to the plain text, "A server error occurred.  Please contact the
      administrator."

689
   Methods and attributes for :pep:`3333`'s "Optional Platform-Specific File
690 691 692 693 694 695
   Handling" feature:


   .. attribute:: BaseHandler.wsgi_file_wrapper

      A ``wsgi.file_wrapper`` factory, or ``None``.  The default value of this
696
      attribute is the :class:`wsgiref.util.FileWrapper` class.
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726


   .. method:: BaseHandler.sendfile()

      Override to implement platform-specific file transmission.  This method is
      called only if the application's return value is an instance of the class
      specified by the :attr:`wsgi_file_wrapper` attribute.  It should return a true
      value if it was able to successfully transmit the file, so that the default
      transmission code will not be executed. The default implementation of this
      method just returns a false value.

   Miscellaneous methods and attributes:


   .. attribute:: BaseHandler.origin_server

      This attribute should be set to a true value if the handler's :meth:`_write` and
      :meth:`_flush` are being used to communicate directly to the client, rather than
      via a CGI-like gateway protocol that wants the HTTP status in a special
      ``Status:`` header.

      This attribute's default value is true in :class:`BaseHandler`, but false in
      :class:`BaseCGIHandler` and :class:`CGIHandler`.


   .. attribute:: BaseHandler.http_version

      If :attr:`origin_server` is true, this string attribute is used to set the HTTP
      version of the response set to the client.  It defaults to ``"1.0"``.

727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
.. function:: read_environ()

   Transcode CGI variables from ``os.environ`` to PEP 3333 "bytes in unicode"
   strings, returning a new dictionary.  This function is used by
   :class:`CGIHandler` and :class:`IISCGIHandler` in place of directly using
   ``os.environ``, which is not necessarily WSGI-compliant on all platforms
   and web servers using Python 3 -- specifically, ones where the OS's
   actual environment is Unicode (i.e. Windows), or ones where the environment
   is bytes, but the system encoding used by Python to decode it is anything
   other than ISO-8859-1 (e.g. Unix systems using UTF-8).

   If you are implementing a CGI-based handler of your own, you probably want
   to use this routine instead of just copying values out of ``os.environ``
   directly.

   .. versionadded:: 3.2


746 747 748 749 750 751 752 753 754 755 756 757
Examples
--------

This is a working "Hello World" WSGI application::

   from wsgiref.simple_server import make_server

   # Every WSGI application must have an application object - a callable
   # object that accepts two arguments. For that purpose, we're going to
   # use a function (note that you're not limited to a function, you can
   # use a class for example). The first argument passed to the function
   # is a dictionary containing CGI-style envrironment variables and the
758
   # second variable is the callable object (see PEP 333).
759
   def hello_world_app(environ, start_response):
760 761
       status = '200 OK' # HTTP Status
       headers = [('Content-type', 'text/plain; charset=utf-8')] # HTTP Headers
762 763 764
       start_response(status, headers)

       # The returned object is going to be printed
765
       return [b"Hello World"]
766 767

   httpd = make_server('', 8000, hello_world_app)
768
   print("Serving on port 8000...")
769 770 771

   # Serve until process is killed
   httpd.serve_forever()