binascii.c 50.7 KB
Newer Older
1 2 3 4 5
/*
** Routines to represent binary data in ASCII and vice-versa
**
** This module currently supports the following encodings:
** uuencode:
6 7 8 9 10 11 12 13
**      each line encodes 45 bytes (except possibly the last)
**      First char encodes (binary) length, rest data
**      each char encodes 6 bits, as follows:
**      binary: 01234567 abcdefgh ijklmnop
**      ascii:  012345 67abcd efghij klmnop
**      ASCII encoding method is "excess-space": 000000 is encoded as ' ', etc.
**      short binary data is zero-extended (so the bits are always in the
**      right place), this does *not* reflect in the length.
Jack Jansen's avatar
Jack Jansen committed
14 15 16 17 18
** base64:
**      Line breaks are insignificant, but lines are at most 76 chars
**      each char encodes 6 bits, in similar order as uucode/hqx. Encoding
**      is done via a table.
**      Short binary data is filled (in ASCII) with '='.
19
** hqx:
20 21 22 23 24 25 26 27 28 29
**      File starts with introductory text, real data starts and ends
**      with colons.
**      Data consists of three similar parts: info, datafork, resourcefork.
**      Each part is protected (at the end) with a 16-bit crc
**      The binary data is run-length encoded, and then ascii-fied:
**      binary: 01234567 abcdefgh ijklmnop
**      ascii:  012345 67abcd efghij klmnop
**      ASCII encoding is table-driven, see the code.
**      Short binary data results in the runt ascii-byte being output with
**      the bits in the right place.
30 31 32 33
**
** While I was reading dozens of programs that encode or decode the formats
** here (documentation? hihi:-) I have formulated Jansen's Observation:
**
34 35 36 37 38 39
**      Programs that encode binary data in ASCII are written in
**      such a style that they are as unreadable as possible. Devices used
**      include unnecessary global variables, burying important tables
**      in unrelated sourcefiles, putting functions in include files,
**      using seemingly-descriptive variable names for different purposes,
**      calls to empty subroutines and a host of others.
40 41 42 43 44
**
** I have attempted to break with this tradition, but I guess that that
** does make the performance sub-optimal. Oh well, too bad...
**
** Jack Jansen, CWI, July 1995.
45
**
46
** Added support for quoted-printable encoding, based on rfc 1521 et al
47
** quoted-printable encoding specifies that non printable characters (anything
48 49
** below 32 and above 126) be encoded as =XX where XX is the hexadecimal value
** of the character.  It also specifies some other behavior to enable 8bit data
50 51
** in a mail message with little difficulty (maximum line sizes, protecting
** some cases of whitespace, etc).
52 53
**
** Brandon Long, September 2001.
54 55
*/

Thomas Wouters's avatar
Thomas Wouters committed
56
#define PY_SSIZE_T_CLEAN
57 58

#include "Python.h"
59
#include "pystrhex.h"
60 61 62
#ifdef USE_ZLIB_CRC32
#include "zlib.h"
#endif
63 64 65 66 67 68 69 70 71 72 73 74 75 76

static PyObject *Error;
static PyObject *Incomplete;

/*
** hqx lookup table, ascii->binary.
*/

#define RUNCHAR 0x90

#define DONE 0x7F
#define SKIP 0x7E
#define FAIL 0x7D

77
static const unsigned char table_a2b_hqx[256] = {
78
/*       ^@    ^A    ^B    ^C    ^D    ^E    ^F    ^G   */
79
/* 0*/  FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
80
/*       \b    \t    \n    ^K    ^L    \r    ^N    ^O   */
81
/* 1*/  FAIL, FAIL, SKIP, FAIL, FAIL, SKIP, FAIL, FAIL,
82
/*       ^P    ^Q    ^R    ^S    ^T    ^U    ^V    ^W   */
83
/* 2*/  FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
84
/*       ^X    ^Y    ^Z    ^[    ^\    ^]    ^^    ^_   */
85
/* 3*/  FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
86
/*              !     "     #     $     %     &     '   */
87
/* 4*/  FAIL, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
88
/*        (     )     *     +     ,     -     .     /   */
89
/* 5*/  0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, FAIL, FAIL,
90
/*        0     1     2     3     4     5     6     7   */
91
/* 6*/  0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, FAIL,
92
/*        8     9     :     ;     <     =     >     ?   */
93
/* 7*/  0x14, 0x15, DONE, FAIL, FAIL, FAIL, FAIL, FAIL,
94
/*        @     A     B     C     D     E     F     G   */
95
/* 8*/  0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D,
96
/*        H     I     J     K     L     M     N     O   */
97
/* 9*/  0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, FAIL,
98
/*        P     Q     R     S     T     U     V     W   */
99
/*10*/  0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, FAIL,
100
/*        X     Y     Z     [     \     ]     ^     _   */
101
/*11*/  0x2C, 0x2D, 0x2E, 0x2F, FAIL, FAIL, FAIL, FAIL,
102
/*        `     a     b     c     d     e     f     g   */
103
/*12*/  0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, FAIL,
104
/*        h     i     j     k     l     m     n     o   */
105
/*13*/  0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, FAIL, FAIL,
106
/*        p     q     r     s     t     u     v     w   */
107
/*14*/  0x3D, 0x3E, 0x3F, FAIL, FAIL, FAIL, FAIL, FAIL,
108
/*        x     y     z     {     |     }     ~    ^?   */
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/*15*/  FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/*16*/  FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
    FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
126 127
};

128
static const unsigned char table_b2a_hqx[] =
Roger E. Masse's avatar
Roger E. Masse committed
129
"!\"#$%&'()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[`abcdefhijklmpqr";
130

131
static const char table_a2b_base64[] = {
132 133 134 135 136 137 138 139
    -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
    -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
    -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63,
    52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */
    -1, 0, 1, 2,  3, 4, 5, 6,  7, 8, 9,10, 11,12,13,14,
    15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1,
    -1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40,
    41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1
Jack Jansen's avatar
Jack Jansen committed
140 141 142
};

#define BASE64_PAD '='
143 144

/* Max binary chunk size; limited only by available memory */
145
#define BASE64_MAXBIN ((PY_SSIZE_T_MAX - 3) / 2)
Jack Jansen's avatar
Jack Jansen committed
146

147
static const unsigned char table_b2a_base64[] =
Roger E. Masse's avatar
Roger E. Masse committed
148
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
Jack Jansen's avatar
Jack Jansen committed
149 150 151



152
static const unsigned short crctab_hqx[256] = {
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
    0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
    0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
    0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
    0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
    0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
    0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
    0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
    0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
    0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
    0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
    0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
    0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
    0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
    0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
    0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
    0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
    0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
    0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
    0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
    0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
    0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
    0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
    0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
    0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
    0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
    0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
    0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
    0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
    0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
    0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
    0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
185 186
};

187 188 189
/*[clinic input]
module binascii
[clinic start generated code]*/
190
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=de89fb46bcaf3fec]*/
191 192 193 194 195 196 197

/*[python input]

class ascii_buffer_converter(CConverter):
    type = 'Py_buffer'
    converter = 'ascii_buffer_converter'
    impl_by_reference = True
198 199 200 201 202
    c_default = "{NULL, NULL}"

    def cleanup(self):
        name = self.name
        return "".join(["if (", name, ".obj)\n   PyBuffer_Release(&", name, ");\n"])
203 204

[python start generated code]*/
205
/*[python end generated code: output=da39a3ee5e6b4b0d input=3eb7b63610da92cd]*/
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static int
ascii_buffer_converter(PyObject *arg, Py_buffer *buf)
{
    if (arg == NULL) {
        PyBuffer_Release(buf);
        return 1;
    }
    if (PyUnicode_Check(arg)) {
        if (PyUnicode_READY(arg) < 0)
            return 0;
        if (!PyUnicode_IS_ASCII(arg)) {
            PyErr_SetString(PyExc_ValueError,
                            "string argument should contain only ASCII characters");
            return 0;
        }
        assert(PyUnicode_KIND(arg) == PyUnicode_1BYTE_KIND);
        buf->buf = (void *) PyUnicode_1BYTE_DATA(arg);
        buf->len = PyUnicode_GET_LENGTH(arg);
        buf->obj = NULL;
        return 1;
    }
    if (PyObject_GetBuffer(arg, buf, PyBUF_SIMPLE) != 0) {
        PyErr_Format(PyExc_TypeError,
                     "argument should be bytes, buffer or ASCII string, "
231
                     "not '%.100s'", Py_TYPE(arg)->tp_name);
232 233 234 235 236
        return 0;
    }
    if (!PyBuffer_IsContiguous(buf, 'C')) {
        PyErr_Format(PyExc_TypeError,
                     "argument should be a contiguous buffer, "
237
                     "not '%.100s'", Py_TYPE(arg)->tp_name);
238 239 240 241 242 243
        PyBuffer_Release(buf);
        return 0;
    }
    return Py_CLEANUP_SUPPORTED;
}

244
#include "clinic/binascii.c.h"
245

246 247 248
/*[clinic input]
binascii.a2b_uu

249
    data: ascii_buffer
250 251 252 253
    /

Decode a line of uuencoded data.
[clinic start generated code]*/
254 255

static PyObject *
256
binascii_a2b_uu_impl(PyModuleDef *module, Py_buffer *data)
257
/*[clinic end generated code: output=5779f39b0b48459f input=7cafeaf73df63d1c]*/
258
{
259 260
    const unsigned char *ascii_data;
    unsigned char *bin_data;
261 262 263 264 265 266
    int leftbits = 0;
    unsigned char this_ch;
    unsigned int leftchar = 0;
    PyObject *rv;
    Py_ssize_t ascii_len, bin_len;

267 268
    ascii_data = data->buf;
    ascii_len = data->len;
269 270 271 272 273 274 275 276

    assert(ascii_len >= 0);

    /* First byte: binary data length (in bytes) */
    bin_len = (*ascii_data++ - ' ') & 077;
    ascii_len--;

    /* Allocate the buffer */
277
    if ( (rv=PyBytes_FromStringAndSize(NULL, bin_len)) == NULL )
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        return NULL;
    bin_data = (unsigned char *)PyBytes_AS_STRING(rv);

    for( ; bin_len > 0 ; ascii_len--, ascii_data++ ) {
        /* XXX is it really best to add NULs if there's no more data */
        this_ch = (ascii_len > 0) ? *ascii_data : 0;
        if ( this_ch == '\n' || this_ch == '\r' || ascii_len <= 0) {
            /*
            ** Whitespace. Assume some spaces got eaten at
            ** end-of-line. (We check this later)
            */
            this_ch = 0;
        } else {
            /* Check the character for legality
            ** The 64 in stead of the expected 63 is because
            ** there are a few uuencodes out there that use
            ** '`' as zero instead of space.
            */
            if ( this_ch < ' ' || this_ch > (' ' + 64)) {
                PyErr_SetString(Error, "Illegal char");
                Py_DECREF(rv);
                return NULL;
            }
            this_ch = (this_ch - ' ') & 077;
        }
        /*
        ** Shift it in on the low end, and see if there's
        ** a byte ready for output.
        */
        leftchar = (leftchar << 6) | (this_ch);
        leftbits += 6;
        if ( leftbits >= 8 ) {
            leftbits -= 8;
            *bin_data++ = (leftchar >> leftbits) & 0xff;
            leftchar &= ((1 << leftbits) - 1);
            bin_len--;
        }
    }
    /*
    ** Finally, check that if there's anything left on the line
    ** that it's whitespace only.
    */
    while( ascii_len-- > 0 ) {
        this_ch = *ascii_data++;
        /* Extra '`' may be written as padding in some cases */
        if ( this_ch != ' ' && this_ch != ' '+64 &&
             this_ch != '\n' && this_ch != '\r' ) {
            PyErr_SetString(Error, "Trailing garbage");
            Py_DECREF(rv);
            return NULL;
        }
    }
    return rv;
331 332
}

333 334 335 336 337 338 339 340
/*[clinic input]
binascii.b2a_uu

    data: Py_buffer
    /

Uuencode line of data.
[clinic start generated code]*/
341

342
static PyObject *
343
binascii_b2a_uu_impl(PyModuleDef *module, Py_buffer *data)
344
/*[clinic end generated code: output=181021b69bb9a414 input=00fdf458ce8b465b]*/
345
{
346 347
    unsigned char *ascii_data;
    const unsigned char *bin_data;
348 349 350
    int leftbits = 0;
    unsigned char this_ch;
    unsigned int leftchar = 0;
351 352
    Py_ssize_t bin_len, out_len;
    _PyBytesWriter writer;
353

354
    _PyBytesWriter_Init(&writer);
355 356
    bin_data = data->buf;
    bin_len = data->len;
357 358 359 360 361 362 363
    if ( bin_len > 45 ) {
        /* The 45 is a limit that appears in all uuencode's */
        PyErr_SetString(Error, "At most 45 bytes at once");
        return NULL;
    }

    /* We're lazy and allocate to much (fixed up later) */
364 365 366
    out_len = 2 + (bin_len + 2) / 3 * 4;
    ascii_data = _PyBytesWriter_Alloc(&writer, out_len);
    if (ascii_data == NULL)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        return NULL;

    /* Store the length */
    *ascii_data++ = ' ' + (bin_len & 077);

    for( ; bin_len > 0 || leftbits != 0 ; bin_len--, bin_data++ ) {
        /* Shift the data (or padding) into our buffer */
        if ( bin_len > 0 )              /* Data */
            leftchar = (leftchar << 8) | *bin_data;
        else                            /* Padding */
            leftchar <<= 8;
        leftbits += 8;

        /* See if there are 6-bit groups ready */
        while ( leftbits >= 6 ) {
            this_ch = (leftchar >> (leftbits-6)) & 0x3f;
            leftbits -= 6;
            *ascii_data++ = this_ch + ' ';
        }
    }
    *ascii_data++ = '\n';       /* Append a courtesy newline */

389
    return _PyBytesWriter_Finish(&writer, ascii_data);
390 391
}

392 393

static int
394
binascii_find_valid(const unsigned char *s, Py_ssize_t slen, int num)
395
{
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    /* Finds & returns the (num+1)th
    ** valid character for base64, or -1 if none.
    */

    int ret = -1;
    unsigned char c, b64val;

    while ((slen > 0) && (ret == -1)) {
        c = *s;
        b64val = table_a2b_base64[c & 0x7f];
        if ( ((c <= 0x7f) && (b64val != (unsigned char)-1)) ) {
            if (num == 0)
                ret = *s;
            num--;
        }

        s++;
        slen--;
    }
    return ret;
416 417
}

418 419 420
/*[clinic input]
binascii.a2b_base64

421
    data: ascii_buffer
422 423 424 425
    /

Decode a line of base64 data.
[clinic start generated code]*/
Jack Jansen's avatar
Jack Jansen committed
426 427

static PyObject *
428
binascii_a2b_base64_impl(PyModuleDef *module, Py_buffer *data)
429
/*[clinic end generated code: output=3e351b702bed56d2 input=5872acf6e1cac243]*/
Jack Jansen's avatar
Jack Jansen committed
430
{
431 432
    const unsigned char *ascii_data;
    unsigned char *bin_data;
433 434 435 436 437
    int leftbits = 0;
    unsigned char this_ch;
    unsigned int leftchar = 0;
    Py_ssize_t ascii_len, bin_len;
    int quad_pos = 0;
438
    _PyBytesWriter writer;
439

440 441
    ascii_data = data->buf;
    ascii_len = data->len;
442 443 444

    assert(ascii_len >= 0);

445
    if (ascii_len > PY_SSIZE_T_MAX - 3)
446 447 448 449
        return PyErr_NoMemory();

    bin_len = ((ascii_len+3)/4)*3; /* Upper bound, corrected later */

450 451
    _PyBytesWriter_Init(&writer);

452
    /* Allocate the buffer */
453 454
    bin_data = _PyBytesWriter_Alloc(&writer, bin_len);
    if (bin_data == NULL)
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        return NULL;

    for( ; ascii_len > 0; ascii_len--, ascii_data++) {
        this_ch = *ascii_data;

        if (this_ch > 0x7f ||
            this_ch == '\r' || this_ch == '\n' || this_ch == ' ')
            continue;

        /* Check for pad sequences and ignore
        ** the invalid ones.
        */
        if (this_ch == BASE64_PAD) {
            if ( (quad_pos < 2) ||
                 ((quad_pos == 2) &&
                  (binascii_find_valid(ascii_data, ascii_len, 1)
                   != BASE64_PAD)) )
            {
                continue;
            }
            else {
                /* A pad sequence means no more input.
                ** We've already interpreted the data
                ** from the quad at this point.
                */
                leftbits = 0;
                break;
            }
        }

        this_ch = table_a2b_base64[*ascii_data];
        if ( this_ch == (unsigned char) -1 )
            continue;

        /*
        ** Shift it in on the low end, and see if there's
        ** a byte ready for output.
        */
        quad_pos = (quad_pos + 1) & 0x03;
        leftchar = (leftchar << 6) | (this_ch);
        leftbits += 6;

        if ( leftbits >= 8 ) {
            leftbits -= 8;
            *bin_data++ = (leftchar >> leftbits) & 0xff;
            leftchar &= ((1 << leftbits) - 1);
        }
    }

    if (leftbits != 0) {
        PyErr_SetString(Error, "Incorrect padding");
506
        _PyBytesWriter_Dealloc(&writer);
507 508 509
        return NULL;
    }

510
    return _PyBytesWriter_Finish(&writer, bin_data);
Jack Jansen's avatar
Jack Jansen committed
511 512
}

513 514 515 516 517

/*[clinic input]
binascii.b2a_base64

    data: Py_buffer
518 519
    *
    newline: int(c_default="1") = True
520 521 522

Base64-code line of data.
[clinic start generated code]*/
523

Jack Jansen's avatar
Jack Jansen committed
524
static PyObject *
525 526
binascii_b2a_base64_impl(PyModuleDef *module, Py_buffer *data, int newline)
/*[clinic end generated code: output=19e1dd719a890b50 input=7b2ea6fa38d8924c]*/
Jack Jansen's avatar
Jack Jansen committed
527
{
528 529
    unsigned char *ascii_data;
    const unsigned char *bin_data;
530 531 532
    int leftbits = 0;
    unsigned char this_ch;
    unsigned int leftchar = 0;
533
    Py_ssize_t bin_len, out_len;
534
    _PyBytesWriter writer;
535

536 537
    bin_data = data->buf;
    bin_len = data->len;
538
    _PyBytesWriter_Init(&writer);
539 540 541 542 543 544 545 546 547

    assert(bin_len >= 0);

    if ( bin_len > BASE64_MAXBIN ) {
        PyErr_SetString(Error, "Too much data for base64 line");
        return NULL;
    }

    /* We're lazy and allocate too much (fixed up later).
548 549 550 551 552
       "+2" leaves room for up to two pad characters.
       Note that 'b' gets encoded as 'Yg==\n' (1 in, 5 out). */
    out_len = bin_len*2 + 2;
    if (newline)
        out_len++;
553 554
    ascii_data = _PyBytesWriter_Alloc(&writer, out_len);
    if (ascii_data == NULL)
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        return NULL;

    for( ; bin_len > 0 ; bin_len--, bin_data++ ) {
        /* Shift the data into our buffer */
        leftchar = (leftchar << 8) | *bin_data;
        leftbits += 8;

        /* See if there are 6-bit groups ready */
        while ( leftbits >= 6 ) {
            this_ch = (leftchar >> (leftbits-6)) & 0x3f;
            leftbits -= 6;
            *ascii_data++ = table_b2a_base64[this_ch];
        }
    }
    if ( leftbits == 2 ) {
        *ascii_data++ = table_b2a_base64[(leftchar&3) << 4];
        *ascii_data++ = BASE64_PAD;
        *ascii_data++ = BASE64_PAD;
    } else if ( leftbits == 4 ) {
        *ascii_data++ = table_b2a_base64[(leftchar&0xf) << 2];
        *ascii_data++ = BASE64_PAD;
    }
577 578
    if (newline)
        *ascii_data++ = '\n';       /* Append a courtesy newline */
579

580
    return _PyBytesWriter_Finish(&writer, ascii_data);
Jack Jansen's avatar
Jack Jansen committed
581 582
}

583 584 585
/*[clinic input]
binascii.a2b_hqx

586
    data: ascii_buffer
587 588 589 590
    /

Decode .hqx coding.
[clinic start generated code]*/
591 592

static PyObject *
593
binascii_a2b_hqx_impl(PyModuleDef *module, Py_buffer *data)
594
/*[clinic end generated code: output=60bcdbbd28b105cd input=0d914c680e0eed55]*/
595
{
596 597
    const unsigned char *ascii_data;
    unsigned char *bin_data;
598 599 600
    int leftbits = 0;
    unsigned char this_ch;
    unsigned int leftchar = 0;
601
    PyObject *res;
602 603
    Py_ssize_t len;
    int done = 0;
604
    _PyBytesWriter writer;
605

606 607
    ascii_data = data->buf;
    len = data->len;
608
    _PyBytesWriter_Init(&writer);
609 610 611

    assert(len >= 0);

612
    if (len > PY_SSIZE_T_MAX - 2)
613 614 615 616 617
        return PyErr_NoMemory();

    /* Allocate a string that is too big (fixed later)
       Add two to the initial length to prevent interning which
       would preclude subsequent resizing.  */
618 619
    bin_data = _PyBytesWriter_Alloc(&writer, len + 2);
    if (bin_data == NULL)
620 621 622 623 624 625 626 627 628
        return NULL;

    for( ; len > 0 ; len--, ascii_data++ ) {
        /* Get the byte and look it up */
        this_ch = table_a2b_hqx[*ascii_data];
        if ( this_ch == SKIP )
            continue;
        if ( this_ch == FAIL ) {
            PyErr_SetString(Error, "Illegal char");
629
            _PyBytesWriter_Dealloc(&writer);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
            return NULL;
        }
        if ( this_ch == DONE ) {
            /* The terminating colon */
            done = 1;
            break;
        }

        /* Shift it into the buffer and see if any bytes are ready */
        leftchar = (leftchar << 6) | (this_ch);
        leftbits += 6;
        if ( leftbits >= 8 ) {
            leftbits -= 8;
            *bin_data++ = (leftchar >> leftbits) & 0xff;
            leftchar &= ((1 << leftbits) - 1);
        }
    }

    if ( leftbits && !done ) {
        PyErr_SetString(Incomplete,
                        "String has incomplete number of bytes");
651
        _PyBytesWriter_Dealloc(&writer);
652 653 654
        return NULL;
    }

655 656 657 658
    res = _PyBytesWriter_Finish(&writer, bin_data);
    if (res == NULL)
        return NULL;
    return Py_BuildValue("Ni", res, done);
659 660
}

661 662 663 664 665 666 667 668 669

/*[clinic input]
binascii.rlecode_hqx

    data: Py_buffer
    /

Binhex RLE-code binary data.
[clinic start generated code]*/
670 671

static PyObject *
672
binascii_rlecode_hqx_impl(PyModuleDef *module, Py_buffer *data)
673
/*[clinic end generated code: output=0905da344dbf0648 input=e1f1712447a82b09]*/
674
{
675 676
    const unsigned char *in_data;
    unsigned char *out_data;
677 678
    unsigned char ch;
    Py_ssize_t in, inend, len;
679
    _PyBytesWriter writer;
680

681
    _PyBytesWriter_Init(&writer);
682 683
    in_data = data->buf;
    len = data->len;
684 685 686

    assert(len >= 0);

687
    if (len > PY_SSIZE_T_MAX / 2 - 2)
688 689 690
        return PyErr_NoMemory();

    /* Worst case: output is twice as big as input (fixed later) */
691 692
    out_data = _PyBytesWriter_Alloc(&writer, len * 2 + 2);
    if (out_data == NULL)
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        return NULL;

    for( in=0; in<len; in++) {
        ch = in_data[in];
        if ( ch == RUNCHAR ) {
            /* RUNCHAR. Escape it. */
            *out_data++ = RUNCHAR;
            *out_data++ = 0;
        } else {
            /* Check how many following are the same */
            for(inend=in+1;
                inend<len && in_data[inend] == ch &&
                    inend < in+255;
                inend++) ;
            if ( inend - in > 3 ) {
                /* More than 3 in a row. Output RLE. */
                *out_data++ = ch;
                *out_data++ = RUNCHAR;
711
                *out_data++ = (unsigned char) (inend-in);
712 713 714 715 716 717 718
                in = inend-1;
            } else {
                /* Less than 3. Output the byte itself */
                *out_data++ = ch;
            }
        }
    }
719 720

    return _PyBytesWriter_Finish(&writer, out_data);
721 722
}

723 724 725 726 727 728 729 730 731

/*[clinic input]
binascii.b2a_hqx

    data: Py_buffer
    /

Encode .hqx data.
[clinic start generated code]*/
732

733
static PyObject *
734
binascii_b2a_hqx_impl(PyModuleDef *module, Py_buffer *data)
735
/*[clinic end generated code: output=5a987810d5e3cdbb input=9596ebe019fe12ba]*/
736
{
737 738
    unsigned char *ascii_data;
    const unsigned char *bin_data;
739 740 741 742
    int leftbits = 0;
    unsigned char this_ch;
    unsigned int leftchar = 0;
    Py_ssize_t len;
743
    _PyBytesWriter writer;
744

745 746
    bin_data = data->buf;
    len = data->len;
747
    _PyBytesWriter_Init(&writer);
748 749 750

    assert(len >= 0);

751
    if (len > PY_SSIZE_T_MAX / 2 - 2)
752 753 754
        return PyErr_NoMemory();

    /* Allocate a buffer that is at least large enough */
755 756
    ascii_data = _PyBytesWriter_Alloc(&writer, len * 2 + 2);
    if (ascii_data == NULL)
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        return NULL;

    for( ; len > 0 ; len--, bin_data++ ) {
        /* Shift into our buffer, and output any 6bits ready */
        leftchar = (leftchar << 8) | *bin_data;
        leftbits += 8;
        while ( leftbits >= 6 ) {
            this_ch = (leftchar >> (leftbits-6)) & 0x3f;
            leftbits -= 6;
            *ascii_data++ = table_b2a_hqx[this_ch];
        }
    }
    /* Output a possible runt byte */
    if ( leftbits ) {
        leftchar <<= (6-leftbits);
        *ascii_data++ = table_b2a_hqx[leftchar & 0x3f];
    }
774 775

    return _PyBytesWriter_Finish(&writer, ascii_data);
776 777
}

778 779 780 781 782 783 784 785 786

/*[clinic input]
binascii.rledecode_hqx

    data: Py_buffer
    /

Decode hexbin RLE-coded string.
[clinic start generated code]*/
787

788
static PyObject *
789
binascii_rledecode_hqx_impl(PyModuleDef *module, Py_buffer *data)
790
/*[clinic end generated code: output=f7afd89b789946ab input=54cdd49fc014402c]*/
791
{
792 793
    const unsigned char *in_data;
    unsigned char *out_data;
794
    unsigned char in_byte, in_repeat;
795
    Py_ssize_t in_len;
796
    _PyBytesWriter writer;
797

798 799
    in_data = data->buf;
    in_len = data->len;
800
    _PyBytesWriter_Init(&writer);
801 802 803 804

    assert(in_len >= 0);

    /* Empty string is a special case */
805
    if ( in_len == 0 )
806
        return PyBytes_FromStringAndSize("", 0);
807
    else if (in_len > PY_SSIZE_T_MAX / 2)
808 809 810
        return PyErr_NoMemory();

    /* Allocate a buffer of reasonable size. Resized when needed */
811
    out_data = _PyBytesWriter_Alloc(&writer, in_len);
812
    if (out_data == NULL)
813
        return NULL;
814 815 816

    /* Use overallocation */
    writer.overallocate = 1;
817 818 819 820 821

    /*
    ** We need two macros here to get/put bytes and handle
    ** end-of-buffer for input and output strings.
    */
822 823 824 825 826 827 828
#define INBYTE(b)                                                       \
    do {                                                                \
         if ( --in_len < 0 ) {                                          \
           PyErr_SetString(Incomplete, "");                             \
           goto error;                                                  \
         }                                                              \
         b = *in_data++;                                                \
829
    } while(0)
830

831 832 833 834 835
    /*
    ** Handle first byte separately (since we have to get angry
    ** in case of an orphaned RLE code).
    */
    INBYTE(in_byte);
836 837 838

    if (in_byte == RUNCHAR) {
        INBYTE(in_repeat);
839 840 841 842
        /* only 1 byte will be written, but 2 bytes were preallocated:
           substract 1 byte to prevent overallocation */
        writer.min_size--;

843 844 845 846 847
        if (in_repeat != 0) {
            /* Note Error, not Incomplete (which is at the end
            ** of the string only). This is a programmer error.
            */
            PyErr_SetString(Error, "Orphaned RLE code at start");
848
            goto error;
849
        }
850
        *out_data++ = RUNCHAR;
851
    } else {
852
        *out_data++ = in_byte;
853 854 855 856 857 858 859
    }

    while( in_len > 0 ) {
        INBYTE(in_byte);

        if (in_byte == RUNCHAR) {
            INBYTE(in_repeat);
860 861 862 863
            /* only 1 byte will be written, but 2 bytes were preallocated:
               substract 1 byte to prevent overallocation */
            writer.min_size--;

864 865
            if ( in_repeat == 0 ) {
                /* Just an escaped RUNCHAR value */
866
                *out_data++ = RUNCHAR;
867 868 869
            } else {
                /* Pick up value and output a sequence of it */
                in_byte = out_data[-1];
870 871 872 873 874 875 876 877 878 879

                /* enlarge the buffer if needed */
                if (in_repeat > 1) {
                    /* -1 because we already preallocated 1 byte */
                    out_data = _PyBytesWriter_Prepare(&writer, out_data,
                                                      in_repeat - 1);
                    if (out_data == NULL)
                        goto error;
                }

880
                while ( --in_repeat > 0 )
881
                    *out_data++ = in_byte;
882 883 884
            }
        } else {
            /* Normal byte */
885
            *out_data++ = in_byte;
886 887
        }
    }
888 889 890 891 892
    return _PyBytesWriter_Finish(&writer, out_data);

error:
    _PyBytesWriter_Dealloc(&writer);
    return NULL;
893 894 895
}


896
/*[clinic input]
897
binascii.crc_hqx -> unsigned_int
898 899

    data: Py_buffer
900
    crc: unsigned_int(bitwise=True)
901 902 903 904 905
    /

Compute hqx CRC incrementally.
[clinic start generated code]*/

906 907 908
static unsigned int
binascii_crc_hqx_impl(PyModuleDef *module, Py_buffer *data, unsigned int crc)
/*[clinic end generated code: output=167c2dac62625717 input=add8c53712ccceda]*/
909
{
910
    const unsigned char *bin_data;
911 912
    Py_ssize_t len;

913
    crc &= 0xffff;
914 915
    bin_data = data->buf;
    len = data->len;
916 917

    while(len-- > 0) {
918
        crc = ((crc<<8)&0xff00) ^ crctab_hqx[(crc>>8)^*bin_data++];
919 920
    }

921
    return crc;
922 923
}

924
#ifndef USE_ZLIB_CRC32
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
/*  Crc - 32 BIT ANSI X3.66 CRC checksum files
    Also known as: ISO 3307
**********************************************************************|
*                                                                    *|
* Demonstration program to compute the 32-bit CRC used as the frame  *|
* check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71     *|
* and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level     *|
* protocol).  The 32-bit FCS was added via the Federal Register,     *|
* 1 June 1982, p.23798.  I presume but don't know for certain that   *|
* this polynomial is or will be included in CCITT V.41, which        *|
* defines the 16-bit CRC (often called CRC-CCITT) polynomial.  FIPS  *|
* PUB 78 says that the 32-bit FCS reduces otherwise undetected       *|
* errors by a factor of 10^-5 over 16-bit FCS.                       *|
*                                                                    *|
**********************************************************************|

 Copyright (C) 1986 Gary S. Brown.  You may use this program, or
 code or tables extracted from it, as desired without restriction.
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

 First, the polynomial itself and its table of feedback terms.  The
 polynomial is
 X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0
 Note that we take it "backwards" and put the highest-order term in
 the lowest-order bit.  The X^32 term is "implied"; the LSB is the
 X^31 term, etc.  The X^0 term (usually shown as "+1") results in
 the MSB being 1.

 Note that the usual hardware shift register implementation, which
 is what we're using (we're merely optimizing it by doing eight-bit
 chunks at a time) shifts bits into the lowest-order term.  In our
 implementation, that means shifting towards the right.  Why do we
 do it this way?  Because the calculated CRC must be transmitted in
 order from highest-order term to lowest-order term.  UARTs transmit
 characters in order from LSB to MSB.  By storing the CRC this way,
 we hand it to the UART in the order low-byte to high-byte; the UART
 sends each low-bit to hight-bit; and the result is transmission bit
 by bit from highest- to lowest-order term without requiring any bit
 shuffling on our part.  Reception works similarly.

 The feedback terms table consists of 256, 32-bit entries.  Notes:

  1. The table can be generated at runtime if desired; code to do so
     is shown later.  It might not be obvious, but the feedback
     terms simply represent the results of eight shift/xor opera-
     tions for all combinations of data and CRC register values.

  2. The CRC accumulation logic is the same for all CRC polynomials,
     be they sixteen or thirty-two bits wide.  You simply choose the
     appropriate table.  Alternatively, because the table can be
     generated at runtime, you can start by generating the table for
     the polynomial in question and use exactly the same "updcrc",
     if your application needn't simultaneously handle two CRC
     polynomials.  (Note, however, that XMODEM is strange.)

  3. For 16-bit CRCs, the table entries need be only 16 bits wide;
     of course, 32-bit entries work OK if the high 16 bits are zero.

  4. The values must be right-shifted by eight bits by the "updcrc"
     logic; the shift must be unsigned (bring in zeroes).  On some
     hardware you could probably optimize the shift in assembler by
     using byte-swap instructions.
986 987
********************************************************************/

988
static const unsigned int crc_32_tab[256] = {
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
0x00000000U, 0x77073096U, 0xee0e612cU, 0x990951baU, 0x076dc419U,
0x706af48fU, 0xe963a535U, 0x9e6495a3U, 0x0edb8832U, 0x79dcb8a4U,
0xe0d5e91eU, 0x97d2d988U, 0x09b64c2bU, 0x7eb17cbdU, 0xe7b82d07U,
0x90bf1d91U, 0x1db71064U, 0x6ab020f2U, 0xf3b97148U, 0x84be41deU,
0x1adad47dU, 0x6ddde4ebU, 0xf4d4b551U, 0x83d385c7U, 0x136c9856U,
0x646ba8c0U, 0xfd62f97aU, 0x8a65c9ecU, 0x14015c4fU, 0x63066cd9U,
0xfa0f3d63U, 0x8d080df5U, 0x3b6e20c8U, 0x4c69105eU, 0xd56041e4U,
0xa2677172U, 0x3c03e4d1U, 0x4b04d447U, 0xd20d85fdU, 0xa50ab56bU,
0x35b5a8faU, 0x42b2986cU, 0xdbbbc9d6U, 0xacbcf940U, 0x32d86ce3U,
0x45df5c75U, 0xdcd60dcfU, 0xabd13d59U, 0x26d930acU, 0x51de003aU,
0xc8d75180U, 0xbfd06116U, 0x21b4f4b5U, 0x56b3c423U, 0xcfba9599U,
0xb8bda50fU, 0x2802b89eU, 0x5f058808U, 0xc60cd9b2U, 0xb10be924U,
0x2f6f7c87U, 0x58684c11U, 0xc1611dabU, 0xb6662d3dU, 0x76dc4190U,
0x01db7106U, 0x98d220bcU, 0xefd5102aU, 0x71b18589U, 0x06b6b51fU,
0x9fbfe4a5U, 0xe8b8d433U, 0x7807c9a2U, 0x0f00f934U, 0x9609a88eU,
0xe10e9818U, 0x7f6a0dbbU, 0x086d3d2dU, 0x91646c97U, 0xe6635c01U,
0x6b6b51f4U, 0x1c6c6162U, 0x856530d8U, 0xf262004eU, 0x6c0695edU,
0x1b01a57bU, 0x8208f4c1U, 0xf50fc457U, 0x65b0d9c6U, 0x12b7e950U,
0x8bbeb8eaU, 0xfcb9887cU, 0x62dd1ddfU, 0x15da2d49U, 0x8cd37cf3U,
0xfbd44c65U, 0x4db26158U, 0x3ab551ceU, 0xa3bc0074U, 0xd4bb30e2U,
0x4adfa541U, 0x3dd895d7U, 0xa4d1c46dU, 0xd3d6f4fbU, 0x4369e96aU,
0x346ed9fcU, 0xad678846U, 0xda60b8d0U, 0x44042d73U, 0x33031de5U,
0xaa0a4c5fU, 0xdd0d7cc9U, 0x5005713cU, 0x270241aaU, 0xbe0b1010U,
0xc90c2086U, 0x5768b525U, 0x206f85b3U, 0xb966d409U, 0xce61e49fU,
0x5edef90eU, 0x29d9c998U, 0xb0d09822U, 0xc7d7a8b4U, 0x59b33d17U,
0x2eb40d81U, 0xb7bd5c3bU, 0xc0ba6cadU, 0xedb88320U, 0x9abfb3b6U,
0x03b6e20cU, 0x74b1d29aU, 0xead54739U, 0x9dd277afU, 0x04db2615U,
0x73dc1683U, 0xe3630b12U, 0x94643b84U, 0x0d6d6a3eU, 0x7a6a5aa8U,
0xe40ecf0bU, 0x9309ff9dU, 0x0a00ae27U, 0x7d079eb1U, 0xf00f9344U,
0x8708a3d2U, 0x1e01f268U, 0x6906c2feU, 0xf762575dU, 0x806567cbU,
0x196c3671U, 0x6e6b06e7U, 0xfed41b76U, 0x89d32be0U, 0x10da7a5aU,
0x67dd4accU, 0xf9b9df6fU, 0x8ebeeff9U, 0x17b7be43U, 0x60b08ed5U,
0xd6d6a3e8U, 0xa1d1937eU, 0x38d8c2c4U, 0x4fdff252U, 0xd1bb67f1U,
0xa6bc5767U, 0x3fb506ddU, 0x48b2364bU, 0xd80d2bdaU, 0xaf0a1b4cU,
0x36034af6U, 0x41047a60U, 0xdf60efc3U, 0xa867df55U, 0x316e8eefU,
0x4669be79U, 0xcb61b38cU, 0xbc66831aU, 0x256fd2a0U, 0x5268e236U,
0xcc0c7795U, 0xbb0b4703U, 0x220216b9U, 0x5505262fU, 0xc5ba3bbeU,
0xb2bd0b28U, 0x2bb45a92U, 0x5cb36a04U, 0xc2d7ffa7U, 0xb5d0cf31U,
0x2cd99e8bU, 0x5bdeae1dU, 0x9b64c2b0U, 0xec63f226U, 0x756aa39cU,
0x026d930aU, 0x9c0906a9U, 0xeb0e363fU, 0x72076785U, 0x05005713U,
0x95bf4a82U, 0xe2b87a14U, 0x7bb12baeU, 0x0cb61b38U, 0x92d28e9bU,
0xe5d5be0dU, 0x7cdcefb7U, 0x0bdbdf21U, 0x86d3d2d4U, 0xf1d4e242U,
0x68ddb3f8U, 0x1fda836eU, 0x81be16cdU, 0xf6b9265bU, 0x6fb077e1U,
0x18b74777U, 0x88085ae6U, 0xff0f6a70U, 0x66063bcaU, 0x11010b5cU,
0x8f659effU, 0xf862ae69U, 0x616bffd3U, 0x166ccf45U, 0xa00ae278U,
0xd70dd2eeU, 0x4e048354U, 0x3903b3c2U, 0xa7672661U, 0xd06016f7U,
0x4969474dU, 0x3e6e77dbU, 0xaed16a4aU, 0xd9d65adcU, 0x40df0b66U,
0x37d83bf0U, 0xa9bcae53U, 0xdebb9ec5U, 0x47b2cf7fU, 0x30b5ffe9U,
0xbdbdf21cU, 0xcabac28aU, 0x53b39330U, 0x24b4a3a6U, 0xbad03605U,
0xcdd70693U, 0x54de5729U, 0x23d967bfU, 0xb3667a2eU, 0xc4614ab8U,
0x5d681b02U, 0x2a6f2b94U, 0xb40bbe37U, 0xc30c8ea1U, 0x5a05df1bU,
0x2d02ef8dU
1041
};
1042
#endif  /* USE_ZLIB_CRC32 */
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/*[clinic input]
binascii.crc32 -> unsigned_int

    data: Py_buffer
    crc: unsigned_int(bitwise=True) = 0
    /

Compute CRC-32 incrementally.
[clinic start generated code]*/

static unsigned int
binascii_crc32_impl(PyModuleDef *module, Py_buffer *data, unsigned int crc)
1056
/*[clinic end generated code: output=620a961643393c4f input=bbe340bc99d25aa8]*/
1057 1058 1059 1060

#ifdef USE_ZLIB_CRC32
/* This was taken from zlibmodule.c PyZlib_crc32 (but is PY_SSIZE_T_CLEAN) */
{
1061
    const Byte *buf;
1062 1063 1064 1065 1066 1067 1068 1069 1070
    Py_ssize_t len;
    int signed_val;

    buf = (Byte*)data->buf;
    len = data->len;
    signed_val = crc32(crc, buf, len);
    return (unsigned int)signed_val & 0xffffffffU;
}
#else  /* USE_ZLIB_CRC32 */
1071
{ /* By Jim Ahlstrom; All rights transferred to CNRI */
1072
    const unsigned char *bin_data;
1073 1074 1075
    Py_ssize_t len;
    unsigned int result;

1076 1077
    bin_data = data->buf;
    len = data->len;
1078 1079 1080 1081 1082 1083 1084 1085

    crc = ~ crc;
    while (len-- > 0) {
        crc = crc_32_tab[(crc ^ *bin_data++) & 0xff] ^ (crc >> 8);
        /* Note:  (crc >> 8) MUST zero fill on left */
    }

    result = (crc ^ 0xFFFFFFFF);
1086
    return result & 0xffffffff;
1087
}
1088
#endif  /* USE_ZLIB_CRC32 */
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/*[clinic input]
binascii.b2a_hex

    data: Py_buffer
    /

Hexadecimal representation of binary data.

The return value is a bytes object.  This function is also
available as "hexlify()".
[clinic start generated code]*/
1101 1102

static PyObject *
1103
binascii_b2a_hex_impl(PyModuleDef *module, Py_buffer *data)
1104
/*[clinic end generated code: output=179318922c2f8fda input=96423cfa299ff3b1]*/
1105
{
1106
    return _Py_strhex_bytes((const char *)data->buf, data->len);
1107 1108
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*[clinic input]
binascii.hexlify = binascii.b2a_hex

Hexadecimal representation of binary data.

The return value is a bytes object.
[clinic start generated code]*/

static PyObject *
binascii_hexlify_impl(PyModuleDef *module, Py_buffer *data)
/*[clinic end generated code: output=6098440091fb61dc input=2e3afae7f083f061]*/
{
1121
    return _Py_strhex_bytes((const char *)data->buf, data->len);
1122
}
1123 1124

static int
1125
to_int(int c)
1126
{
1127
    if (Py_ISDIGIT(c))
1128 1129
        return c - '0';
    else {
1130 1131
        if (Py_ISUPPER(c))
            c = Py_TOLOWER(c);
1132 1133 1134 1135
        if (c >= 'a' && c <= 'f')
            return c - 'a' + 10;
    }
    return -1;
1136 1137 1138
}


1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*[clinic input]
binascii.a2b_hex

    hexstr: ascii_buffer
    /

Binary data of hexadecimal representation.

hexstr must contain an even number of hex digits (upper or lower case).
This function is also available as "unhexlify()".
[clinic start generated code]*/

1151
static PyObject *
1152
binascii_a2b_hex_impl(PyModuleDef *module, Py_buffer *hexstr)
1153
/*[clinic end generated code: output=d61da452b5c6d290 input=9e1e7f2f94db24fd]*/
1154
{
1155
    const char* argbuf;
1156 1157 1158 1159 1160
    Py_ssize_t arglen;
    PyObject *retval;
    char* retbuf;
    Py_ssize_t i, j;

1161 1162
    argbuf = hexstr->buf;
    arglen = hexstr->len;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

    assert(arglen >= 0);

    /* XXX What should we do about strings with an odd length?  Should
     * we add an implicit leading zero, or a trailing zero?  For now,
     * raise an exception.
     */
    if (arglen % 2) {
        PyErr_SetString(Error, "Odd-length string");
        return NULL;
    }

    retval = PyBytes_FromStringAndSize(NULL, (arglen/2));
1176
    if (!retval)
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
        return NULL;
    retbuf = PyBytes_AS_STRING(retval);

    for (i=j=0; i < arglen; i += 2) {
        int top = to_int(Py_CHARMASK(argbuf[i]));
        int bot = to_int(Py_CHARMASK(argbuf[i+1]));
        if (top == -1 || bot == -1) {
            PyErr_SetString(Error,
                            "Non-hexadecimal digit found");
            goto finally;
        }
        retbuf[j++] = (top << 4) + bot;
    }
    return retval;
1191 1192

  finally:
1193 1194
    Py_DECREF(retval);
    return NULL;
1195 1196
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*[clinic input]
binascii.unhexlify = binascii.a2b_hex

Binary data of hexadecimal representation.

hexstr must contain an even number of hex digits (upper or lower case).
[clinic start generated code]*/

static PyObject *
binascii_unhexlify_impl(PyModuleDef *module, Py_buffer *hexstr)
/*[clinic end generated code: output=17cec7544499803e input=dd8c012725f462da]*/
{
    return binascii_a2b_hex_impl(module, hexstr);
}

1212
static const int table_hex[128] = {
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
  -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
  -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
  -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
   0, 1, 2, 3,  4, 5, 6, 7,  8, 9,-1,-1, -1,-1,-1,-1,
  -1,10,11,12, 13,14,15,-1, -1,-1,-1,-1, -1,-1,-1,-1,
  -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
  -1,10,11,12, 13,14,15,-1, -1,-1,-1,-1, -1,-1,-1,-1,
  -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1
};

#define hexval(c) table_hex[(unsigned int)(c)]

#define MAXLINESIZE 76


1228 1229 1230
/*[clinic input]
binascii.a2b_qp

1231
    data: ascii_buffer
1232 1233 1234 1235 1236 1237
    header: int(c_default="0") = False

Decode a string of qp-encoded data.
[clinic start generated code]*/

static PyObject *
1238
binascii_a2b_qp_impl(PyModuleDef *module, Py_buffer *data, int header)
1239
/*[clinic end generated code: output=a44ef88270352114 input=5187a0d3d8e54f3b]*/
1240
{
1241 1242
    Py_ssize_t in, out;
    char ch;
1243 1244
    const unsigned char *ascii_data;
    unsigned char *odata;
1245 1246 1247
    Py_ssize_t datalen = 0;
    PyObject *rv;

1248 1249
    ascii_data = data->buf;
    datalen = data->len;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

    /* We allocate the output same size as input, this is overkill.
     * The previous implementation used calloc() so we'll zero out the
     * memory here too, since PyMem_Malloc() does not guarantee that.
     */
    odata = (unsigned char *) PyMem_Malloc(datalen);
    if (odata == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    memset(odata, 0, datalen);

    in = out = 0;
    while (in < datalen) {
1264
        if (ascii_data[in] == '=') {
1265 1266 1267
            in++;
            if (in >= datalen) break;
            /* Soft line breaks */
1268 1269 1270
            if ((ascii_data[in] == '\n') || (ascii_data[in] == '\r')) {
                if (ascii_data[in] != '\n') {
                    while (in < datalen && ascii_data[in] != '\n') in++;
1271 1272 1273
                }
                if (in < datalen) in++;
            }
1274
            else if (ascii_data[in] == '=') {
1275 1276 1277 1278
                /* broken case from broken python qp */
                odata[out++] = '=';
                in++;
            }
1279 1280 1281 1282 1283 1284
            else if (((ascii_data[in] >= 'A' && ascii_data[in] <= 'F') ||
                      (ascii_data[in] >= 'a' && ascii_data[in] <= 'f') ||
                      (ascii_data[in] >= '0' && ascii_data[in] <= '9')) &&
                     ((ascii_data[in+1] >= 'A' && ascii_data[in+1] <= 'F') ||
                      (ascii_data[in+1] >= 'a' && ascii_data[in+1] <= 'f') ||
                      (ascii_data[in+1] >= '0' && ascii_data[in+1] <= '9'))) {
1285
                /* hexval */
1286
                ch = hexval(ascii_data[in]) << 4;
1287
                in++;
1288
                ch |= hexval(ascii_data[in]);
1289 1290 1291 1292 1293 1294 1295
                in++;
                odata[out++] = ch;
            }
            else {
              odata[out++] = '=';
            }
        }
1296
        else if (header && ascii_data[in] == '_') {
1297 1298 1299 1300
            odata[out++] = ' ';
            in++;
        }
        else {
1301
            odata[out] = ascii_data[in];
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            in++;
            out++;
        }
    }
    if ((rv = PyBytes_FromStringAndSize((char *)odata, out)) == NULL) {
        PyMem_Free(odata);
        return NULL;
    }
    PyMem_Free(odata);
    return rv;
1312 1313
}

1314
static int
1315 1316
to_hex (unsigned char ch, unsigned char *s)
{
1317
    unsigned int uvalue = ch;
1318

1319 1320 1321 1322
    s[1] = "0123456789ABCDEF"[uvalue % 16];
    uvalue = (uvalue / 16);
    s[0] = "0123456789ABCDEF"[uvalue % 16];
    return 0;
1323 1324 1325 1326 1327
}

/* XXX: This is ridiculously complicated to be backward compatible
 * (mostly) with the quopri module.  It doesn't re-create the quopri
 * module bug where text ending in CRLF has the CR encoded */
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

/*[clinic input]
binascii.b2a_qp

    data: Py_buffer
    quotetabs: int(c_default="0") = False
    istext: int(c_default="1") = True
    header: int(c_default="0") = False

Encode a string using quoted-printable encoding.

On encoding, when istext is set, newlines are not encoded, and white
space at end of lines is.  When istext is not set, \r and \n (CR/LF)
are both encoded.  When quotetabs is set, space and tabs are encoded.
[clinic start generated code]*/

static PyObject *
1345 1346 1347
binascii_b2a_qp_impl(PyModuleDef *module, Py_buffer *data, int quotetabs,
                     int istext, int header)
/*[clinic end generated code: output=a87ca9ccb94e2a9f input=7f2a9aaa008e92b2]*/
1348
{
1349
    Py_ssize_t in, out;
1350 1351
    const unsigned char *databuf;
    unsigned char *odata;
1352 1353 1354 1355 1356
    Py_ssize_t datalen = 0, odatalen = 0;
    PyObject *rv;
    unsigned int linelen = 0;
    unsigned char ch;
    int crlf = 0;
1357
    const unsigned char *p;
1358

1359 1360
    databuf = data->buf;
    datalen = data->len;
1361 1362 1363 1364 1365

    /* See if this string is using CRLF line ends */
    /* XXX: this function has the side effect of converting all of
     * the end of lines to be the same depending on this detection
     * here */
1366
    p = (const unsigned char *) memchr(databuf, '\n', datalen);
1367
    if ((p != NULL) && (p > databuf) && (*(p-1) == '\r'))
1368 1369 1370 1371 1372
        crlf = 1;

    /* First, scan to see how many characters need to be encoded */
    in = 0;
    while (in < datalen) {
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        if ((databuf[in] > 126) ||
            (databuf[in] == '=') ||
            (header && databuf[in] == '_') ||
            ((databuf[in] == '.') && (linelen == 0) &&
             (databuf[in+1] == '\n' || databuf[in+1] == '\r' || databuf[in+1] == 0)) ||
            (!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) ||
            ((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) ||
            ((databuf[in] < 33) &&
             (databuf[in] != '\r') && (databuf[in] != '\n') &&
             (quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' ')))))
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        {
            if ((linelen + 3) >= MAXLINESIZE) {
                linelen = 0;
                if (crlf)
                    odatalen += 3;
                else
                    odatalen += 2;
            }
            linelen += 3;
            odatalen += 3;
            in++;
        }
        else {
            if (istext &&
1397 1398 1399
                ((databuf[in] == '\n') ||
                 ((in+1 < datalen) && (databuf[in] == '\r') &&
                 (databuf[in+1] == '\n'))))
1400 1401 1402
            {
                linelen = 0;
                /* Protect against whitespace on end of line */
1403
                if (in && ((databuf[in-1] == ' ') || (databuf[in-1] == '\t')))
1404 1405 1406 1407 1408
                    odatalen += 2;
                if (crlf)
                    odatalen += 2;
                else
                    odatalen += 1;
1409
                if (databuf[in] == '\r')
1410 1411 1412 1413 1414 1415
                    in += 2;
                else
                    in++;
            }
            else {
                if ((in + 1 != datalen) &&
1416
                    (databuf[in+1] != '\n') &&
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
                    (linelen + 1) >= MAXLINESIZE) {
                    linelen = 0;
                    if (crlf)
                        odatalen += 3;
                    else
                        odatalen += 2;
                }
                linelen++;
                odatalen++;
                in++;
            }
        }
    }

    /* We allocate the output same size as input, this is overkill.
     * The previous implementation used calloc() so we'll zero out the
     * memory here too, since PyMem_Malloc() does not guarantee that.
     */
    odata = (unsigned char *) PyMem_Malloc(odatalen);
    if (odata == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    memset(odata, 0, odatalen);

    in = out = linelen = 0;
    while (in < datalen) {
1444 1445 1446 1447 1448 1449 1450 1451 1452
        if ((databuf[in] > 126) ||
            (databuf[in] == '=') ||
            (header && databuf[in] == '_') ||
            ((databuf[in] == '.') && (linelen == 0) &&
             (databuf[in+1] == '\n' || databuf[in+1] == '\r' || databuf[in+1] == 0)) ||
            (!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) ||
            ((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) ||
            ((databuf[in] < 33) &&
             (databuf[in] != '\r') && (databuf[in] != '\n') &&
1453
             (quotetabs ||
1454
            (!quotetabs && ((databuf[in] != '\t') && (databuf[in] != ' '))))))
1455 1456 1457 1458 1459 1460 1461 1462
        {
            if ((linelen + 3 )>= MAXLINESIZE) {
                odata[out++] = '=';
                if (crlf) odata[out++] = '\r';
                odata[out++] = '\n';
                linelen = 0;
            }
            odata[out++] = '=';
1463
            to_hex(databuf[in], &odata[out]);
1464 1465 1466 1467 1468 1469
            out += 2;
            in++;
            linelen += 3;
        }
        else {
            if (istext &&
1470 1471 1472
                ((databuf[in] == '\n') ||
                 ((in+1 < datalen) && (databuf[in] == '\r') &&
                 (databuf[in+1] == '\n'))))
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
            {
                linelen = 0;
                /* Protect against whitespace on end of line */
                if (out && ((odata[out-1] == ' ') || (odata[out-1] == '\t'))) {
                    ch = odata[out-1];
                    odata[out-1] = '=';
                    to_hex(ch, &odata[out]);
                    out += 2;
                }

                if (crlf) odata[out++] = '\r';
                odata[out++] = '\n';
1485
                if (databuf[in] == '\r')
1486 1487 1488 1489 1490 1491
                    in += 2;
                else
                    in++;
            }
            else {
                if ((in + 1 != datalen) &&
1492
                    (databuf[in+1] != '\n') &&
1493 1494 1495 1496 1497 1498 1499
                    (linelen + 1) >= MAXLINESIZE) {
                    odata[out++] = '=';
                    if (crlf) odata[out++] = '\r';
                    odata[out++] = '\n';
                    linelen = 0;
                }
                linelen++;
1500
                if (header && databuf[in] == ' ') {
1501 1502 1503 1504
                    odata[out++] = '_';
                    in++;
                }
                else {
1505
                    odata[out++] = databuf[in++];
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
                }
            }
        }
    }
    if ((rv = PyBytes_FromStringAndSize((char *)odata, out)) == NULL) {
        PyMem_Free(odata);
        return NULL;
    }
    PyMem_Free(odata);
    return rv;
1516
}
1517

1518 1519 1520
/* List of functions defined in the module */

static struct PyMethodDef binascii_module_methods[] = {
1521 1522 1523 1524 1525 1526 1527 1528
    BINASCII_A2B_UU_METHODDEF
    BINASCII_B2A_UU_METHODDEF
    BINASCII_A2B_BASE64_METHODDEF
    BINASCII_B2A_BASE64_METHODDEF
    BINASCII_A2B_HQX_METHODDEF
    BINASCII_B2A_HQX_METHODDEF
    BINASCII_A2B_HEX_METHODDEF
    BINASCII_B2A_HEX_METHODDEF
1529 1530
    BINASCII_HEXLIFY_METHODDEF
    BINASCII_UNHEXLIFY_METHODDEF
1531 1532 1533 1534 1535 1536
    BINASCII_RLECODE_HQX_METHODDEF
    BINASCII_RLEDECODE_HQX_METHODDEF
    BINASCII_CRC_HQX_METHODDEF
    BINASCII_CRC32_METHODDEF
    BINASCII_A2B_QP_METHODDEF
    BINASCII_B2A_QP_METHODDEF
1537
    {NULL, NULL}                             /* sentinel */
1538 1539 1540
};


1541
/* Initialization function for the module (*must* be called PyInit_binascii) */
1542
PyDoc_STRVAR(doc_binascii, "Conversion between binary data and ASCII");
1543

1544 1545

static struct PyModuleDef binasciimodule = {
1546 1547 1548 1549 1550 1551 1552 1553 1554
    PyModuleDef_HEAD_INIT,
    "binascii",
    doc_binascii,
    -1,
    binascii_module_methods,
    NULL,
    NULL,
    NULL,
    NULL
1555 1556
};

1557
PyMODINIT_FUNC
1558
PyInit_binascii(void)
1559
{
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
    PyObject *m, *d;

    /* Create the module and add the functions */
    m = PyModule_Create(&binasciimodule);
    if (m == NULL)
        return NULL;

    d = PyModule_GetDict(m);

    Error = PyErr_NewException("binascii.Error", PyExc_ValueError, NULL);
    PyDict_SetItemString(d, "Error", Error);
    Incomplete = PyErr_NewException("binascii.Incomplete", NULL, NULL);
    PyDict_SetItemString(d, "Incomplete", Incomplete);
    if (PyErr_Occurred()) {
        Py_DECREF(m);
        m = NULL;
    }
    return m;
1578
}