deccheck.py 38 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#
# Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#

#
# Usage: python deccheck.py [--short|--medium|--long|--all]
#

import sys, random
from copy import copy
from collections import defaultdict
from test.support import import_fresh_module
from randdec import randfloat, all_unary, all_binary, all_ternary
37
from randdec import unary_optarg, binary_optarg, ternary_optarg
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
from formathelper import rand_format, rand_locale

C = import_fresh_module('decimal', fresh=['_decimal'])
P = import_fresh_module('decimal', blocked=['_decimal'])
EXIT_STATUS = 0


# Contains all categories of Decimal methods.
Functions = {
    # Plain unary:
    'unary': (
        '__abs__', '__bool__', '__ceil__', '__complex__', '__copy__',
        '__floor__', '__float__', '__hash__', '__int__', '__neg__',
        '__pos__', '__reduce__', '__repr__', '__str__', '__trunc__',
        'adjusted', 'as_tuple', 'canonical', 'conjugate', 'copy_abs',
        'copy_negate', 'is_canonical', 'is_finite', 'is_infinite',
        'is_nan', 'is_qnan', 'is_signed', 'is_snan', 'is_zero', 'radix'
    ),
    # Unary with optional context:
    'unary_ctx': (
        'exp', 'is_normal', 'is_subnormal', 'ln', 'log10', 'logb',
        'logical_invert', 'next_minus', 'next_plus', 'normalize',
        'number_class', 'sqrt', 'to_eng_string'
    ),
    # Unary with optional rounding mode and context:
    'unary_rnd_ctx': ('to_integral', 'to_integral_exact', 'to_integral_value'),
    # Plain binary:
    'binary': (
        '__add__', '__divmod__', '__eq__', '__floordiv__', '__ge__', '__gt__',
        '__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__pow__',
        '__radd__', '__rdivmod__', '__rfloordiv__', '__rmod__', '__rmul__',
        '__rpow__', '__rsub__', '__rtruediv__', '__sub__', '__truediv__',
        'compare_total', 'compare_total_mag', 'copy_sign', 'quantize',
        'same_quantum'
    ),
    # Binary with optional context:
    'binary_ctx': (
        'compare', 'compare_signal', 'logical_and', 'logical_or', 'logical_xor',
        'max', 'max_mag', 'min', 'min_mag', 'next_toward', 'remainder_near',
        'rotate', 'scaleb', 'shift'
    ),
    # Plain ternary:
    'ternary': ('__pow__',),
    # Ternary with optional context:
    'ternary_ctx': ('fma',),
    # Special:
    'special': ('__format__', '__reduce_ex__', '__round__', 'from_float',
                'quantize'),
    # Properties:
    'property': ('real', 'imag')
}

# Contains all categories of Context methods. The n-ary classification
# applies to the number of Decimal arguments.
ContextFunctions = {
    # Plain nullary:
    'nullary': ('context.__hash__', 'context.__reduce__', 'context.radix'),
    # Plain unary:
    'unary': ('context.abs', 'context.canonical', 'context.copy_abs',
              'context.copy_decimal', 'context.copy_negate',
              'context.create_decimal', 'context.exp', 'context.is_canonical',
              'context.is_finite', 'context.is_infinite', 'context.is_nan',
              'context.is_normal', 'context.is_qnan', 'context.is_signed',
              'context.is_snan', 'context.is_subnormal', 'context.is_zero',
              'context.ln', 'context.log10', 'context.logb',
              'context.logical_invert', 'context.minus', 'context.next_minus',
              'context.next_plus', 'context.normalize', 'context.number_class',
              'context.plus', 'context.sqrt', 'context.to_eng_string',
              'context.to_integral', 'context.to_integral_exact',
              'context.to_integral_value', 'context.to_sci_string'
    ),
    # Plain binary:
    'binary': ('context.add', 'context.compare', 'context.compare_signal',
               'context.compare_total', 'context.compare_total_mag',
               'context.copy_sign', 'context.divide', 'context.divide_int',
               'context.divmod', 'context.logical_and', 'context.logical_or',
               'context.logical_xor', 'context.max', 'context.max_mag',
               'context.min', 'context.min_mag', 'context.multiply',
               'context.next_toward', 'context.power', 'context.quantize',
               'context.remainder', 'context.remainder_near', 'context.rotate',
               'context.same_quantum', 'context.scaleb', 'context.shift',
               'context.subtract'
    ),
    # Plain ternary:
    'ternary': ('context.fma', 'context.power'),
    # Special:
    'special': ('context.__reduce_ex__', 'context.create_decimal_from_float')
}

# Functions that require a restricted exponent range for reasonable runtimes.
UnaryRestricted = [
  '__ceil__', '__floor__', '__int__', '__long__', '__trunc__',
  'to_integral', 'to_integral_value'
]

BinaryRestricted = ['__round__']

TernaryRestricted = ['__pow__', 'context.power']


# ======================================================================
#                            Unified Context
# ======================================================================

# Translate symbols.
CondMap = {
        C.Clamped:             P.Clamped,
        C.ConversionSyntax:    P.ConversionSyntax,
        C.DivisionByZero:      P.DivisionByZero,
        C.DivisionImpossible:  P.InvalidOperation,
        C.DivisionUndefined:   P.DivisionUndefined,
        C.Inexact:             P.Inexact,
        C.InvalidContext:      P.InvalidContext,
        C.InvalidOperation:    P.InvalidOperation,
        C.Overflow:            P.Overflow,
        C.Rounded:             P.Rounded,
        C.Subnormal:           P.Subnormal,
        C.Underflow:           P.Underflow,
        C.FloatOperation:      P.FloatOperation,
}

159 160 161
RoundModes = [C.ROUND_UP, C.ROUND_DOWN, C.ROUND_CEILING, C.ROUND_FLOOR,
              C.ROUND_HALF_UP, C.ROUND_HALF_DOWN, C.ROUND_HALF_EVEN,
              C.ROUND_05UP]
162 163 164 165 166 167 168 169 170 171 172 173 174 175


class Context(object):
    """Provides a convenient way of syncing the C and P contexts"""

    __slots__ = ['c', 'p']

    def __init__(self, c_ctx=None, p_ctx=None):
        """Initialization is from the C context"""
        self.c = C.getcontext() if c_ctx is None else c_ctx
        self.p = P.getcontext() if p_ctx is None else p_ctx
        self.p.prec = self.c.prec
        self.p.Emin = self.c.Emin
        self.p.Emax = self.c.Emax
176
        self.p.rounding = self.c.rounding
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        self.p.capitals = self.c.capitals
        self.settraps([sig for sig in self.c.traps if self.c.traps[sig]])
        self.setstatus([sig for sig in self.c.flags if self.c.flags[sig]])
        self.p.clamp = self.c.clamp

    def __str__(self):
        return str(self.c) + '\n' + str(self.p)

    def getprec(self):
        assert(self.c.prec == self.p.prec)
        return self.c.prec

    def setprec(self, val):
        self.c.prec = val
        self.p.prec = val

    def getemin(self):
        assert(self.c.Emin == self.p.Emin)
        return self.c.Emin

    def setemin(self, val):
        self.c.Emin = val
        self.p.Emin = val

    def getemax(self):
        assert(self.c.Emax == self.p.Emax)
        return self.c.Emax

    def setemax(self, val):
        self.c.Emax = val
        self.p.Emax = val

    def getround(self):
210
        assert(self.c.rounding == self.p.rounding)
211 212 213 214
        return self.c.rounding

    def setround(self, val):
        self.c.rounding = val
215
        self.p.rounding = val
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

    def getcapitals(self):
        assert(self.c.capitals == self.p.capitals)
        return self.c.capitals

    def setcapitals(self, val):
        self.c.capitals = val
        self.p.capitals = val

    def getclamp(self):
        assert(self.c.clamp == self.p.clamp)
        return self.c.clamp

    def setclamp(self, val):
        self.c.clamp = val
        self.p.clamp = val

    prec = property(getprec, setprec)
    Emin = property(getemin, setemin)
    Emax = property(getemax, setemax)
    rounding = property(getround, setround)
    clamp = property(getclamp, setclamp)
    capitals = property(getcapitals, setcapitals)

    def clear_traps(self):
        self.c.clear_traps()
        for trap in self.p.traps:
            self.p.traps[trap] = False

    def clear_status(self):
        self.c.clear_flags()
        self.p.clear_flags()

    def settraps(self, lst):
        """lst: C signal list"""
        self.clear_traps()
        for signal in lst:
            self.c.traps[signal] = True
            self.p.traps[CondMap[signal]] = True

    def setstatus(self, lst):
        """lst: C signal list"""
        self.clear_status()
        for signal in lst:
            self.c.flags[signal] = True
            self.p.flags[CondMap[signal]] = True

    def assert_eq_status(self):
        """assert equality of C and P status"""
        for signal in self.c.flags:
            if self.c.flags[signal] == (not self.p.flags[CondMap[signal]]):
                return False
        return True


# We don't want exceptions so that we can compare the status flags.
context = Context()
context.Emin = C.MIN_EMIN
context.Emax = C.MAX_EMAX
context.clear_traps()

# When creating decimals, _decimal is ultimately limited by the maximum
# context values. We emulate this restriction for decimal.py.
maxcontext = P.Context(
    prec=C.MAX_PREC,
    Emin=C.MIN_EMIN,
    Emax=C.MAX_EMAX,
    rounding=P.ROUND_HALF_UP,
    capitals=1
)
maxcontext.clamp = 0

def RestrictedDecimal(value):
    maxcontext.traps = copy(context.p.traps)
    maxcontext.clear_flags()
    if isinstance(value, str):
        value = value.strip()
    dec = maxcontext.create_decimal(value)
    if maxcontext.flags[P.Inexact] or \
       maxcontext.flags[P.Rounded] or \
296
       maxcontext.flags[P.Clamped] or \
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
       maxcontext.flags[P.InvalidOperation]:
        return context.p._raise_error(P.InvalidOperation)
    if maxcontext.flags[P.FloatOperation]:
        context.p.flags[P.FloatOperation] = True
    return dec


# ======================================================================
#      TestSet: Organize data and events during a single test case
# ======================================================================

class RestrictedList(list):
    """List that can only be modified by appending items."""
    def __getattribute__(self, name):
        if name != 'append':
            raise AttributeError("unsupported operation")
        return list.__getattribute__(self, name)
    def unsupported(self, *_):
        raise AttributeError("unsupported operation")
    __add__ = __delattr__ = __delitem__ = __iadd__ = __imul__ = unsupported
    __mul__ = __reversed__ = __rmul__ = __setattr__ = __setitem__ = unsupported

class TestSet(object):
    """A TestSet contains the original input operands, converted operands,
       Python exceptions that occurred either during conversion or during
       execution of the actual function, and the final results.

       For safety, most attributes are lists that only support the append
       operation.

       If a function name is prefixed with 'context.', the corresponding
       context method is called.
    """
    def __init__(self, funcname, operands):
        if funcname.startswith("context."):
            self.funcname = funcname.replace("context.", "")
            self.contextfunc = True
        else:
            self.funcname = funcname
            self.contextfunc = False
        self.op = operands               # raw operand tuple
        self.context = context           # context used for the operation
        self.cop = RestrictedList()      # converted C.Decimal operands
        self.cex = RestrictedList()      # Python exceptions for C.Decimal
        self.cresults = RestrictedList() # C.Decimal results
        self.pop = RestrictedList()      # converted P.Decimal operands
        self.pex = RestrictedList()      # Python exceptions for P.Decimal
        self.presults = RestrictedList() # P.Decimal results


# ======================================================================
#                SkipHandler: skip known discrepancies
# ======================================================================

class SkipHandler:
    """Handle known discrepancies between decimal.py and _decimal.so.
       These are either ULP differences in the power function or
       extremely minor issues."""

    def __init__(self):
        self.ulpdiff = 0
        self.powmod_zeros = 0
        self.maxctx = P.Context(Emax=10**18, Emin=-10**18)

    def default(self, t):
        return False
    __ge__ =  __gt__ = __le__ = __lt__ = __ne__ = __eq__ = default
    __reduce__ = __format__ = __repr__ = __str__ = default

    def harrison_ulp(self, dec):
        """ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5504.pdf"""
        a = dec.next_plus()
        b = dec.next_minus()
        return abs(a - b)

    def standard_ulp(self, dec, prec):
        return P._dec_from_triple(0, '1', dec._exp+len(dec._int)-prec)

    def rounding_direction(self, x, mode):
        """Determine the effective direction of the rounding when
           the exact result x is rounded according to mode.
           Return -1 for downwards, 0 for undirected, 1 for upwards,
           2 for ROUND_05UP."""
        cmp = 1 if x.compare_total(P.Decimal("+0")) >= 0 else -1

        if mode in (P.ROUND_HALF_EVEN, P.ROUND_HALF_UP, P.ROUND_HALF_DOWN):
            return 0
        elif mode == P.ROUND_CEILING:
            return 1
        elif mode == P.ROUND_FLOOR:
            return -1
        elif mode == P.ROUND_UP:
            return cmp
        elif mode == P.ROUND_DOWN:
            return -cmp
        elif mode == P.ROUND_05UP:
            return 2
        else:
            raise ValueError("Unexpected rounding mode: %s" % mode)

    def check_ulpdiff(self, exact, rounded):
        # current precision
        p = context.p.prec

        # Convert infinities to the largest representable number + 1.
        x = exact
        if exact.is_infinite():
            x = P._dec_from_triple(exact._sign, '10', context.p.Emax)
        y = rounded
        if rounded.is_infinite():
            y = P._dec_from_triple(rounded._sign, '10', context.p.Emax)

        # err = (rounded - exact) / ulp(rounded)
        self.maxctx.prec = p * 2
        t = self.maxctx.subtract(y, x)
        if context.c.flags[C.Clamped] or \
           context.c.flags[C.Underflow]:
            # The standard ulp does not work in Underflow territory.
            ulp = self.harrison_ulp(y)
        else:
            ulp = self.standard_ulp(y, p)
        # Error in ulps.
        err = self.maxctx.divide(t, ulp)

        dir = self.rounding_direction(x, context.p.rounding)
        if dir == 0:
            if P.Decimal("-0.6") < err < P.Decimal("0.6"):
                return True
        elif dir == 1: # directed, upwards
            if P.Decimal("-0.1") < err < P.Decimal("1.1"):
                return True
        elif dir == -1: # directed, downwards
            if P.Decimal("-1.1") < err < P.Decimal("0.1"):
                return True
        else: # ROUND_05UP
            if P.Decimal("-1.1") < err < P.Decimal("1.1"):
                return True

        print("ulp: %s  error: %s  exact: %s  c_rounded: %s"
              % (ulp, err, exact, rounded))
        return False

    def bin_resolve_ulp(self, t):
        """Check if results of _decimal's power function are within the
           allowed ulp ranges."""
        # NaNs are beyond repair.
        if t.rc.is_nan() or t.rp.is_nan():
            return False

        # "exact" result, double precision, half_even
        self.maxctx.prec = context.p.prec * 2

        op1, op2 = t.pop[0], t.pop[1]
        if t.contextfunc:
            exact = getattr(self.maxctx, t.funcname)(op1, op2)
        else:
            exact = getattr(op1, t.funcname)(op2, context=self.maxctx)

        # _decimal's rounded result
        rounded = P.Decimal(t.cresults[0])

        self.ulpdiff += 1
        return self.check_ulpdiff(exact, rounded)

    ############################ Correct rounding #############################
    def resolve_underflow(self, t):
        """In extremely rare cases where the infinite precision result is just
           below etiny, cdecimal does not set Subnormal/Underflow. Example:

           setcontext(Context(prec=21, rounding=ROUND_UP, Emin=-55, Emax=85))
           Decimal("1.00000000000000000000000000000000000000000000000"
                   "0000000100000000000000000000000000000000000000000"
                   "0000000000000025").ln()
        """
        if t.cresults != t.presults:
            return False # Results must be identical.
        if context.c.flags[C.Rounded] and \
           context.c.flags[C.Inexact] and \
           context.p.flags[P.Rounded] and \
           context.p.flags[P.Inexact]:
            return True # Subnormal/Underflow may be missing.
        return False

    def exp(self, t):
        """Resolve Underflow or ULP difference."""
        return self.resolve_underflow(t)

    def log10(self, t):
        """Resolve Underflow or ULP difference."""
        return self.resolve_underflow(t)

    def ln(self, t):
        """Resolve Underflow or ULP difference."""
        return self.resolve_underflow(t)

    def __pow__(self, t):
        """Always calls the resolve function. C.Decimal does not have correct
           rounding for the power function."""
        if context.c.flags[C.Rounded] and \
           context.c.flags[C.Inexact] and \
           context.p.flags[P.Rounded] and \
           context.p.flags[P.Inexact]:
            return self.bin_resolve_ulp(t)
        else:
            return False
    power = __rpow__ = __pow__

    ############################## Technicalities #############################
    def __float__(self, t):
        """NaN comparison in the verify() function obviously gives an
           incorrect answer:  nan == nan -> False"""
        if t.cop[0].is_nan() and t.pop[0].is_nan():
            return True
        return False
    __complex__ = __float__

    def __radd__(self, t):
        """decimal.py gives precedence to the first NaN; this is
           not important, as __radd__ will not be called for
           two decimal arguments."""
        if t.rc.is_nan() and t.rp.is_nan():
            return True
        return False
    __rmul__ = __radd__

    ################################ Various ##################################
    def __round__(self, t):
        """Exception: Decimal('1').__round__(-100000000000000000000000000)
           Should it really be InvalidOperation?"""
        if t.rc is None and t.rp.is_nan():
            return True
        return False

shandler = SkipHandler()
def skip_error(t):
    return getattr(shandler, t.funcname, shandler.default)(t)


# ======================================================================
#                      Handling verification errors
# ======================================================================

class VerifyError(Exception):
    """Verification failed."""
    pass

def function_as_string(t):
    if t.contextfunc:
        cargs = t.cop
        pargs = t.pop
        cfunc = "c_func: %s(" % t.funcname
        pfunc = "p_func: %s(" % t.funcname
    else:
        cself, cargs = t.cop[0], t.cop[1:]
        pself, pargs = t.pop[0], t.pop[1:]
        cfunc = "c_func: %s.%s(" % (repr(cself), t.funcname)
        pfunc = "p_func: %s.%s(" % (repr(pself), t.funcname)

    err = cfunc
    for arg in cargs:
        err += "%s, " % repr(arg)
    err = err.rstrip(", ")
    err += ")\n"

    err += pfunc
    for arg in pargs:
        err += "%s, " % repr(arg)
    err = err.rstrip(", ")
    err += ")"

    return err

def raise_error(t):
    global EXIT_STATUS

    if skip_error(t):
        return
    EXIT_STATUS = 1

    err = "Error in %s:\n\n" % t.funcname
    err += "input operands: %s\n\n" % (t.op,)
    err += function_as_string(t)
    err += "\n\nc_result: %s\np_result: %s\n\n" % (t.cresults, t.presults)
    err += "c_exceptions: %s\np_exceptions: %s\n\n" % (t.cex, t.pex)
    err += "%s\n\n" % str(t.context)

    raise VerifyError(err)


# ======================================================================
#                        Main testing functions
#
#  The procedure is always (t is the TestSet):
#
#   convert(t) -> Initialize the TestSet as necessary.
#
#                 Return 0 for early abortion (e.g. if a TypeError
#                 occurs during conversion, there is nothing to test).
#
#                 Return 1 for continuing with the test case.
#
#   callfuncs(t) -> Call the relevant function for each implementation
#                   and record the results in the TestSet.
#
#   verify(t) -> Verify the results. If verification fails, details
#                are printed to stdout.
# ======================================================================

def convert(t, convstr=True):
    """ t is the testset. At this stage the testset contains a tuple of
        operands t.op of various types. For decimal methods the first
        operand (self) is always converted to Decimal. If 'convstr' is
        true, string operands are converted as well.

        Context operands are of type deccheck.Context, rounding mode
        operands are given as a tuple (C.rounding, P.rounding).

        Other types (float, int, etc.) are left unchanged.
    """
    for i, op in enumerate(t.op):

        context.clear_status()

620 621 622 623 624 625
        if op in RoundModes:
            t.cop.append(op)
            t.pop.append(op)

        elif not t.contextfunc and i == 0 or \
             convstr and isinstance(op, str):
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
            try:
                c = C.Decimal(op)
                cex = None
            except (TypeError, ValueError, OverflowError) as e:
                c = None
                cex = e.__class__

            try:
                p = RestrictedDecimal(op)
                pex = None
            except (TypeError, ValueError, OverflowError) as e:
                p = None
                pex = e.__class__

            t.cop.append(c)
            t.cex.append(cex)
            t.pop.append(p)
            t.pex.append(pex)

            if cex is pex:
                if str(c) != str(p) or not context.assert_eq_status():
                    raise_error(t)
                if cex and pex:
                    # nothing to test
                    return 0
            else:
                raise_error(t)

        elif isinstance(op, Context):
            t.context = op
            t.cop.append(op.c)
            t.pop.append(op.p)

        else:
            t.cop.append(op)
            t.pop.append(op)

    return 1

def callfuncs(t):
    """ t is the testset. At this stage the testset contains operand lists
        t.cop and t.pop for the C and Python versions of decimal.
        For Decimal methods, the first operands are of type C.Decimal and
        P.Decimal respectively. The remaining operands can have various types.
        For Context methods, all operands can have any type.

        t.rc and t.rp are the results of the operation.
    """
    context.clear_status()

    try:
        if t.contextfunc:
            cargs = t.cop
            t.rc = getattr(context.c, t.funcname)(*cargs)
        else:
            cself = t.cop[0]
            cargs = t.cop[1:]
            t.rc = getattr(cself, t.funcname)(*cargs)
        t.cex.append(None)
    except (TypeError, ValueError, OverflowError, MemoryError) as e:
        t.rc = None
        t.cex.append(e.__class__)

    try:
        if t.contextfunc:
            pargs = t.pop
            t.rp = getattr(context.p, t.funcname)(*pargs)
        else:
            pself = t.pop[0]
            pargs = t.pop[1:]
            t.rp = getattr(pself, t.funcname)(*pargs)
        t.pex.append(None)
    except (TypeError, ValueError, OverflowError, MemoryError) as e:
        t.rp = None
        t.pex.append(e.__class__)

def verify(t, stat):
    """ t is the testset. At this stage the testset contains the following
        tuples:

            t.op: original operands
            t.cop: C.Decimal operands (see convert for details)
            t.pop: P.Decimal operands (see convert for details)
            t.rc: C result
            t.rp: Python result

        t.rc and t.rp can have various types.
    """
    t.cresults.append(str(t.rc))
    t.presults.append(str(t.rp))
    if isinstance(t.rc, C.Decimal) and isinstance(t.rp, P.Decimal):
        # General case: both results are Decimals.
        t.cresults.append(t.rc.to_eng_string())
        t.cresults.append(t.rc.as_tuple())
        t.cresults.append(str(t.rc.imag))
        t.cresults.append(str(t.rc.real))
        t.presults.append(t.rp.to_eng_string())
        t.presults.append(t.rp.as_tuple())
        t.presults.append(str(t.rp.imag))
        t.presults.append(str(t.rp.real))

        nc = t.rc.number_class().lstrip('+-s')
        stat[nc] += 1
    else:
        # Results from e.g. __divmod__ can only be compared as strings.
        if not isinstance(t.rc, tuple) and not isinstance(t.rp, tuple):
            if t.rc != t.rp:
                raise_error(t)
        stat[type(t.rc).__name__] += 1

    # The return value lists must be equal.
    if t.cresults != t.presults:
        raise_error(t)
    # The Python exception lists (TypeError, etc.) must be equal.
    if t.cex != t.pex:
        raise_error(t)
    # The context flags must be equal.
    if not t.context.assert_eq_status():
        raise_error(t)


# ======================================================================
#                           Main test loops
#
#  test_method(method, testspecs, testfunc) ->
#
#     Loop through various context settings. The degree of
#     thoroughness is determined by 'testspec'. For each
#     setting, call 'testfunc'. Generally, 'testfunc' itself
#     a loop, iterating through many test cases generated
#     by the functions in randdec.py.
#
#  test_n-ary(method, prec, exp_range, restricted_range, itr, stat) ->
#
#     'test_unary', 'test_binary' and 'test_ternary' are the
#     main test functions passed to 'test_method'. They deal
#     with the regular cases. The thoroughness of testing is
#     determined by 'itr'.
#
#     'prec', 'exp_range' and 'restricted_range' are passed
#     to the test-generating functions and limit the generated
#     values. In some cases, for reasonable run times a
#     maximum exponent of 9999 is required.
#
#     The 'stat' parameter is passed down to the 'verify'
#     function, which records statistics for the result values.
# ======================================================================

def log(fmt, args=None):
    if args:
        sys.stdout.write(''.join((fmt, '\n')) % args)
    else:
        sys.stdout.write(''.join((str(fmt), '\n')))
    sys.stdout.flush()

def test_method(method, testspecs, testfunc):
    """Iterate a test function through many context settings."""
    log("testing %s ...", method)
    stat = defaultdict(int)
    for spec in testspecs:
        if 'samples' in spec:
            spec['prec'] = sorted(random.sample(range(1, 101),
                                  spec['samples']))
        for prec in spec['prec']:
            context.prec = prec
            for expts in spec['expts']:
                emin, emax = expts
                if emin == 'rand':
                    context.Emin = random.randrange(-1000, 0)
                    context.Emax = random.randrange(prec, 1000)
                else:
                    context.Emin, context.Emax = emin, emax
                if prec > context.Emax: continue
                log("    prec: %d  emin: %d  emax: %d",
                    (context.prec, context.Emin, context.Emax))
                restr_range = 9999 if context.Emax > 9999 else context.Emax+99
802
                for rounding in RoundModes:
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
                    context.rounding = rounding
                    context.capitals = random.randrange(2)
                    if spec['clamp'] == 'rand':
                        context.clamp = random.randrange(2)
                    else:
                        context.clamp = spec['clamp']
                    exprange = context.c.Emax
                    testfunc(method, prec, exprange, restr_range,
                             spec['iter'], stat)
    log("    result types: %s" % sorted([t for t in stat.items()]))

def test_unary(method, prec, exp_range, restricted_range, itr, stat):
    """Iterate a unary function through many test cases."""
    if method in UnaryRestricted:
        exp_range = restricted_range
    for op in all_unary(prec, exp_range, itr):
        t = TestSet(method, op)
        try:
            if not convert(t):
                continue
            callfuncs(t)
            verify(t, stat)
        except VerifyError as err:
            log(err)

828 829 830 831 832 833 834 835 836 837 838
    if not method.startswith('__'):
        for op in unary_optarg(prec, exp_range, itr):
            t = TestSet(method, op)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

839 840 841 842 843 844 845 846 847 848 849 850 851 852
def test_binary(method, prec, exp_range, restricted_range, itr, stat):
    """Iterate a binary function through many test cases."""
    if method in BinaryRestricted:
        exp_range = restricted_range
    for op in all_binary(prec, exp_range, itr):
        t = TestSet(method, op)
        try:
            if not convert(t):
                continue
            callfuncs(t)
            verify(t, stat)
        except VerifyError as err:
            log(err)

853 854 855 856 857 858 859 860 861 862 863
    if not method.startswith('__'):
        for op in binary_optarg(prec, exp_range, itr):
            t = TestSet(method, op)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

864 865 866 867 868 869 870 871 872 873 874 875 876
def test_ternary(method, prec, exp_range, restricted_range, itr, stat):
    """Iterate a ternary function through many test cases."""
    if method in TernaryRestricted:
        exp_range = restricted_range
    for op in all_ternary(prec, exp_range, itr):
        t = TestSet(method, op)
        try:
            if not convert(t):
                continue
            callfuncs(t)
            verify(t, stat)
        except VerifyError as err:
            log(err)
877 878 879 880 881 882 883 884 885 886 887

    if not method.startswith('__'):
        for op in ternary_optarg(prec, exp_range, itr):
            t = TestSet(method, op)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)
888 889 890 891

def test_format(method, prec, exp_range, restricted_range, itr, stat):
    """Iterate the __format__ method through many test cases."""
    for op in all_unary(prec, exp_range, itr):
892
        fmt1 = rand_format(chr(random.randrange(0, 128)), 'EeGgn')
893 894 895 896 897 898 899 900 901 902 903 904
        fmt2 = rand_locale()
        for fmt in (fmt1, fmt2):
            fmtop = (op[0], fmt)
            t = TestSet(method, fmtop)
            try:
                if not convert(t, convstr=False):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)
    for op in all_unary(prec, 9999, itr):
905
        fmt1 = rand_format(chr(random.randrange(0, 128)), 'Ff%')
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
        fmt2 = rand_locale()
        for fmt in (fmt1, fmt2):
            fmtop = (op[0], fmt)
            t = TestSet(method, fmtop)
            try:
                if not convert(t, convstr=False):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

def test_round(method, prec, exprange, restricted_range, itr, stat):
    """Iterate the __round__ method through many test cases."""
    for op in all_unary(prec, 9999, itr):
        n = random.randrange(10)
        roundop = (op[0], n)
        t = TestSet(method, roundop)
        try:
            if not convert(t):
                continue
            callfuncs(t)
            verify(t, stat)
        except VerifyError as err:
            log(err)

def test_from_float(method, prec, exprange, restricted_range, itr, stat):
    """Iterate the __float__ method through many test cases."""
934
    for rounding in RoundModes:
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        context.rounding = rounding
        for i in range(1000):
            f = randfloat()
            op = (f,) if method.startswith("context.") else ("sNaN", f)
            t = TestSet(method, op)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

def randcontext(exprange):
    c = Context(C.Context(), P.Context())
    c.Emax = random.randrange(1, exprange+1)
    c.Emin = random.randrange(-exprange, 0)
    maxprec = 100 if c.Emax >= 100 else c.Emax
    c.prec = random.randrange(1, maxprec+1)
    c.clamp = random.randrange(2)
    c.clear_traps()
    return c

def test_quantize_api(method, prec, exprange, restricted_range, itr, stat):
    """Iterate the 'quantize' method through many test cases, using
       the optional arguments."""
    for op in all_binary(prec, restricted_range, itr):
        for rounding in RoundModes:
            c = randcontext(exprange)
            quantizeop = (op[0], op[1], rounding, c)
            t = TestSet(method, quantizeop)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)


def check_untested(funcdict, c_cls, p_cls):
    """Determine untested, C-only and Python-only attributes.
       Uncomment print lines for debugging."""
    c_attr = set(dir(c_cls))
    p_attr = set(dir(p_cls))
    intersect = c_attr & p_attr

    funcdict['c_only'] = tuple(sorted(c_attr-intersect))
    funcdict['p_only'] = tuple(sorted(p_attr-intersect))

    tested = set()
    for lst in funcdict.values():
        for v in lst:
            v = v.replace("context.", "") if c_cls == C.Context else v
            tested.add(v)

    funcdict['untested'] = tuple(sorted(intersect-tested))

    #for key in ('untested', 'c_only', 'p_only'):
    #    s = 'Context' if c_cls == C.Context else 'Decimal'
    #    print("\n%s %s:\n%s" % (s, key, funcdict[key]))


if __name__ == '__main__':

    import time

    randseed = int(time.time())
    random.seed(randseed)

    # Set up the testspecs list. A testspec is simply a dictionary
    # that determines the amount of different contexts that 'test_method'
    # will generate.
    base_expts = [(C.MIN_EMIN, C.MAX_EMAX)]
    if C.MAX_EMAX == 999999999999999999:
        base_expts.append((-999999999, 999999999))

    # Basic contexts.
    base = {
        'expts': base_expts,
        'prec': [],
        'clamp': 'rand',
        'iter': None,
        'samples': None,
    }
    # Contexts with small values for prec, emin, emax.
    small = {
        'prec': [1, 2, 3, 4, 5],
        'expts': [(-1, 1), (-2, 2), (-3, 3), (-4, 4), (-5, 5)],
        'clamp': 'rand',
        'iter': None
    }
    # IEEE interchange format.
    ieee = [
        # DECIMAL32
        {'prec': [7], 'expts': [(-95, 96)], 'clamp': 1, 'iter': None},
        # DECIMAL64
        {'prec': [16], 'expts': [(-383, 384)], 'clamp': 1, 'iter': None},
        # DECIMAL128
        {'prec': [34], 'expts': [(-6143, 6144)], 'clamp': 1, 'iter': None}
    ]

    if '--medium' in sys.argv:
        base['expts'].append(('rand', 'rand'))
        # 5 random precisions
        base['samples'] = 5
        testspecs = [small] + ieee + [base]
    if '--long' in sys.argv:
        base['expts'].append(('rand', 'rand'))
        # 10 random precisions
        base['samples'] = 10
        testspecs = [small] + ieee + [base]
    elif '--all' in sys.argv:
        base['expts'].append(('rand', 'rand'))
        # All precisions in [1, 100]
        base['samples'] = 100
        testspecs = [small] + ieee + [base]
    else: # --short
        rand_ieee = random.choice(ieee)
        base['iter'] = small['iter'] = rand_ieee['iter'] = 1
        # 1 random precision and exponent pair
        base['samples'] = 1
        base['expts'] = [random.choice(base_expts)]
        # 1 random precision and exponent pair
        prec = random.randrange(1, 6)
        small['prec'] = [prec]
        small['expts'] = [(-prec, prec)]
        testspecs = [small, rand_ieee, base]

    check_untested(Functions, C.Decimal, P.Decimal)
    check_untested(ContextFunctions, C.Context, P.Context)


    log("\n\nRandom seed: %d\n\n", randseed)

    # Decimal methods:
    for method in Functions['unary'] + Functions['unary_ctx'] + \
                  Functions['unary_rnd_ctx']:
        test_method(method, testspecs, test_unary)

    for method in Functions['binary'] + Functions['binary_ctx']:
        test_method(method, testspecs, test_binary)

    for method in Functions['ternary'] + Functions['ternary_ctx']:
        test_method(method, testspecs, test_ternary)

    test_method('__format__', testspecs, test_format)
    test_method('__round__', testspecs, test_round)
    test_method('from_float', testspecs, test_from_float)
    test_method('quantize', testspecs, test_quantize_api)

    # Context methods:
    for method in ContextFunctions['unary']:
        test_method(method, testspecs, test_unary)

    for method in ContextFunctions['binary']:
        test_method(method, testspecs, test_binary)

    for method in ContextFunctions['ternary']:
        test_method(method, testspecs, test_ternary)

    test_method('context.create_decimal_from_float', testspecs, test_from_float)


    sys.exit(EXIT_STATUS)