test_statistics.py 74.3 KB
Newer Older
1 2 3 4 5 6
"""Test suite for statistics module, including helper NumericTestCase and
approx_equal function.

"""

import collections
7
import collections.abc
8 9 10 11
import decimal
import doctest
import math
import random
12
import sys
13 14 15 16 17 18 19 20 21 22 23 24
import unittest

from decimal import Decimal
from fractions import Fraction


# Module to be tested.
import statistics


# === Helper functions and class ===

25 26 27 28
def sign(x):
    """Return -1.0 for negatives, including -0.0, otherwise +1.0."""
    return math.copysign(1, x)

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def _nan_equal(a, b):
    """Return True if a and b are both the same kind of NAN.

    >>> _nan_equal(Decimal('NAN'), Decimal('NAN'))
    True
    >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN'))
    True
    >>> _nan_equal(Decimal('NAN'), Decimal('sNAN'))
    False
    >>> _nan_equal(Decimal(42), Decimal('NAN'))
    False

    >>> _nan_equal(float('NAN'), float('NAN'))
    True
    >>> _nan_equal(float('NAN'), 0.5)
    False

    >>> _nan_equal(float('NAN'), Decimal('NAN'))
    False

    NAN payloads are not compared.
    """
    if type(a) is not type(b):
        return False
    if isinstance(a, float):
        return math.isnan(a) and math.isnan(b)
    aexp = a.as_tuple()[2]
    bexp = b.as_tuple()[2]
    return (aexp == bexp) and (aexp in ('n', 'N'))  # Both NAN or both sNAN.


60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
def _calc_errors(actual, expected):
    """Return the absolute and relative errors between two numbers.

    >>> _calc_errors(100, 75)
    (25, 0.25)
    >>> _calc_errors(100, 100)
    (0, 0.0)

    Returns the (absolute error, relative error) between the two arguments.
    """
    base = max(abs(actual), abs(expected))
    abs_err = abs(actual - expected)
    rel_err = abs_err/base if base else float('inf')
    return (abs_err, rel_err)


def approx_equal(x, y, tol=1e-12, rel=1e-7):
    """approx_equal(x, y [, tol [, rel]]) => True|False

    Return True if numbers x and y are approximately equal, to within some
    margin of error, otherwise return False. Numbers which compare equal
    will also compare approximately equal.

    x is approximately equal to y if the difference between them is less than
    an absolute error tol or a relative error rel, whichever is bigger.

    If given, both tol and rel must be finite, non-negative numbers. If not
    given, default values are tol=1e-12 and rel=1e-7.

    >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0)
    True
    >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0)
    False

    Absolute error is defined as abs(x-y); if that is less than or equal to
    tol, x and y are considered approximately equal.

    Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is
    smaller, provided x or y are not zero. If that figure is less than or
    equal to rel, x and y are considered approximately equal.

    Complex numbers are not directly supported. If you wish to compare to
    complex numbers, extract their real and imaginary parts and compare them
    individually.

    NANs always compare unequal, even with themselves. Infinities compare
    approximately equal if they have the same sign (both positive or both
    negative). Infinities with different signs compare unequal; so do
    comparisons of infinities with finite numbers.
    """
    if tol < 0 or rel < 0:
        raise ValueError('error tolerances must be non-negative')
    # NANs are never equal to anything, approximately or otherwise.
    if math.isnan(x) or math.isnan(y):
        return False
    # Numbers which compare equal also compare approximately equal.
    if x == y:
        # This includes the case of two infinities with the same sign.
        return True
    if math.isinf(x) or math.isinf(y):
        # This includes the case of two infinities of opposite sign, or
        # one infinity and one finite number.
        return False
    # Two finite numbers.
    actual_error = abs(x - y)
    allowed_error = max(tol, rel*max(abs(x), abs(y)))
    return actual_error <= allowed_error


# This class exists only as somewhere to stick a docstring containing
# doctests. The following docstring and tests were originally in a separate
# module. Now that it has been merged in here, I need somewhere to hang the.
# docstring. Ultimately, this class will die, and the information below will
# either become redundant, or be moved into more appropriate places.
class _DoNothing:
    """
    When doing numeric work, especially with floats, exact equality is often
    not what you want. Due to round-off error, it is often a bad idea to try
    to compare floats with equality. Instead the usual procedure is to test
    them with some (hopefully small!) allowance for error.

    The ``approx_equal`` function allows you to specify either an absolute
    error tolerance, or a relative error, or both.

    Absolute error tolerances are simple, but you need to know the magnitude
    of the quantities being compared:

    >>> approx_equal(12.345, 12.346, tol=1e-3)
    True
    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3)  # tol is too small.
    False

    Relative errors are more suitable when the values you are comparing can
    vary in magnitude:

    >>> approx_equal(12.345, 12.346, rel=1e-4)
    True
    >>> approx_equal(12.345e6, 12.346e6, rel=1e-4)
    True

    but a naive implementation of relative error testing can run into trouble
    around zero.

    If you supply both an absolute tolerance and a relative error, the
    comparison succeeds if either individual test succeeds:

    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4)
    True

    """
    pass



# We prefer this for testing numeric values that may not be exactly equal,
# and avoid using TestCase.assertAlmostEqual, because it sucks :-)

class NumericTestCase(unittest.TestCase):
    """Unit test class for numeric work.

    This subclasses TestCase. In addition to the standard method
    ``TestCase.assertAlmostEqual``,  ``assertApproxEqual`` is provided.
    """
    # By default, we expect exact equality, unless overridden.
    tol = rel = 0

    def assertApproxEqual(
            self, first, second, tol=None, rel=None, msg=None
            ):
        """Test passes if ``first`` and ``second`` are approximately equal.

        This test passes if ``first`` and ``second`` are equal to
        within ``tol``, an absolute error, or ``rel``, a relative error.

        If either ``tol`` or ``rel`` are None or not given, they default to
        test attributes of the same name (by default, 0).

        The objects may be either numbers, or sequences of numbers. Sequences
        are tested element-by-element.

        >>> class MyTest(NumericTestCase):
        ...     def test_number(self):
        ...         x = 1.0/6
        ...         y = sum([x]*6)
        ...         self.assertApproxEqual(y, 1.0, tol=1e-15)
        ...     def test_sequence(self):
        ...         a = [1.001, 1.001e-10, 1.001e10]
        ...         b = [1.0, 1e-10, 1e10]
        ...         self.assertApproxEqual(a, b, rel=1e-3)
        ...
        >>> import unittest
        >>> from io import StringIO  # Suppress test runner output.
        >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest)
        >>> unittest.TextTestRunner(stream=StringIO()).run(suite)
        <unittest.runner.TextTestResult run=2 errors=0 failures=0>

        """
        if tol is None:
            tol = self.tol
        if rel is None:
            rel = self.rel
        if (
222 223
                isinstance(first, collections.abc.Sequence) and
                isinstance(second, collections.abc.Sequence)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
            ):
            check = self._check_approx_seq
        else:
            check = self._check_approx_num
        check(first, second, tol, rel, msg)

    def _check_approx_seq(self, first, second, tol, rel, msg):
        if len(first) != len(second):
            standardMsg = (
                "sequences differ in length: %d items != %d items"
                % (len(first), len(second))
                )
            msg = self._formatMessage(msg, standardMsg)
            raise self.failureException(msg)
        for i, (a,e) in enumerate(zip(first, second)):
            self._check_approx_num(a, e, tol, rel, msg, i)

    def _check_approx_num(self, first, second, tol, rel, msg, idx=None):
        if approx_equal(first, second, tol, rel):
            # Test passes. Return early, we are done.
            return None
        # Otherwise we failed.
        standardMsg = self._make_std_err_msg(first, second, tol, rel, idx)
        msg = self._formatMessage(msg, standardMsg)
        raise self.failureException(msg)

    @staticmethod
    def _make_std_err_msg(first, second, tol, rel, idx):
        # Create the standard error message for approx_equal failures.
        assert first != second
        template = (
            '  %r != %r\n'
            '  values differ by more than tol=%r and rel=%r\n'
            '  -> absolute error = %r\n'
            '  -> relative error = %r'
            )
        if idx is not None:
            header = 'numeric sequences first differ at index %d.\n' % idx
            template = header + template
        # Calculate actual errors:
        abs_err, rel_err = _calc_errors(first, second)
        return template % (first, second, tol, rel, abs_err, rel_err)


# ========================
# === Test the helpers ===
# ========================

272 273 274 275 276 277 278
class TestSign(unittest.TestCase):
    """Test that the helper function sign() works correctly."""
    def testZeroes(self):
        # Test that signed zeroes report their sign correctly.
        self.assertEqual(sign(0.0), +1)
        self.assertEqual(sign(-0.0), -1)

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

# --- Tests for approx_equal ---

class ApproxEqualSymmetryTest(unittest.TestCase):
    # Test symmetry of approx_equal.

    def test_relative_symmetry(self):
        # Check that approx_equal treats relative error symmetrically.
        # (a-b)/a is usually not equal to (a-b)/b. Ensure that this
        # doesn't matter.
        #
        #   Note: the reason for this test is that an early version
        #   of approx_equal was not symmetric. A relative error test
        #   would pass, or fail, depending on which value was passed
        #   as the first argument.
        #
        args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)]
        args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)]
        assert len(args1) == len(args2)
        for a, b in zip(args1, args2):
            self.do_relative_symmetry(a, b)

    def do_relative_symmetry(self, a, b):
        a, b = min(a, b), max(a, b)
        assert a < b
        delta = b - a  # The absolute difference between the values.
        rel_err1, rel_err2 = abs(delta/a), abs(delta/b)
        # Choose an error margin halfway between the two.
        rel = (rel_err1 + rel_err2)/2
        # Now see that values a and b compare approx equal regardless of
        # which is given first.
        self.assertTrue(approx_equal(a, b, tol=0, rel=rel))
        self.assertTrue(approx_equal(b, a, tol=0, rel=rel))

    def test_symmetry(self):
        # Test that approx_equal(a, b) == approx_equal(b, a)
        args = [-23, -2, 5, 107, 93568]
        delta = 2
317
        for a in args:
318
            for type_ in (int, float, Decimal, Fraction):
319
                x = type_(a)*100
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
                y = x + delta
                r = abs(delta/max(x, y))
                # There are five cases to check:
                # 1) actual error <= tol, <= rel
                self.do_symmetry_test(x, y, tol=delta, rel=r)
                self.do_symmetry_test(x, y, tol=delta+1, rel=2*r)
                # 2) actual error > tol, > rel
                self.do_symmetry_test(x, y, tol=delta-1, rel=r/2)
                # 3) actual error <= tol, > rel
                self.do_symmetry_test(x, y, tol=delta, rel=r/2)
                # 4) actual error > tol, <= rel
                self.do_symmetry_test(x, y, tol=delta-1, rel=r)
                self.do_symmetry_test(x, y, tol=delta-1, rel=2*r)
                # 5) exact equality test
                self.do_symmetry_test(x, x, tol=0, rel=0)
                self.do_symmetry_test(x, y, tol=0, rel=0)

    def do_symmetry_test(self, a, b, tol, rel):
        template = "approx_equal comparisons don't match for %r"
        flag1 = approx_equal(a, b, tol, rel)
        flag2 = approx_equal(b, a, tol, rel)
        self.assertEqual(flag1, flag2, template.format((a, b, tol, rel)))


class ApproxEqualExactTest(unittest.TestCase):
    # Test the approx_equal function with exactly equal values.
    # Equal values should compare as approximately equal.
    # Test cases for exactly equal values, which should compare approx
    # equal regardless of the error tolerances given.

    def do_exactly_equal_test(self, x, tol, rel):
        result = approx_equal(x, x, tol=tol, rel=rel)
        self.assertTrue(result, 'equality failure for x=%r' % x)
        result = approx_equal(-x, -x, tol=tol, rel=rel)
        self.assertTrue(result, 'equality failure for x=%r' % -x)

    def test_exactly_equal_ints(self):
        # Test that equal int values are exactly equal.
        for n in [42, 19740, 14974, 230, 1795, 700245, 36587]:
            self.do_exactly_equal_test(n, 0, 0)

    def test_exactly_equal_floats(self):
        # Test that equal float values are exactly equal.
        for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]:
            self.do_exactly_equal_test(x, 0, 0)

    def test_exactly_equal_fractions(self):
        # Test that equal Fraction values are exactly equal.
        F = Fraction
        for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]:
            self.do_exactly_equal_test(f, 0, 0)

    def test_exactly_equal_decimals(self):
        # Test that equal Decimal values are exactly equal.
        D = Decimal
        for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()):
            self.do_exactly_equal_test(d, 0, 0)

    def test_exactly_equal_absolute(self):
        # Test that equal values are exactly equal with an absolute error.
        for n in [16, 1013, 1372, 1198, 971, 4]:
            # Test as ints.
            self.do_exactly_equal_test(n, 0.01, 0)
            # Test as floats.
            self.do_exactly_equal_test(n/10, 0.01, 0)
            # Test as Fractions.
            f = Fraction(n, 1234)
            self.do_exactly_equal_test(f, 0.01, 0)

    def test_exactly_equal_absolute_decimals(self):
        # Test equal Decimal values are exactly equal with an absolute error.
        self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0)
        self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0)

    def test_exactly_equal_relative(self):
        # Test that equal values are exactly equal with a relative error.
        for x in [8347, 101.3, -7910.28, Fraction(5, 21)]:
            self.do_exactly_equal_test(x, 0, 0.01)
        self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01"))

    def test_exactly_equal_both(self):
        # Test that equal values are equal when both tol and rel are given.
        for x in [41017, 16.742, -813.02, Fraction(3, 8)]:
            self.do_exactly_equal_test(x, 0.1, 0.01)
        D = Decimal
        self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01"))


class ApproxEqualUnequalTest(unittest.TestCase):
    # Unequal values should compare unequal with zero error tolerances.
    # Test cases for unequal values, with exact equality test.

    def do_exactly_unequal_test(self, x):
        for a in (x, -x):
            result = approx_equal(a, a+1, tol=0, rel=0)
            self.assertFalse(result, 'inequality failure for x=%r' % a)

    def test_exactly_unequal_ints(self):
        # Test unequal int values are unequal with zero error tolerance.
        for n in [951, 572305, 478, 917, 17240]:
            self.do_exactly_unequal_test(n)

    def test_exactly_unequal_floats(self):
        # Test unequal float values are unequal with zero error tolerance.
        for x in [9.51, 5723.05, 47.8, 9.17, 17.24]:
            self.do_exactly_unequal_test(x)

    def test_exactly_unequal_fractions(self):
        # Test that unequal Fractions are unequal with zero error tolerance.
        F = Fraction
        for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]:
            self.do_exactly_unequal_test(f)

    def test_exactly_unequal_decimals(self):
        # Test that unequal Decimals are unequal with zero error tolerance.
        for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()):
            self.do_exactly_unequal_test(d)


class ApproxEqualInexactTest(unittest.TestCase):
    # Inexact test cases for approx_error.
    # Test cases when comparing two values that are not exactly equal.

    # === Absolute error tests ===

    def do_approx_equal_abs_test(self, x, delta):
        template = "Test failure for x={!r}, y={!r}"
        for y in (x + delta, x - delta):
            msg = template.format(x, y)
            self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg)
            self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg)

    def test_approx_equal_absolute_ints(self):
        # Test approximate equality of ints with an absolute error.
        for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]:
            self.do_approx_equal_abs_test(n, 10)
            self.do_approx_equal_abs_test(n, 2)

    def test_approx_equal_absolute_floats(self):
        # Test approximate equality of floats with an absolute error.
        for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]:
            self.do_approx_equal_abs_test(x, 1.5)
            self.do_approx_equal_abs_test(x, 0.01)
            self.do_approx_equal_abs_test(x, 0.0001)

    def test_approx_equal_absolute_fractions(self):
        # Test approximate equality of Fractions with an absolute error.
        delta = Fraction(1, 29)
        numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71]
        for f in (Fraction(n, 29) for n in numerators):
            self.do_approx_equal_abs_test(f, delta)
            self.do_approx_equal_abs_test(f, float(delta))

    def test_approx_equal_absolute_decimals(self):
        # Test approximate equality of Decimals with an absolute error.
        delta = Decimal("0.01")
        for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()):
            self.do_approx_equal_abs_test(d, delta)
            self.do_approx_equal_abs_test(-d, delta)

    def test_cross_zero(self):
        # Test for the case of the two values having opposite signs.
        self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0))

    # === Relative error tests ===

    def do_approx_equal_rel_test(self, x, delta):
        template = "Test failure for x={!r}, y={!r}"
        for y in (x*(1+delta), x*(1-delta)):
            msg = template.format(x, y)
            self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg)
            self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg)

    def test_approx_equal_relative_ints(self):
        # Test approximate equality of ints with a relative error.
        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36))
        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37))
        # ---
        self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125))
        self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125))
        self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125))

    def test_approx_equal_relative_floats(self):
        # Test approximate equality of floats with a relative error.
        for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]:
            self.do_approx_equal_rel_test(x, 0.02)
            self.do_approx_equal_rel_test(x, 0.0001)

    def test_approx_equal_relative_fractions(self):
        # Test approximate equality of Fractions with a relative error.
        F = Fraction
        delta = Fraction(3, 8)
        for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]:
            for d in (delta, float(delta)):
                self.do_approx_equal_rel_test(f, d)
                self.do_approx_equal_rel_test(-f, d)

    def test_approx_equal_relative_decimals(self):
        # Test approximate equality of Decimals with a relative error.
        for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()):
            self.do_approx_equal_rel_test(d, Decimal("0.001"))
            self.do_approx_equal_rel_test(-d, Decimal("0.05"))

    # === Both absolute and relative error tests ===

    # There are four cases to consider:
    #   1) actual error <= both absolute and relative error
    #   2) actual error <= absolute error but > relative error
    #   3) actual error <= relative error but > absolute error
    #   4) actual error > both absolute and relative error

    def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag):
        check = self.assertTrue if tol_flag else self.assertFalse
        check(approx_equal(a, b, tol=tol, rel=0))
        check = self.assertTrue if rel_flag else self.assertFalse
        check(approx_equal(a, b, tol=0, rel=rel))
        check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse
        check(approx_equal(a, b, tol=tol, rel=rel))

    def test_approx_equal_both1(self):
        # Test actual error <= both absolute and relative error.
        self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True)
        self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True)

    def test_approx_equal_both2(self):
        # Test actual error <= absolute error but > relative error.
        self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False)

    def test_approx_equal_both3(self):
        # Test actual error <= relative error but > absolute error.
        self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True)

    def test_approx_equal_both4(self):
        # Test actual error > both absolute and relative error.
        self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False)
        self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False)


class ApproxEqualSpecialsTest(unittest.TestCase):
    # Test approx_equal with NANs and INFs and zeroes.

    def test_inf(self):
        for type_ in (float, Decimal):
            inf = type_('inf')
            self.assertTrue(approx_equal(inf, inf))
            self.assertTrue(approx_equal(inf, inf, 0, 0))
            self.assertTrue(approx_equal(inf, inf, 1, 0.01))
            self.assertTrue(approx_equal(-inf, -inf))
            self.assertFalse(approx_equal(inf, -inf))
            self.assertFalse(approx_equal(inf, 1000))

    def test_nan(self):
        for type_ in (float, Decimal):
            nan = type_('nan')
            for other in (nan, type_('inf'), 1000):
                self.assertFalse(approx_equal(nan, other))

    def test_float_zeroes(self):
        nzero = math.copysign(0.0, -1)
        self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1))

    def test_decimal_zeroes(self):
        nzero = Decimal("-0.0")
        self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1))


class TestApproxEqualErrors(unittest.TestCase):
    # Test error conditions of approx_equal.

    def test_bad_tol(self):
        # Test negative tol raises.
        self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1)

    def test_bad_rel(self):
        # Test negative rel raises.
        self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1)


# --- Tests for NumericTestCase ---

# The formatting routine that generates the error messages is complex enough
# that it too needs testing.

class TestNumericTestCase(unittest.TestCase):
    # The exact wording of NumericTestCase error messages is *not* guaranteed,
    # but we need to give them some sort of test to ensure that they are
    # generated correctly. As a compromise, we look for specific substrings
    # that are expected to be found even if the overall error message changes.

    def do_test(self, args):
        actual_msg = NumericTestCase._make_std_err_msg(*args)
        expected = self.generate_substrings(*args)
        for substring in expected:
            self.assertIn(substring, actual_msg)

    def test_numerictestcase_is_testcase(self):
        # Ensure that NumericTestCase actually is a TestCase.
        self.assertTrue(issubclass(NumericTestCase, unittest.TestCase))

    def test_error_msg_numeric(self):
        # Test the error message generated for numeric comparisons.
        args = (2.5, 4.0, 0.5, 0.25, None)
        self.do_test(args)

    def test_error_msg_sequence(self):
        # Test the error message generated for sequence comparisons.
        args = (3.75, 8.25, 1.25, 0.5, 7)
        self.do_test(args)

    def generate_substrings(self, first, second, tol, rel, idx):
        """Return substrings we expect to see in error messages."""
        abs_err, rel_err = _calc_errors(first, second)
        substrings = [
                'tol=%r' % tol,
                'rel=%r' % rel,
                'absolute error = %r' % abs_err,
                'relative error = %r' % rel_err,
                ]
        if idx is not None:
            substrings.append('differ at index %d' % idx)
        return substrings


# =======================================
# === Tests for the statistics module ===
# =======================================


class GlobalsTest(unittest.TestCase):
    module = statistics
    expected_metadata = ["__doc__", "__all__"]

    def test_meta(self):
        # Test for the existence of metadata.
        for meta in self.expected_metadata:
            self.assertTrue(hasattr(self.module, meta),
                            "%s not present" % meta)

    def test_check_all(self):
        # Check everything in __all__ exists and is public.
        module = self.module
        for name in module.__all__:
            # No private names in __all__:
            self.assertFalse(name.startswith("_"),
                             'private name "%s" in __all__' % name)
            # And anything in __all__ must exist:
            self.assertTrue(hasattr(module, name),
                            'missing name "%s" in __all__' % name)


class DocTests(unittest.TestCase):
671 672
    @unittest.skipIf(sys.flags.optimize >= 2,
                     "Docstrings are omitted with -OO and above")
673
    def test_doc_tests(self):
674
        failed, tried = doctest.testmod(statistics, optionflags=doctest.ELLIPSIS)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
        self.assertGreater(tried, 0)
        self.assertEqual(failed, 0)

class StatisticsErrorTest(unittest.TestCase):
    def test_has_exception(self):
        errmsg = (
                "Expected StatisticsError to be a ValueError, but got a"
                " subclass of %r instead."
                )
        self.assertTrue(hasattr(statistics, 'StatisticsError'))
        self.assertTrue(
                issubclass(statistics.StatisticsError, ValueError),
                errmsg % statistics.StatisticsError.__base__
                )


# === Tests for private utility functions ===

class ExactRatioTest(unittest.TestCase):
    # Test _exact_ratio utility.

    def test_int(self):
        for i in (-20, -3, 0, 5, 99, 10**20):
            self.assertEqual(statistics._exact_ratio(i), (i, 1))

    def test_fraction(self):
        numerators = (-5, 1, 12, 38)
        for n in numerators:
            f = Fraction(n, 37)
            self.assertEqual(statistics._exact_ratio(f), (n, 37))

    def test_float(self):
        self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
        self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
        data = [random.uniform(-100, 100) for _ in range(100)]
        for x in data:
            num, den = statistics._exact_ratio(x)
            self.assertEqual(x, num/den)

    def test_decimal(self):
        D = Decimal
        _exact_ratio = statistics._exact_ratio
717 718 719
        self.assertEqual(_exact_ratio(D("0.125")), (1, 8))
        self.assertEqual(_exact_ratio(D("12.345")), (2469, 200))
        self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50))
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    def test_inf(self):
        INF = float("INF")
        class MyFloat(float):
            pass
        class MyDecimal(Decimal):
            pass
        for inf in (INF, -INF):
            for type_ in (float, MyFloat, Decimal, MyDecimal):
                x = type_(inf)
                ratio = statistics._exact_ratio(x)
                self.assertEqual(ratio, (x, None))
                self.assertEqual(type(ratio[0]), type_)
                self.assertTrue(math.isinf(ratio[0]))

    def test_float_nan(self):
        NAN = float("NAN")
        class MyFloat(float):
            pass
        for nan in (NAN, MyFloat(NAN)):
            ratio = statistics._exact_ratio(nan)
            self.assertTrue(math.isnan(ratio[0]))
            self.assertIs(ratio[1], None)
            self.assertEqual(type(ratio[0]), type(nan))

    def test_decimal_nan(self):
        NAN = Decimal("NAN")
        sNAN = Decimal("sNAN")
        class MyDecimal(Decimal):
            pass
        for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)):
            ratio = statistics._exact_ratio(nan)
            self.assertTrue(_nan_equal(ratio[0], nan))
            self.assertIs(ratio[1], None)
            self.assertEqual(type(ratio[0]), type(nan))

756 757

class DecimalToRatioTest(unittest.TestCase):
758
    # Test _exact_ratio private function.
759

760 761 762
    def test_infinity(self):
        # Test that INFs are handled correctly.
        inf = Decimal('INF')
763 764
        self.assertEqual(statistics._exact_ratio(inf), (inf, None))
        self.assertEqual(statistics._exact_ratio(-inf), (-inf, None))
765 766 767 768

    def test_nan(self):
        # Test that NANs are handled correctly.
        for nan in (Decimal('NAN'), Decimal('sNAN')):
769
            num, den = statistics._exact_ratio(nan)
770 771 772 773 774
            # Because NANs always compare non-equal, we cannot use assertEqual.
            # Nor can we use an identity test, as we don't guarantee anything
            # about the object identity.
            self.assertTrue(_nan_equal(num, nan))
            self.assertIs(den, None)
775

776 777 778 779 780 781
    def test_sign(self):
        # Test sign is calculated correctly.
        numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")]
        for d in numbers:
            # First test positive decimals.
            assert d > 0
782
            num, den = statistics._exact_ratio(d)
783 784 785
            self.assertGreaterEqual(num, 0)
            self.assertGreater(den, 0)
            # Then test negative decimals.
786
            num, den = statistics._exact_ratio(-d)
787 788 789 790 791
            self.assertLessEqual(num, 0)
            self.assertGreater(den, 0)

    def test_negative_exponent(self):
        # Test result when the exponent is negative.
792 793
        t = statistics._exact_ratio(Decimal("0.1234"))
        self.assertEqual(t, (617, 5000))
794 795 796

    def test_positive_exponent(self):
        # Test results when the exponent is positive.
797
        t = statistics._exact_ratio(Decimal("1.234e7"))
798 799 800 801 802
        self.assertEqual(t, (12340000, 1))

    def test_regression_20536(self):
        # Regression test for issue 20536.
        # See http://bugs.python.org/issue20536
803
        t = statistics._exact_ratio(Decimal("1e2"))
804
        self.assertEqual(t, (100, 1))
805
        t = statistics._exact_ratio(Decimal("1.47e5"))
806 807
        self.assertEqual(t, (147000, 1))

808

809 810 811 812 813 814 815
class IsFiniteTest(unittest.TestCase):
    # Test _isfinite private function.

    def test_finite(self):
        # Test that finite numbers are recognised as finite.
        for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")):
            self.assertTrue(statistics._isfinite(x))
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    def test_infinity(self):
        # Test that INFs are not recognised as finite.
        for x in (float("inf"), Decimal("inf")):
            self.assertFalse(statistics._isfinite(x))

    def test_nan(self):
        # Test that NANs are not recognised as finite.
        for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")):
            self.assertFalse(statistics._isfinite(x))


class CoerceTest(unittest.TestCase):
    # Test that private function _coerce correctly deals with types.

    # The coercion rules are currently an implementation detail, although at
    # some point that should change. The tests and comments here define the
    # correct implementation.

    # Pre-conditions of _coerce:
    #
    #   - The first time _sum calls _coerce, the
    #   - coerce(T, S) will never be called with bool as the first argument;
    #     this is a pre-condition, guarded with an assertion.

    #
    #   - coerce(T, T) will always return T; we assume T is a valid numeric
    #     type. Violate this assumption at your own risk.
    #
    #   - Apart from as above, bool is treated as if it were actually int.
    #
    #   - coerce(int, X) and coerce(X, int) return X.
    #   -
    def test_bool(self):
        # bool is somewhat special, due to the pre-condition that it is
        # never given as the first argument to _coerce, and that it cannot
        # be subclassed. So we test it specially.
        for T in (int, float, Fraction, Decimal):
            self.assertIs(statistics._coerce(T, bool), T)
            class MyClass(T): pass
            self.assertIs(statistics._coerce(MyClass, bool), MyClass)

    def assertCoerceTo(self, A, B):
        """Assert that type A coerces to B."""
        self.assertIs(statistics._coerce(A, B), B)
        self.assertIs(statistics._coerce(B, A), B)

    def check_coerce_to(self, A, B):
        """Checks that type A coerces to B, including subclasses."""
        # Assert that type A is coerced to B.
        self.assertCoerceTo(A, B)
        # Subclasses of A are also coerced to B.
        class SubclassOfA(A): pass
        self.assertCoerceTo(SubclassOfA, B)
        # A, and subclasses of A, are coerced to subclasses of B.
        class SubclassOfB(B): pass
        self.assertCoerceTo(A, SubclassOfB)
        self.assertCoerceTo(SubclassOfA, SubclassOfB)

    def assertCoerceRaises(self, A, B):
        """Assert that coercing A to B, or vice versa, raises TypeError."""
        self.assertRaises(TypeError, statistics._coerce, (A, B))
        self.assertRaises(TypeError, statistics._coerce, (B, A))

    def check_type_coercions(self, T):
        """Check that type T coerces correctly with subclasses of itself."""
        assert T is not bool
        # Coercing a type with itself returns the same type.
        self.assertIs(statistics._coerce(T, T), T)
        # Coercing a type with a subclass of itself returns the subclass.
        class U(T): pass
        class V(T): pass
        class W(U): pass
        for typ in (U, V, W):
            self.assertCoerceTo(T, typ)
        self.assertCoerceTo(U, W)
        # Coercing two subclasses that aren't parent/child is an error.
        self.assertCoerceRaises(U, V)
        self.assertCoerceRaises(V, W)
895

896 897 898 899 900
    def test_int(self):
        # Check that int coerces correctly.
        self.check_type_coercions(int)
        for typ in (float, Fraction, Decimal):
            self.check_coerce_to(int, typ)
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
    def test_fraction(self):
        # Check that Fraction coerces correctly.
        self.check_type_coercions(Fraction)
        self.check_coerce_to(Fraction, float)

    def test_decimal(self):
        # Check that Decimal coerces correctly.
        self.check_type_coercions(Decimal)

    def test_float(self):
        # Check that float coerces correctly.
        self.check_type_coercions(float)

    def test_non_numeric_types(self):
        for bad_type in (str, list, type(None), tuple, dict):
            for good_type in (int, float, Fraction, Decimal):
                self.assertCoerceRaises(good_type, bad_type)

    def test_incompatible_types(self):
        # Test that incompatible types raise.
        for T in (float, Fraction):
            class MySubclass(T): pass
            self.assertCoerceRaises(T, Decimal)
            self.assertCoerceRaises(MySubclass, Decimal)


class ConvertTest(unittest.TestCase):
    # Test private _convert function.

    def check_exact_equal(self, x, y):
        """Check that x equals y, and has the same type as well."""
        self.assertEqual(x, y)
        self.assertIs(type(x), type(y))

    def test_int(self):
        # Test conversions to int.
        x = statistics._convert(Fraction(71), int)
        self.check_exact_equal(x, 71)
        class MyInt(int): pass
        x = statistics._convert(Fraction(17), MyInt)
        self.check_exact_equal(x, MyInt(17))

    def test_fraction(self):
        # Test conversions to Fraction.
        x = statistics._convert(Fraction(95, 99), Fraction)
        self.check_exact_equal(x, Fraction(95, 99))
        class MyFraction(Fraction):
            def __truediv__(self, other):
                return self.__class__(super().__truediv__(other))
        x = statistics._convert(Fraction(71, 13), MyFraction)
        self.check_exact_equal(x, MyFraction(71, 13))

    def test_float(self):
        # Test conversions to float.
        x = statistics._convert(Fraction(-1, 2), float)
        self.check_exact_equal(x, -0.5)
        class MyFloat(float):
            def __truediv__(self, other):
                return self.__class__(super().__truediv__(other))
        x = statistics._convert(Fraction(9, 8), MyFloat)
        self.check_exact_equal(x, MyFloat(1.125))

    def test_decimal(self):
        # Test conversions to Decimal.
        x = statistics._convert(Fraction(1, 40), Decimal)
        self.check_exact_equal(x, Decimal("0.025"))
        class MyDecimal(Decimal):
            def __truediv__(self, other):
                return self.__class__(super().__truediv__(other))
        x = statistics._convert(Fraction(-15, 16), MyDecimal)
        self.check_exact_equal(x, MyDecimal("-0.9375"))

    def test_inf(self):
        for INF in (float('inf'), Decimal('inf')):
            for inf in (INF, -INF):
                x = statistics._convert(inf, type(inf))
                self.check_exact_equal(x, inf)

    def test_nan(self):
        for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')):
            x = statistics._convert(nan, type(nan))
            self.assertTrue(_nan_equal(x, nan))
984

985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
class FailNegTest(unittest.TestCase):
    """Test _fail_neg private function."""

    def test_pass_through(self):
        # Test that values are passed through unchanged.
        values = [1, 2.0, Fraction(3), Decimal(4)]
        new = list(statistics._fail_neg(values))
        self.assertEqual(values, new)

    def test_negatives_raise(self):
        # Test that negatives raise an exception.
        for x in [1, 2.0, Fraction(3), Decimal(4)]:
            seq = [-x]
            it = statistics._fail_neg(seq)
            self.assertRaises(statistics.StatisticsError, next, it)

    def test_error_msg(self):
        # Test that a given error message is used.
        msg = "badness #%d" % random.randint(10000, 99999)
        try:
            next(statistics._fail_neg([-1], msg))
        except statistics.StatisticsError as e:
            errmsg = e.args[0]
        else:
            self.fail("expected exception, but it didn't happen")
        self.assertEqual(errmsg, msg)


1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
# === Tests for public functions ===

class UnivariateCommonMixin:
    # Common tests for most univariate functions that take a data argument.

    def test_no_args(self):
        # Fail if given no arguments.
        self.assertRaises(TypeError, self.func)

    def test_empty_data(self):
        # Fail when the data argument (first argument) is empty.
        for empty in ([], (), iter([])):
            self.assertRaises(statistics.StatisticsError, self.func, empty)

    def prepare_data(self):
        """Return int data for various tests."""
        data = list(range(10))
        while data == sorted(data):
            random.shuffle(data)
        return data

    def test_no_inplace_modifications(self):
        # Test that the function does not modify its input data.
        data = self.prepare_data()
        assert len(data) != 1  # Necessary to avoid infinite loop.
        assert data != sorted(data)
        saved = data[:]
        assert data is not saved
        _ = self.func(data)
        self.assertListEqual(data, saved, "data has been modified")

    def test_order_doesnt_matter(self):
        # Test that the order of data points doesn't change the result.

        # CAUTION: due to floating point rounding errors, the result actually
        # may depend on the order. Consider this test representing an ideal.
        # To avoid this test failing, only test with exact values such as ints
        # or Fractions.
        data = [1, 2, 3, 3, 3, 4, 5, 6]*100
        expected = self.func(data)
        random.shuffle(data)
        actual = self.func(data)
        self.assertEqual(expected, actual)

    def test_type_of_data_collection(self):
        # Test that the type of iterable data doesn't effect the result.
        class MyList(list):
            pass
        class MyTuple(tuple):
            pass
        def generator(data):
            return (obj for obj in data)
        data = self.prepare_data()
        expected = self.func(data)
        for kind in (list, tuple, iter, MyList, MyTuple, generator):
            result = self.func(kind(data))
            self.assertEqual(result, expected)

    def test_range_data(self):
        # Test that functions work with range objects.
        data = range(20, 50, 3)
        expected = self.func(list(data))
        self.assertEqual(self.func(data), expected)

    def test_bad_arg_types(self):
        # Test that function raises when given data of the wrong type.

        # Don't roll the following into a loop like this:
        #   for bad in list_of_bad:
        #       self.check_for_type_error(bad)
        #
        # Since assertRaises doesn't show the arguments that caused the test
        # failure, it is very difficult to debug these test failures when the
        # following are in a loop.
        self.check_for_type_error(None)
        self.check_for_type_error(23)
        self.check_for_type_error(42.0)
        self.check_for_type_error(object())

    def check_for_type_error(self, *args):
        self.assertRaises(TypeError, self.func, *args)

    def test_type_of_data_element(self):
        # Check the type of data elements doesn't affect the numeric result.
        # This is a weaker test than UnivariateTypeMixin.testTypesConserved,
        # because it checks the numeric result by equality, but not by type.
        class MyFloat(float):
            def __truediv__(self, other):
                return type(self)(super().__truediv__(other))
            def __add__(self, other):
                return type(self)(super().__add__(other))
            __radd__ = __add__

        raw = self.prepare_data()
        expected = self.func(raw)
        for kind in (float, MyFloat, Decimal, Fraction):
            data = [kind(x) for x in raw]
            result = type(expected)(self.func(data))
            self.assertEqual(result, expected)


class UnivariateTypeMixin:
    """Mixin class for type-conserving functions.

    This mixin class holds test(s) for functions which conserve the type of
    individual data points. E.g. the mean of a list of Fractions should itself
    be a Fraction.

    Not all tests to do with types need go in this class. Only those that
    rely on the function returning the same type as its input data.
    """
1125 1126
    def prepare_types_for_conservation_test(self):
        """Return the types which are expected to be conserved."""
1127 1128 1129
        class MyFloat(float):
            def __truediv__(self, other):
                return type(self)(super().__truediv__(other))
1130 1131
            def __rtruediv__(self, other):
                return type(self)(super().__rtruediv__(other))
1132 1133 1134 1135 1136 1137 1138 1139 1140
            def __sub__(self, other):
                return type(self)(super().__sub__(other))
            def __rsub__(self, other):
                return type(self)(super().__rsub__(other))
            def __pow__(self, other):
                return type(self)(super().__pow__(other))
            def __add__(self, other):
                return type(self)(super().__add__(other))
            __radd__ = __add__
1141
        return (float, Decimal, Fraction, MyFloat)
1142

1143 1144 1145 1146
    def test_types_conserved(self):
        # Test that functions keeps the same type as their data points.
        # (Excludes mixed data types.) This only tests the type of the return
        # result, not the value.
1147
        data = self.prepare_data()
1148
        for kind in self.prepare_types_for_conservation_test():
1149 1150 1151 1152 1153
            d = [kind(x) for x in data]
            result = self.func(d)
            self.assertIs(type(result), kind)


1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin):
    # Common test cases for statistics._sum() function.

    # This test suite looks only at the numeric value returned by _sum,
    # after conversion to the appropriate type.
    def setUp(self):
        def simplified_sum(*args):
            T, value, n = statistics._sum(*args)
            return statistics._coerce(value, T)
        self.func = simplified_sum


class TestSum(NumericTestCase):
1167 1168
    # Test cases for statistics._sum() function.

1169 1170
    # These tests look at the entire three value tuple returned by _sum.

1171 1172 1173 1174 1175 1176
    def setUp(self):
        self.func = statistics._sum

    def test_empty_data(self):
        # Override test for empty data.
        for data in ([], (), iter([])):
1177 1178 1179
            self.assertEqual(self.func(data), (int, Fraction(0), 0))
            self.assertEqual(self.func(data, 23), (int, Fraction(23), 0))
            self.assertEqual(self.func(data, 2.3), (float, Fraction(2.3), 0))
1180 1181

    def test_ints(self):
1182 1183 1184 1185
        self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]),
                         (int, Fraction(60), 8))
        self.assertEqual(self.func([4, 2, 3, -8, 7], 1000),
                         (int, Fraction(1008), 5))
1186 1187

    def test_floats(self):
1188 1189 1190 1191
        self.assertEqual(self.func([0.25]*20),
                         (float, Fraction(5.0), 20))
        self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5),
                         (float, Fraction(3.125), 4))
1192 1193

    def test_fractions(self):
1194 1195
        self.assertEqual(self.func([Fraction(1, 1000)]*500),
                         (Fraction, Fraction(1, 2), 500))
1196 1197 1198 1199 1200 1201

    def test_decimals(self):
        D = Decimal
        data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
                D("3.974"), D("2.328"), D("4.617"), D("2.843"),
                ]
1202 1203
        self.assertEqual(self.func(data),
                         (Decimal, Decimal("20.686"), 8))
1204 1205 1206 1207 1208 1209

    def test_compare_with_math_fsum(self):
        # Compare with the math.fsum function.
        # Ideally we ought to get the exact same result, but sometimes
        # we differ by a very slight amount :-(
        data = [random.uniform(-100, 1000) for _ in range(1000)]
1210
        self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16)
1211 1212 1213 1214

    def test_start_argument(self):
        # Test that the optional start argument works correctly.
        data = [random.uniform(1, 1000) for _ in range(100)]
1215 1216 1217 1218
        t = self.func(data)[1]
        self.assertEqual(t+42, self.func(data, 42)[1])
        self.assertEqual(t-23, self.func(data, -23)[1])
        self.assertEqual(t+Fraction(1e20), self.func(data, 1e20)[1])
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

    def test_strings_fail(self):
        # Sum of strings should fail.
        self.assertRaises(TypeError, self.func, [1, 2, 3], '999')
        self.assertRaises(TypeError, self.func, [1, 2, 3, '999'])

    def test_bytes_fail(self):
        # Sum of bytes should fail.
        self.assertRaises(TypeError, self.func, [1, 2, 3], b'999')
        self.assertRaises(TypeError, self.func, [1, 2, 3, b'999'])

    def test_mixed_sum(self):
1231 1232
        # Mixed input types are not (currently) allowed.
        # Check that mixed data types fail.
1233
        self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)])
1234 1235
        # And so does mixed start argument.
        self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))
1236 1237 1238 1239 1240


class SumTortureTest(NumericTestCase):
    def test_torture(self):
        # Tim Peters' torture test for sum, and variants of same.
1241 1242 1243 1244 1245 1246 1247 1248
        self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000),
                         (float, Fraction(20000.0), 40000))
        self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000),
                         (float, Fraction(20000.0), 40000))
        T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000)
        self.assertIs(T, float)
        self.assertEqual(count, 40000)
        self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16)
1249 1250 1251 1252 1253 1254 1255 1256


class SumSpecialValues(NumericTestCase):
    # Test that sum works correctly with IEEE-754 special values.

    def test_nan(self):
        for type_ in (float, Decimal):
            nan = type_('nan')
1257
            result = statistics._sum([1, nan, 2])[1]
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
            self.assertIs(type(result), type_)
            self.assertTrue(math.isnan(result))

    def check_infinity(self, x, inf):
        """Check x is an infinity of the same type and sign as inf."""
        self.assertTrue(math.isinf(x))
        self.assertIs(type(x), type(inf))
        self.assertEqual(x > 0, inf > 0)
        assert x == inf

    def do_test_inf(self, inf):
        # Adding a single infinity gives infinity.
1270
        result = statistics._sum([1, 2, inf, 3])[1]
1271 1272
        self.check_infinity(result, inf)
        # Adding two infinities of the same sign also gives infinity.
1273
        result = statistics._sum([1, 2, inf, 3, inf, 4])[1]
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
        self.check_infinity(result, inf)

    def test_float_inf(self):
        inf = float('inf')
        for sign in (+1, -1):
            self.do_test_inf(sign*inf)

    def test_decimal_inf(self):
        inf = Decimal('inf')
        for sign in (+1, -1):
            self.do_test_inf(sign*inf)

    def test_float_mismatched_infs(self):
        # Test that adding two infinities of opposite sign gives a NAN.
        inf = float('inf')
1289
        result = statistics._sum([1, 2, inf, 3, -inf, 4])[1]
1290 1291
        self.assertTrue(math.isnan(result))

1292
    def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
1293 1294 1295 1296
        # Test adding Decimal INFs with opposite sign returns NAN.
        inf = Decimal('inf')
        data = [1, 2, inf, 3, -inf, 4]
        with decimal.localcontext(decimal.ExtendedContext):
1297
            self.assertTrue(math.isnan(statistics._sum(data)[1]))
1298

1299
    def test_decimal_basiccontext_mismatched_infs_to_nan(self):
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        # Test adding Decimal INFs with opposite sign raises InvalidOperation.
        inf = Decimal('inf')
        data = [1, 2, inf, 3, -inf, 4]
        with decimal.localcontext(decimal.BasicContext):
            self.assertRaises(decimal.InvalidOperation, statistics._sum, data)

    def test_decimal_snan_raises(self):
        # Adding sNAN should raise InvalidOperation.
        sNAN = Decimal('sNAN')
        data = [1, sNAN, 2]
        self.assertRaises(decimal.InvalidOperation, statistics._sum, data)


# === Tests for averages ===

class AverageMixin(UnivariateCommonMixin):
    # Mixin class holding common tests for averages.

    def test_single_value(self):
        # Average of a single value is the value itself.
        for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
            self.assertEqual(self.func([x]), x)

1323 1324 1325
    def prepare_values_for_repeated_single_test(self):
        return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712'))

1326 1327
    def test_repeated_single_value(self):
        # The average of a single repeated value is the value itself.
1328
        for x in self.prepare_values_for_repeated_single_test():
1329
            for count in (2, 5, 10, 20):
1330 1331 1332
                with self.subTest(x=x, count=count):
                    data = [x]*count
                    self.assertEqual(self.func(data), x)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355


class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.mean

    def test_torture_pep(self):
        # "Torture Test" from PEP-450.
        self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1)

    def test_ints(self):
        # Test mean with ints.
        data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9]
        random.shuffle(data)
        self.assertEqual(self.func(data), 4.8125)

    def test_floats(self):
        # Test mean with floats.
        data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5]
        random.shuffle(data)
        self.assertEqual(self.func(data), 22.015625)

    def test_decimals(self):
1356
        # Test mean with Decimals.
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
        D = Decimal
        data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")]
        random.shuffle(data)
        self.assertEqual(self.func(data), D("3.5896"))

    def test_fractions(self):
        # Test mean with Fractions.
        F = Fraction
        data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
        random.shuffle(data)
        self.assertEqual(self.func(data), F(1479, 1960))

    def test_inf(self):
        # Test mean with infinities.
        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
        for kind in (float, Decimal):
            for sign in (1, -1):
                inf = kind("inf")*sign
                data = raw + [inf]
                result = self.func(data)
                self.assertTrue(math.isinf(result))
                self.assertEqual(result, inf)

    def test_mismatched_infs(self):
        # Test mean with infinities of opposite sign.
        data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')]
        result = self.func(data)
        self.assertTrue(math.isnan(result))

    def test_nan(self):
        # Test mean with NANs.
        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
        for kind in (float, Decimal):
            inf = kind("nan")
            data = raw + [inf]
            result = self.func(data)
            self.assertTrue(math.isnan(result))

    def test_big_data(self):
        # Test adding a large constant to every data point.
        c = 1e9
        data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
        expected = self.func(data) + c
        assert expected != c
        result = self.func([x+c for x in data])
        self.assertEqual(result, expected)

    def test_doubled_data(self):
        # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z].
        data = [random.uniform(-3, 5) for _ in range(1000)]
        expected = self.func(data)
        actual = self.func(data*2)
        self.assertApproxEqual(actual, expected)

1411 1412 1413 1414 1415 1416
    def test_regression_20561(self):
        # Regression test for issue 20561.
        # See http://bugs.python.org/issue20561
        d = Decimal('1e4')
        self.assertEqual(statistics.mean([d]), d)

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    def test_regression_25177(self):
        # Regression test for issue 25177.
        # Ensure very big and very small floats don't overflow.
        # See http://bugs.python.org/issue25177.
        self.assertEqual(statistics.mean(
            [8.988465674311579e+307, 8.98846567431158e+307]),
            8.98846567431158e+307)
        big = 8.98846567431158e+307
        tiny = 5e-324
        for n in (2, 3, 5, 200):
            self.assertEqual(statistics.mean([big]*n), big)
            self.assertEqual(statistics.mean([tiny]*n), tiny)

1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.harmonic_mean

    def prepare_data(self):
        # Override mixin method.
        values = super().prepare_data()
        values.remove(0)
        return values

    def prepare_values_for_repeated_single_test(self):
        # Override mixin method.
        return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125'))

    def test_zero(self):
        # Test that harmonic mean returns zero when given zero.
        values = [1, 0, 2]
        self.assertEqual(self.func(values), 0)

    def test_negative_error(self):
        # Test that harmonic mean raises when given a negative value.
        exc = statistics.StatisticsError
        for values in ([-1], [1, -2, 3]):
            with self.subTest(values=values):
                self.assertRaises(exc, self.func, values)

    def test_ints(self):
        # Test harmonic mean with ints.
        data = [2, 4, 4, 8, 16, 16]
        random.shuffle(data)
        self.assertEqual(self.func(data), 6*4/5)

    def test_floats_exact(self):
        # Test harmonic mean with some carefully chosen floats.
        data = [1/8, 1/4, 1/4, 1/2, 1/2]
        random.shuffle(data)
        self.assertEqual(self.func(data), 1/4)
        self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5)

    def test_singleton_lists(self):
        # Test that harmonic mean([x]) returns (approximately) x.
        for x in range(1, 101):
1473
            self.assertEqual(self.func([x]), x)
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

    def test_decimals_exact(self):
        # Test harmonic mean with some carefully chosen Decimals.
        D = Decimal
        self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30))
        data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")]
        random.shuffle(data)
        self.assertEqual(self.func(data), D("0.10"))
        data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")]
        random.shuffle(data)
        self.assertEqual(self.func(data), D(66528)/70723)

    def test_fractions(self):
        # Test harmonic mean with Fractions.
        F = Fraction
        data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
        random.shuffle(data)
        self.assertEqual(self.func(data), F(7*420, 4029))

    def test_inf(self):
        # Test harmonic mean with infinity.
        values = [2.0, float('inf'), 1.0]
        self.assertEqual(self.func(values), 2.0)

    def test_nan(self):
        # Test harmonic mean with NANs.
        values = [2.0, float('nan'), 1.0]
        self.assertTrue(math.isnan(self.func(values)))

    def test_multiply_data_points(self):
        # Test multiplying every data point by a constant.
        c = 111
        data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
        expected = self.func(data)*c
        result = self.func([x*c for x in data])
        self.assertEqual(result, expected)

    def test_doubled_data(self):
        # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z].
        data = [random.uniform(1, 5) for _ in range(1000)]
        expected = self.func(data)
        actual = self.func(data*2)
        self.assertApproxEqual(actual, expected)


1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
class TestMedian(NumericTestCase, AverageMixin):
    # Common tests for median and all median.* functions.
    def setUp(self):
        self.func = statistics.median

    def prepare_data(self):
        """Overload method from UnivariateCommonMixin."""
        data = super().prepare_data()
        if len(data)%2 != 1:
            data.append(2)
        return data

    def test_even_ints(self):
        # Test median with an even number of int data points.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 3.5)

    def test_odd_ints(self):
        # Test median with an odd number of int data points.
        data = [1, 2, 3, 4, 5, 6, 9]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 4)

    def test_odd_fractions(self):
        # Test median works with an odd number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), F(3, 7))

    def test_even_fractions(self):
        # Test median works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(1, 2))

    def test_odd_decimals(self):
        # Test median works with an odd number of Decimals.
        D = Decimal
        data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), D('4.2'))

    def test_even_decimals(self):
        # Test median works with an even number of Decimals.
        D = Decimal
        data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('3.65'))


class TestMedianDataType(NumericTestCase, UnivariateTypeMixin):
    # Test conservation of data element type for median.
    def setUp(self):
        self.func = statistics.median

    def prepare_data(self):
        data = list(range(15))
        assert len(data)%2 == 1
        while data == sorted(data):
            random.shuffle(data)
        return data


class TestMedianLow(TestMedian, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.median_low

    def test_even_ints(self):
        # Test median_low with an even number of ints.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 3)

    def test_even_fractions(self):
        # Test median_low works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(3, 7))

    def test_even_decimals(self):
        # Test median_low works with an even number of Decimals.
        D = Decimal
        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('3.3'))


class TestMedianHigh(TestMedian, UnivariateTypeMixin):
    def setUp(self):
        self.func = statistics.median_high

    def test_even_ints(self):
        # Test median_high with an even number of ints.
        data = [1, 2, 3, 4, 5, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4)

    def test_even_fractions(self):
        # Test median_high works with an even number of Fractions.
        F = Fraction
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), F(4, 7))

    def test_even_decimals(self):
        # Test median_high works with an even number of Decimals.
        D = Decimal
        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), D('4.4'))


class TestMedianGrouped(TestMedian):
    # Test median_grouped.
    # Doesn't conserve data element types, so don't use TestMedianType.
    def setUp(self):
        self.func = statistics.median_grouped

    def test_odd_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [12, 13, 14, 14, 14, 15, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 14)
        #---
        data = [12, 13, 14, 14, 14, 14, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 13.875)
        #---
        data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data, 5), 19.375)
        #---
        data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
        assert len(data)%2 == 1
        self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)

    def test_even_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
        #---
        data = [2, 3, 4, 4, 4, 5]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
        #---
        data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.5)
        #---
        data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.75)

    def test_repeated_single_value(self):
        # Override method from AverageMixin.
        # Yet again, failure of median_grouped to conserve the data type
        # causes me headaches :-(
        for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')):
            for count in (2, 5, 10, 20):
                data = [x]*count
                self.assertEqual(self.func(data), float(x))

    def test_odd_fractions(self):
        # Test median_grouped works with an odd number of Fractions.
        F = Fraction
        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), 3.0)

    def test_even_fractions(self):
        # Test median_grouped works with an even number of Fractions.
        F = Fraction
        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 3.25)

    def test_odd_decimals(self):
        # Test median_grouped works with an odd number of Decimals.
        D = Decimal
        data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 1
        random.shuffle(data)
        self.assertEqual(self.func(data), 6.75)

    def test_even_decimals(self):
        # Test median_grouped works with an even number of Decimals.
        D = Decimal
        data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 6.5)
        #---
        data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')]
        assert len(data)%2 == 0
        random.shuffle(data)
        self.assertEqual(self.func(data), 7.0)

    def test_interval(self):
        # Test median_grouped with interval argument.
        data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
        self.assertEqual(self.func(data, 0.25), 2.875)
        data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
        self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8)
        data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340]
        self.assertEqual(self.func(data, 20), 265.0)

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    def test_data_type_error(self):
        # Test median_grouped with str, bytes data types for data and interval
        data = ["", "", ""]
        self.assertRaises(TypeError, self.func, data)
        #---
        data = [b"", b"", b""]
        self.assertRaises(TypeError, self.func, data)
        #---
        data = [1, 2, 3]
        interval = ""
        self.assertRaises(TypeError, self.func, data, interval)
        #---
        data = [1, 2, 3]
        interval = b""
        self.assertRaises(TypeError, self.func, data, interval)

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
    # Test cases for the discrete version of mode.
    def setUp(self):
        self.func = statistics.mode

    def prepare_data(self):
        """Overload method from UnivariateCommonMixin."""
        # Make sure test data has exactly one mode.
        return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]

    def test_range_data(self):
        # Override test from UnivariateCommonMixin.
        data = range(20, 50, 3)
        self.assertRaises(statistics.StatisticsError, self.func, data)

    def test_nominal_data(self):
        # Test mode with nominal data.
        data = 'abcbdb'
        self.assertEqual(self.func(data), 'b')
        data = 'fe fi fo fum fi fi'.split()
        self.assertEqual(self.func(data), 'fi')

    def test_discrete_data(self):
        # Test mode with discrete numeric data.
        data = list(range(10))
        for i in range(10):
            d = data + [i]
            random.shuffle(d)
            self.assertEqual(self.func(d), i)

    def test_bimodal_data(self):
        # Test mode with bimodal data.
        data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
        assert data.count(2) == data.count(6) == 4
        # Check for an exception.
        self.assertRaises(statistics.StatisticsError, self.func, data)

    def test_unique_data_failure(self):
        # Test mode exception when data points are all unique.
        data = list(range(10))
        self.assertRaises(statistics.StatisticsError, self.func, data)

    def test_none_data(self):
        # Test that mode raises TypeError if given None as data.

        # This test is necessary because the implementation of mode uses
        # collections.Counter, which accepts None and returns an empty dict.
        self.assertRaises(TypeError, self.func, None)

1806 1807 1808 1809 1810 1811 1812 1813
    def test_counter_data(self):
        # Test that a Counter is treated like any other iterable.
        data = collections.Counter([1, 1, 1, 2])
        # Since the keys of the counter are treated as data points, not the
        # counts, this should raise.
        self.assertRaises(statistics.StatisticsError, self.func, data)


1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

# === Tests for variances and standard deviations ===

class VarianceStdevMixin(UnivariateCommonMixin):
    # Mixin class holding common tests for variance and std dev.

    # Subclasses should inherit from this before NumericTestClass, in order
    # to see the rel attribute below. See testShiftData for an explanation.

    rel = 1e-12

    def test_single_value(self):
        # Deviation of a single value is zero.
        for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')):
            self.assertEqual(self.func([x]), 0)

    def test_repeated_single_value(self):
        # The deviation of a single repeated value is zero.
        for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')):
            for count in (2, 3, 5, 15):
                data = [x]*count
                self.assertEqual(self.func(data), 0)

    def test_domain_error_regression(self):
        # Regression test for a domain error exception.
        # (Thanks to Geremy Condra.)
        data = [0.123456789012345]*10000
        # All the items are identical, so variance should be exactly zero.
        # We allow some small round-off error, but not much.
        result = self.func(data)
        self.assertApproxEqual(result, 0.0, tol=5e-17)
        self.assertGreaterEqual(result, 0)  # A negative result must fail.

    def test_shift_data(self):
        # Test that shifting the data by a constant amount does not affect
        # the variance or stdev. Or at least not much.

        # Due to rounding, this test should be considered an ideal. We allow
        # some tolerance away from "no change at all" by setting tol and/or rel
        # attributes. Subclasses may set tighter or looser error tolerances.
        raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
        expected = self.func(raw)
        # Don't set shift too high, the bigger it is, the more rounding error.
        shift = 1e5
        data = [x + shift for x in raw]
        self.assertApproxEqual(self.func(data), expected)

    def test_shift_data_exact(self):
        # Like test_shift_data, but result is always exact.
        raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16]
        assert all(x==int(x) for x in raw)
        expected = self.func(raw)
        shift = 10**9
        data = [x + shift for x in raw]
        self.assertEqual(self.func(data), expected)

    def test_iter_list_same(self):
        # Test that iter data and list data give the same result.

        # This is an explicit test that iterators and lists are treated the
        # same; justification for this test over and above the similar test
        # in UnivariateCommonMixin is that an earlier design had variance and
        # friends swap between one- and two-pass algorithms, which would
        # sometimes give different results.
        data = [random.uniform(-3, 8) for _ in range(1000)]
        expected = self.func(data)
        self.assertEqual(self.func(iter(data)), expected)


class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
    # Tests for population variance.
    def setUp(self):
        self.func = statistics.pvariance

    def test_exact_uniform(self):
        # Test the variance against an exact result for uniform data.
        data = list(range(10000))
        random.shuffle(data)
        expected = (10000**2 - 1)/12  # Exact value.
        self.assertEqual(self.func(data), expected)

    def test_ints(self):
        # Test population variance with int data.
        data = [4, 7, 13, 16]
        exact = 22.5
        self.assertEqual(self.func(data), exact)

    def test_fractions(self):
        # Test population variance with Fraction data.
        F = Fraction
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
        exact = F(3, 8)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Fraction)

    def test_decimals(self):
        # Test population variance with Decimal data.
        D = Decimal
        data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
        exact = D('0.096875')
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Decimal)


class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
    # Tests for sample variance.
    def setUp(self):
        self.func = statistics.variance

    def test_single_value(self):
        # Override method from VarianceStdevMixin.
        for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')):
            self.assertRaises(statistics.StatisticsError, self.func, [x])

    def test_ints(self):
        # Test sample variance with int data.
        data = [4, 7, 13, 16]
        exact = 30
        self.assertEqual(self.func(data), exact)

    def test_fractions(self):
        # Test sample variance with Fraction data.
        F = Fraction
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
        exact = F(1, 2)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Fraction)

    def test_decimals(self):
        # Test sample variance with Decimal data.
        D = Decimal
        data = [D(2), D(2), D(7), D(9)]
        exact = 4*D('9.5')/D(3)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Decimal)


class TestPStdev(VarianceStdevMixin, NumericTestCase):
    # Tests for population standard deviation.
    def setUp(self):
        self.func = statistics.pstdev

    def test_compare_to_variance(self):
        # Test that stdev is, in fact, the square root of variance.
        data = [random.uniform(-17, 24) for _ in range(1000)]
        expected = math.sqrt(statistics.pvariance(data))
        self.assertEqual(self.func(data), expected)


class TestStdev(VarianceStdevMixin, NumericTestCase):
    # Tests for sample standard deviation.
    def setUp(self):
        self.func = statistics.stdev

    def test_single_value(self):
        # Override method from VarianceStdevMixin.
        for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')):
            self.assertRaises(statistics.StatisticsError, self.func, [x])

    def test_compare_to_variance(self):
        # Test that stdev is, in fact, the square root of variance.
        data = [random.uniform(-2, 9) for _ in range(1000)]
        expected = math.sqrt(statistics.variance(data))
        self.assertEqual(self.func(data), expected)


# === Run tests ===

def load_tests(loader, tests, ignore):
    """Used for doctest/unittest integration."""
    tests.addTests(doctest.DocTestSuite())
    return tests


if __name__ == "__main__":
    unittest.main()