difflib.rst 28.8 KB
Newer Older
1 2 3 4 5 6 7
:mod:`difflib` --- Helpers for computing deltas
===============================================

.. module:: difflib
   :synopsis: Helpers for computing differences between objects.
.. moduleauthor:: Tim Peters <tim_one@users.sourceforge.net>
.. sectionauthor:: Tim Peters <tim_one@users.sourceforge.net>
8
.. Markup by Fred L. Drake, Jr. <fdrake@acm.org>
9

Christian Heimes's avatar
Christian Heimes committed
10
.. testsetup::
11

Christian Heimes's avatar
Christian Heimes committed
12 13
   import sys
   from difflib import *
14

15 16 17 18 19
This module provides classes and functions for comparing sequences. It
can be used for example, for comparing files, and can produce difference
information in various formats, including HTML and context and unified
diffs. For comparing directories and files, see also, the :mod:`filecmp` module.

20 21 22
.. class:: SequenceMatcher

   This is a flexible class for comparing pairs of sequences of any type, so long
23
   as the sequence elements are :term:`hashable`.  The basic algorithm predates, and is a
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
   little fancier than, an algorithm published in the late 1980's by Ratcliff and
   Obershelp under the hyperbolic name "gestalt pattern matching."  The idea is to
   find the longest contiguous matching subsequence that contains no "junk"
   elements (the Ratcliff and Obershelp algorithm doesn't address junk).  The same
   idea is then applied recursively to the pieces of the sequences to the left and
   to the right of the matching subsequence.  This does not yield minimal edit
   sequences, but does tend to yield matches that "look right" to people.

   **Timing:** The basic Ratcliff-Obershelp algorithm is cubic time in the worst
   case and quadratic time in the expected case. :class:`SequenceMatcher` is
   quadratic time for the worst case and has expected-case behavior dependent in a
   complicated way on how many elements the sequences have in common; best case
   time is linear.


.. class:: Differ

   This is a class for comparing sequences of lines of text, and producing
   human-readable differences or deltas.  Differ uses :class:`SequenceMatcher`
   both to compare sequences of lines, and to compare sequences of characters
   within similar (near-matching) lines.

   Each line of a :class:`Differ` delta begins with a two-letter code:

   +----------+-------------------------------------------+
   | Code     | Meaning                                   |
   +==========+===========================================+
   | ``'- '`` | line unique to sequence 1                 |
   +----------+-------------------------------------------+
   | ``'+ '`` | line unique to sequence 2                 |
   +----------+-------------------------------------------+
   | ``'  '`` | line common to both sequences             |
   +----------+-------------------------------------------+
   | ``'? '`` | line not present in either input sequence |
   +----------+-------------------------------------------+

   Lines beginning with '``?``' attempt to guide the eye to intraline differences,
   and were not present in either input sequence. These lines can be confusing if
   the sequences contain tab characters.


.. class:: HtmlDiff

   This class can be used to create an HTML table (or a complete HTML file
   containing the table) showing a side by side, line by line comparison of text
   with inter-line and intra-line change highlights.  The table can be generated in
   either full or contextual difference mode.

   The constructor for this class is:


   .. function:: __init__([tabsize][, wrapcolumn][, linejunk][, charjunk])

      Initializes instance of :class:`HtmlDiff`.

      *tabsize* is an optional keyword argument to specify tab stop spacing and
      defaults to ``8``.

      *wrapcolumn* is an optional keyword to specify column number where lines are
      broken and wrapped, defaults to ``None`` where lines are not wrapped.

      *linejunk* and *charjunk* are optional keyword arguments passed into ``ndiff()``
      (used by :class:`HtmlDiff` to generate the side by side HTML differences).  See
      ``ndiff()`` documentation for argument default values and descriptions.

   The following methods are public:


   .. function:: make_file(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])

      Compares *fromlines* and *tolines* (lists of strings) and returns a string which
      is a complete HTML file containing a table showing line by line differences with
      inter-line and intra-line changes highlighted.

      *fromdesc* and *todesc* are optional keyword arguments to specify from/to file
      column header strings (both default to an empty string).

      *context* and *numlines* are both optional keyword arguments. Set *context* to
      ``True`` when contextual differences are to be shown, else the default is
      ``False`` to show the full files. *numlines* defaults to ``5``.  When *context*
      is ``True`` *numlines* controls the number of context lines which surround the
      difference highlights.  When *context* is ``False`` *numlines* controls the
      number of lines which are shown before a difference highlight when using the
      "next" hyperlinks (setting to zero would cause the "next" hyperlinks to place
      the next difference highlight at the top of the browser without any leading
      context).


   .. function:: make_table(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])

      Compares *fromlines* and *tolines* (lists of strings) and returns a string which
      is a complete HTML table showing line by line differences with inter-line and
      intra-line changes highlighted.

      The arguments for this method are the same as those for the :meth:`make_file`
      method.

   :file:`Tools/scripts/diff.py` is a command-line front-end to this class and
   contains a good example of its use.


.. function:: context_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])

127 128
   Compare *a* and *b* (lists of strings); return a delta (a :term:`generator`
   generating the delta lines) in context diff format.
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

   Context diffs are a compact way of showing just the lines that have changed plus
   a few lines of context.  The changes are shown in a before/after style.  The
   number of context lines is set by *n* which defaults to three.

   By default, the diff control lines (those with ``***`` or ``---``) are created
   with a trailing newline.  This is helpful so that inputs created from
   :func:`file.readlines` result in diffs that are suitable for use with
   :func:`file.writelines` since both the inputs and outputs have trailing
   newlines.

   For inputs that do not have trailing newlines, set the *lineterm* argument to
   ``""`` so that the output will be uniformly newline free.

   The context diff format normally has a header for filenames and modification
   times.  Any or all of these may be specified using strings for *fromfile*,
   *tofile*, *fromfiledate*, and *tofiledate*. The modification times are normally
   expressed in the format returned by :func:`time.ctime`.  If not specified, the
   strings default to blanks.

Christian Heimes's avatar
Christian Heimes committed
149 150 151
      >>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
      >>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
      >>> for line in context_diff(s1, s2, fromfile='before.py', tofile='after.py'):
Christian Heimes's avatar
Christian Heimes committed
152
      ...     sys.stdout.write(line)  # doctest: +NORMALIZE_WHITESPACE
Christian Heimes's avatar
Christian Heimes committed
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      *** before.py
      --- after.py
      ***************
      *** 1,4 ****
      ! bacon
      ! eggs
      ! ham
        guido
      --- 1,4 ----
      ! python
      ! eggy
      ! hamster
        guido

   See :ref:`difflib-interface` for a more detailed example.
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182


.. function:: get_close_matches(word, possibilities[, n][, cutoff])

   Return a list of the best "good enough" matches.  *word* is a sequence for which
   close matches are desired (typically a string), and *possibilities* is a list of
   sequences against which to match *word* (typically a list of strings).

   Optional argument *n* (default ``3``) is the maximum number of close matches to
   return; *n* must be greater than ``0``.

   Optional argument *cutoff* (default ``0.6``) is a float in the range [0, 1].
   Possibilities that don't score at least that similar to *word* are ignored.

   The best (no more than *n*) matches among the possibilities are returned in a
Christian Heimes's avatar
Christian Heimes committed
183
   list, sorted by similarity score, most similar first.
184 185 186 187 188 189 190 191 192 193 194 195 196 197

      >>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'])
      ['apple', 'ape']
      >>> import keyword
      >>> get_close_matches('wheel', keyword.kwlist)
      ['while']
      >>> get_close_matches('apple', keyword.kwlist)
      []
      >>> get_close_matches('accept', keyword.kwlist)
      ['except']


.. function:: ndiff(a, b[, linejunk][, charjunk])

198 199
   Compare *a* and *b* (lists of strings); return a :class:`Differ`\ -style
   delta (a :term:`generator` generating the delta lines).
200 201 202 203

   Optional keyword parameters *linejunk* and *charjunk* are for filter functions
   (or ``None``):

204 205 206 207 208 209 210
   *linejunk*: A function that accepts a single string argument, and returns
   true if the string is junk, or false if not. The default is ``None``. There
   is also a module-level function :func:`IS_LINE_JUNK`, which filters out lines
   without visible characters, except for at most one pound character (``'#'``)
   -- however the underlying :class:`SequenceMatcher` class does a dynamic
   analysis of which lines are so frequent as to constitute noise, and this
   usually works better than using this function.
211 212 213 214 215 216

   *charjunk*: A function that accepts a character (a string of length 1), and
   returns if the character is junk, or false if not. The default is module-level
   function :func:`IS_CHARACTER_JUNK`, which filters out whitespace characters (a
   blank or tab; note: bad idea to include newline in this!).

Christian Heimes's avatar
Christian Heimes committed
217
   :file:`Tools/scripts/ndiff.py` is a command-line front-end to this function.
218 219 220

      >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
      ...              'ore\ntree\nemu\n'.splitlines(1))
221
      >>> print(''.join(diff), end="")
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
      - one
      ?  ^
      + ore
      ?  ^
      - two
      - three
      ?  -
      + tree
      + emu


.. function:: restore(sequence, which)

   Return one of the two sequences that generated a delta.

   Given a *sequence* produced by :meth:`Differ.compare` or :func:`ndiff`, extract
   lines originating from file 1 or 2 (parameter *which*), stripping off line
   prefixes.

Christian Heimes's avatar
Christian Heimes committed
241
   Example:
242 243 244 245

      >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
      ...              'ore\ntree\nemu\n'.splitlines(1))
      >>> diff = list(diff) # materialize the generated delta into a list
246
      >>> print(''.join(restore(diff, 1)), end="")
247 248 249
      one
      two
      three
250
      >>> print(''.join(restore(diff, 2)), end="")
251 252 253 254 255 256 257
      ore
      tree
      emu


.. function:: unified_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])

258 259
   Compare *a* and *b* (lists of strings); return a delta (a :term:`generator`
   generating the delta lines) in unified diff format.
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

   Unified diffs are a compact way of showing just the lines that have changed plus
   a few lines of context.  The changes are shown in a inline style (instead of
   separate before/after blocks).  The number of context lines is set by *n* which
   defaults to three.

   By default, the diff control lines (those with ``---``, ``+++``, or ``@@``) are
   created with a trailing newline.  This is helpful so that inputs created from
   :func:`file.readlines` result in diffs that are suitable for use with
   :func:`file.writelines` since both the inputs and outputs have trailing
   newlines.

   For inputs that do not have trailing newlines, set the *lineterm* argument to
   ``""`` so that the output will be uniformly newline free.

   The context diff format normally has a header for filenames and modification
   times.  Any or all of these may be specified using strings for *fromfile*,
   *tofile*, *fromfiledate*, and *tofiledate*. The modification times are normally
   expressed in the format returned by :func:`time.ctime`.  If not specified, the
   strings default to blanks.

Christian Heimes's avatar
Christian Heimes committed
281 282 283 284

      >>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
      >>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
      >>> for line in unified_diff(s1, s2, fromfile='before.py', tofile='after.py'):
Christian Heimes's avatar
Christian Heimes committed
285
      ...     sys.stdout.write(line)   # doctest: +NORMALIZE_WHITESPACE
Christian Heimes's avatar
Christian Heimes committed
286 287 288 289 290 291 292 293 294 295 296 297
      --- before.py
      +++ after.py
      @@ -1,4 +1,4 @@
      -bacon
      -eggs
      -ham
      +python
      +eggy
      +hamster
       guido

   See :ref:`difflib-interface` for a more detailed example.
298 299 300 301 302 303


.. function:: IS_LINE_JUNK(line)

   Return true for ignorable lines.  The line *line* is ignorable if *line* is
   blank or contains a single ``'#'``, otherwise it is not ignorable.  Used as a
304
   default for parameter *linejunk* in :func:`ndiff` in older versions.
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342


.. function:: IS_CHARACTER_JUNK(ch)

   Return true for ignorable characters.  The character *ch* is ignorable if *ch*
   is a space or tab, otherwise it is not ignorable.  Used as a default for
   parameter *charjunk* in :func:`ndiff`.


.. seealso::

   `Pattern Matching: The Gestalt Approach <http://www.ddj.com/184407970?pgno=5>`_
      Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This
      was published in `Dr. Dobb's Journal <http://www.ddj.com/>`_ in July, 1988.


.. _sequence-matcher:

SequenceMatcher Objects
-----------------------

The :class:`SequenceMatcher` class has this constructor:


.. class:: SequenceMatcher([isjunk[, a[, b]]])

   Optional argument *isjunk* must be ``None`` (the default) or a one-argument
   function that takes a sequence element and returns true if and only if the
   element is "junk" and should be ignored. Passing ``None`` for *isjunk* is
   equivalent to passing ``lambda x: 0``; in other words, no elements are ignored.
   For example, pass::

      lambda x: x in " \t"

   if you're comparing lines as sequences of characters, and don't want to synch up
   on blanks or hard tabs.

   The optional arguments *a* and *b* are sequences to be compared; both default to
343
   empty strings.  The elements of both sequences must be :term:`hashable`.
344

345
   :class:`SequenceMatcher` objects have the following methods:
346 347


348
   .. method:: set_seqs(a, b)
349

350
      Set the two sequences to be compared.
351

352 353 354 355
   :class:`SequenceMatcher` computes and caches detailed information about the
   second sequence, so if you want to compare one sequence against many
   sequences, use :meth:`set_seq2` to set the commonly used sequence once and
   call :meth:`set_seq1` repeatedly, once for each of the other sequences.
356 357


358
   .. method:: set_seq1(a)
359

360 361
      Set the first sequence to be compared.  The second sequence to be compared
      is not changed.
362 363


364
   .. method:: set_seq2(b)
365

366 367
      Set the second sequence to be compared.  The first sequence to be compared
      is not changed.
368 369


370
   .. method:: find_longest_match(alo, ahi, blo, bhi)
371

372
      Find longest matching block in ``a[alo:ahi]`` and ``b[blo:bhi]``.
373

374 375 376 377 378 379 380 381
      If *isjunk* was omitted or ``None``, :meth:`find_longest_match` returns
      ``(i, j, k)`` such that ``a[i:i+k]`` is equal to ``b[j:j+k]``, where ``alo
      <= i <= i+k <= ahi`` and ``blo <= j <= j+k <= bhi``. For all ``(i', j',
      k')`` meeting those conditions, the additional conditions ``k >= k'``, ``i
      <= i'``, and if ``i == i'``, ``j <= j'`` are also met. In other words, of
      all maximal matching blocks, return one that starts earliest in *a*, and
      of all those maximal matching blocks that start earliest in *a*, return
      the one that starts earliest in *b*.
382

383 384 385
         >>> s = SequenceMatcher(None, " abcd", "abcd abcd")
         >>> s.find_longest_match(0, 5, 0, 9)
         Match(a=0, b=4, size=5)
386

387 388 389 390 391 392
      If *isjunk* was provided, first the longest matching block is determined
      as above, but with the additional restriction that no junk element appears
      in the block.  Then that block is extended as far as possible by matching
      (only) junk elements on both sides. So the resulting block never matches
      on junk except as identical junk happens to be adjacent to an interesting
      match.
393

394 395 396 397
      Here's the same example as before, but considering blanks to be junk. That
      prevents ``' abcd'`` from matching the ``' abcd'`` at the tail end of the
      second sequence directly.  Instead only the ``'abcd'`` can match, and
      matches the leftmost ``'abcd'`` in the second sequence:
398

399 400 401
         >>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
         >>> s.find_longest_match(0, 5, 0, 9)
         Match(a=1, b=0, size=4)
402

403
      If no blocks match, this returns ``(alo, blo, 0)``.
404

405
      This method returns a :term:`named tuple` ``Match(a, b, size)``.
406

407

408
   .. method:: get_matching_blocks()
409

410 411 412
      Return list of triples describing matching subsequences. Each triple is of
      the form ``(i, j, n)``, and means that ``a[i:i+n] == b[j:j+n]``.  The
      triples are monotonically increasing in *i* and *j*.
413

414 415 416 417 418
      The last triple is a dummy, and has the value ``(len(a), len(b), 0)``.  It
      is the only triple with ``n == 0``.  If ``(i, j, n)`` and ``(i', j', n')``
      are adjacent triples in the list, and the second is not the last triple in
      the list, then ``i+n != i'`` or ``j+n != j'``; in other words, adjacent
      triples always describe non-adjacent equal blocks.
419

420
      .. XXX Explain why a dummy is used!
421

422
      .. doctest::
423

424 425 426
         >>> s = SequenceMatcher(None, "abxcd", "abcd")
         >>> s.get_matching_blocks()
         [Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]
427 428


429
   .. method:: get_opcodes()
430

431 432 433 434
      Return list of 5-tuples describing how to turn *a* into *b*. Each tuple is
      of the form ``(tag, i1, i2, j1, j2)``.  The first tuple has ``i1 == j1 ==
      0``, and remaining tuples have *i1* equal to the *i2* from the preceding
      tuple, and, likewise, *j1* equal to the previous *j2*.
435

436
      The *tag* values are strings, with these meanings:
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
      +---------------+---------------------------------------------+
      | Value         | Meaning                                     |
      +===============+=============================================+
      | ``'replace'`` | ``a[i1:i2]`` should be replaced by          |
      |               | ``b[j1:j2]``.                               |
      +---------------+---------------------------------------------+
      | ``'delete'``  | ``a[i1:i2]`` should be deleted.  Note that  |
      |               | ``j1 == j2`` in this case.                  |
      +---------------+---------------------------------------------+
      | ``'insert'``  | ``b[j1:j2]`` should be inserted at          |
      |               | ``a[i1:i1]``. Note that ``i1 == i2`` in     |
      |               | this case.                                  |
      +---------------+---------------------------------------------+
      | ``'equal'``   | ``a[i1:i2] == b[j1:j2]`` (the sub-sequences |
      |               | are equal).                                 |
      +---------------+---------------------------------------------+
454

455
      For example:
456

457 458 459 460 461 462 463 464 465 466 467
        >>> a = "qabxcd"
        >>> b = "abycdf"
        >>> s = SequenceMatcher(None, a, b)
        >>> for tag, i1, i2, j1, j2 in s.get_opcodes():
        ...    print(("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
        ...           (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])))
         delete a[0:1] (q) b[0:0] ()
          equal a[1:3] (ab) b[0:2] (ab)
        replace a[3:4] (x) b[2:3] (y)
          equal a[4:6] (cd) b[3:5] (cd)
         insert a[6:6] () b[5:6] (f)
468 469


470
   .. method:: get_grouped_opcodes([n])
471

472
      Return a :term:`generator` of groups with up to *n* lines of context.
473

474 475 476
      Starting with the groups returned by :meth:`get_opcodes`, this method
      splits out smaller change clusters and eliminates intervening ranges which
      have no changes.
477

478
      The groups are returned in the same format as :meth:`get_opcodes`.
479 480


481
   .. method:: ratio()
482

483 484
      Return a measure of the sequences' similarity as a float in the range [0,
      1].
485

486 487 488
      Where T is the total number of elements in both sequences, and M is the
      number of matches, this is 2.0\*M / T. Note that this is ``1.0`` if the
      sequences are identical, and ``0.0`` if they have nothing in common.
489

490 491 492 493
      This is expensive to compute if :meth:`get_matching_blocks` or
      :meth:`get_opcodes` hasn't already been called, in which case you may want
      to try :meth:`quick_ratio` or :meth:`real_quick_ratio` first to get an
      upper bound.
494 495


496
   .. method:: quick_ratio()
497

498
      Return an upper bound on :meth:`ratio` relatively quickly.
499

500 501
      This isn't defined beyond that it is an upper bound on :meth:`ratio`, and
      is faster to compute.
502 503


504
   .. method:: real_quick_ratio()
505

506
      Return an upper bound on :meth:`ratio` very quickly.
507

508 509
      This isn't defined beyond that it is an upper bound on :meth:`ratio`, and
      is faster to compute than either :meth:`ratio` or :meth:`quick_ratio`.
510 511 512 513

The three methods that return the ratio of matching to total characters can give
different results due to differing levels of approximation, although
:meth:`quick_ratio` and :meth:`real_quick_ratio` are always at least as large as
Christian Heimes's avatar
Christian Heimes committed
514
:meth:`ratio`:
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

   >>> s = SequenceMatcher(None, "abcd", "bcde")
   >>> s.ratio()
   0.75
   >>> s.quick_ratio()
   0.75
   >>> s.real_quick_ratio()
   1.0


.. _sequencematcher-examples:

SequenceMatcher Examples
------------------------

Christian Heimes's avatar
Christian Heimes committed
530
This example compares two strings, considering blanks to be "junk:"
531 532 533 534 535 536 537

   >>> s = SequenceMatcher(lambda x: x == " ",
   ...                     "private Thread currentThread;",
   ...                     "private volatile Thread currentThread;")

:meth:`ratio` returns a float in [0, 1], measuring the similarity of the
sequences.  As a rule of thumb, a :meth:`ratio` value over 0.6 means the
Christian Heimes's avatar
Christian Heimes committed
538
sequences are close matches:
539

540
   >>> print(round(s.ratio(), 3))
541 542 543
   0.866

If you're only interested in where the sequences match,
Christian Heimes's avatar
Christian Heimes committed
544
:meth:`get_matching_blocks` is handy:
545 546

   >>> for block in s.get_matching_blocks():
547
   ...     print("a[%d] and b[%d] match for %d elements" % block)
548
   a[0] and b[0] match for 8 elements
Christian Heimes's avatar
Christian Heimes committed
549
   a[8] and b[17] match for 21 elements
550 551 552 553 554 555 556
   a[29] and b[38] match for 0 elements

Note that the last tuple returned by :meth:`get_matching_blocks` is always a
dummy, ``(len(a), len(b), 0)``, and this is the only case in which the last
tuple element (number of elements matched) is ``0``.

If you want to know how to change the first sequence into the second, use
Christian Heimes's avatar
Christian Heimes committed
557
:meth:`get_opcodes`:
558 559

   >>> for opcode in s.get_opcodes():
560
   ...     print("%6s a[%d:%d] b[%d:%d]" % opcode)
561 562
    equal a[0:8] b[0:8]
   insert a[8:8] b[8:17]
Christian Heimes's avatar
Christian Heimes committed
563
    equal a[8:29] b[17:38]
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

See also the function :func:`get_close_matches` in this module, which shows how
simple code building on :class:`SequenceMatcher` can be used to do useful work.


.. _differ-objects:

Differ Objects
--------------

Note that :class:`Differ`\ -generated deltas make no claim to be **minimal**
diffs. To the contrary, minimal diffs are often counter-intuitive, because they
synch up anywhere possible, sometimes accidental matches 100 pages apart.
Restricting synch points to contiguous matches preserves some notion of
locality, at the occasional cost of producing a longer diff.

The :class:`Differ` class has this constructor:


.. class:: Differ([linejunk[, charjunk]])

   Optional keyword parameters *linejunk* and *charjunk* are for filter functions
   (or ``None``):

   *linejunk*: A function that accepts a single string argument, and returns true
   if the string is junk.  The default is ``None``, meaning that no line is
   considered junk.

   *charjunk*: A function that accepts a single character argument (a string of
   length 1), and returns true if the character is junk. The default is ``None``,
   meaning that no character is considered junk.

596
   :class:`Differ` objects are used (deltas generated) via a single method:
597 598


599
   .. method:: Differ.compare(a, b)
600

601
      Compare two sequences of lines, and generate the delta (a sequence of lines).
602

603 604 605 606
      Each sequence must contain individual single-line strings ending with newlines.
      Such sequences can be obtained from the :meth:`readlines` method of file-like
      objects.  The delta generated also consists of newline-terminated strings, ready
      to be printed as-is via the :meth:`writelines` method of a file-like object.
607 608 609 610 611 612 613 614 615


.. _differ-examples:

Differ Example
--------------

This example compares two texts. First we set up the texts, sequences of
individual single-line strings ending with newlines (such sequences can also be
Christian Heimes's avatar
Christian Heimes committed
616
obtained from the :meth:`readlines` method of file-like objects):
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

   >>> text1 = '''  1. Beautiful is better than ugly.
   ...   2. Explicit is better than implicit.
   ...   3. Simple is better than complex.
   ...   4. Complex is better than complicated.
   ... '''.splitlines(1)
   >>> len(text1)
   4
   >>> text1[0][-1]
   '\n'
   >>> text2 = '''  1. Beautiful is better than ugly.
   ...   3.   Simple is better than complex.
   ...   4. Complicated is better than complex.
   ...   5. Flat is better than nested.
   ... '''.splitlines(1)

Christian Heimes's avatar
Christian Heimes committed
633
Next we instantiate a Differ object:
634 635 636 637 638 639 640

   >>> d = Differ()

Note that when instantiating a :class:`Differ` object we may pass functions to
filter out line and character "junk."  See the :meth:`Differ` constructor for
details.

Christian Heimes's avatar
Christian Heimes committed
641
Finally, we compare the two:
642 643 644

   >>> result = list(d.compare(text1, text2))

Christian Heimes's avatar
Christian Heimes committed
645
``result`` is a list of strings, so let's pretty-print it:
646 647 648 649 650 651 652

   >>> from pprint import pprint
   >>> pprint(result)
   ['    1. Beautiful is better than ugly.\n',
    '-   2. Explicit is better than implicit.\n',
    '-   3. Simple is better than complex.\n',
    '+   3.   Simple is better than complex.\n',
Christian Heimes's avatar
Christian Heimes committed
653
    '?     ++\n',
654
    '-   4. Complex is better than complicated.\n',
Christian Heimes's avatar
Christian Heimes committed
655
    '?            ^                     ---- ^\n',
656
    '+   4. Complicated is better than complex.\n',
Christian Heimes's avatar
Christian Heimes committed
657
    '?           ++++ ^                      ^\n',
658 659
    '+   5. Flat is better than nested.\n']

Christian Heimes's avatar
Christian Heimes committed
660
As a single multi-line string it looks like this:
661 662 663 664 665 666 667 668 669 670 671 672 673 674

   >>> import sys
   >>> sys.stdout.writelines(result)
       1. Beautiful is better than ugly.
   -   2. Explicit is better than implicit.
   -   3. Simple is better than complex.
   +   3.   Simple is better than complex.
   ?     ++
   -   4. Complex is better than complicated.
   ?            ^                     ---- ^
   +   4. Complicated is better than complex.
   ?           ++++ ^                      ^
   +   5. Flat is better than nested.

Christian Heimes's avatar
Christian Heimes committed
675 676 677 678 679 680 681 682 683 684

.. _difflib-interface:

A command-line interface to difflib
-----------------------------------

This example shows how to use difflib to create a ``diff``-like utility.
It is also contained in the Python source distribution, as
:file:`Tools/scripts/diff.py`.

Christian Heimes's avatar
Christian Heimes committed
685
.. testcode::
Christian Heimes's avatar
Christian Heimes committed
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

   """ Command line interface to difflib.py providing diffs in four formats:

   * ndiff:    lists every line and highlights interline changes.
   * context:  highlights clusters of changes in a before/after format.
   * unified:  highlights clusters of changes in an inline format.
   * html:     generates side by side comparison with change highlights.

   """

   import sys, os, time, difflib, optparse

   def main():
        # Configure the option parser
       usage = "usage: %prog [options] fromfile tofile"
       parser = optparse.OptionParser(usage)
       parser.add_option("-c", action="store_true", default=False,
                         help='Produce a context format diff (default)')
       parser.add_option("-u", action="store_true", default=False,
                         help='Produce a unified format diff')
       hlp = 'Produce HTML side by side diff (can use -c and -l in conjunction)'
       parser.add_option("-m", action="store_true", default=False, help=hlp)
       parser.add_option("-n", action="store_true", default=False,
                         help='Produce a ndiff format diff')
       parser.add_option("-l", "--lines", type="int", default=3,
                         help='Set number of context lines (default 3)')
       (options, args) = parser.parse_args()

       if len(args) == 0:
           parser.print_help()
           sys.exit(1)
       if len(args) != 2:
           parser.error("need to specify both a fromfile and tofile")

       n = options.lines
       fromfile, tofile = args # as specified in the usage string

       # we're passing these as arguments to the diff function
       fromdate = time.ctime(os.stat(fromfile).st_mtime)
       todate = time.ctime(os.stat(tofile).st_mtime)
       fromlines = open(fromfile, 'U').readlines()
       tolines = open(tofile, 'U').readlines()

       if options.u:
           diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile,
                                       fromdate, todate, n=n)
       elif options.n:
           diff = difflib.ndiff(fromlines, tolines)
       elif options.m:
           diff = difflib.HtmlDiff().make_file(fromlines, tolines, fromfile,
                                               tofile, context=options.c,
                                               numlines=n)
       else:
           diff = difflib.context_diff(fromlines, tolines, fromfile, tofile,
                                       fromdate, todate, n=n)

       # we're using writelines because diff is a generator
       sys.stdout.writelines(diff)

   if __name__ == '__main__':
       main()