libaudioop.tex 9.98 KB
Newer Older
Fred Drake's avatar
Fred Drake committed
1
\section{\module{audioop} ---
2
         Manipulate raw audio data}
3

4
\declaremodule{builtin}{audioop}
5 6
\modulesynopsis{Manipulate raw audio data.}

7

8 9 10
The \module{audioop} module contains some useful operations on sound
fragments.  It operates on sound fragments consisting of signed
integer samples 8, 16 or 32 bits wide, stored in Python strings.  This
11
is the same format as used by the \refmodule{al} and \refmodule{sunaudiodev}
12 13 14 15 16 17 18
modules.  All scalar items are integers, unless specified otherwise.

% This para is mostly here to provide an excuse for the index entries...
This module provides support for u-LAW and Intel/DVI ADPCM encodings.
\index{Intel/DVI ADPCM}
\index{ADPCM, Intel/DVI}
\index{u-LAW}
19 20

A few of the more complicated operations only take 16-bit samples,
21 22
otherwise the sample size (in bytes) is always a parameter of the
operation.
23 24 25 26 27 28 29 30

The module defines the following variables and functions:

\begin{excdesc}{error}
This exception is raised on all errors, such as unknown number of bytes
per sample, etc.
\end{excdesc}

31
\begin{funcdesc}{add}{fragment1, fragment2, width}
32 33 34 35
Return a fragment which is the addition of the two samples passed as
parameters.  \var{width} is the sample width in bytes, either
\code{1}, \code{2} or \code{4}.  Both fragments should have the same
length.
36 37
\end{funcdesc}

38
\begin{funcdesc}{adpcm2lin}{adpcmfragment, width, state}
39
Decode an Intel/DVI ADPCM coded fragment to a linear fragment.  See
40
the description of \function{lin2adpcm()} for details on ADPCM coding.
41 42
Return a tuple \code{(\var{sample}, \var{newstate})} where the sample
has the width specified in \var{width}.
43 44
\end{funcdesc}

45
\begin{funcdesc}{adpcm32lin}{adpcmfragment, width, state}
46 47
Decode an alternative 3-bit ADPCM code.  See \function{lin2adpcm3()}
for details.
48 49
\end{funcdesc}

50
\begin{funcdesc}{avg}{fragment, width}
51
Return the average over all samples in the fragment.
52 53
\end{funcdesc}

54
\begin{funcdesc}{avgpp}{fragment, width}
55 56 57
Return the average peak-peak value over all samples in the fragment.
No filtering is done, so the usefulness of this routine is
questionable.
58 59
\end{funcdesc}

60
\begin{funcdesc}{bias}{fragment, width, bias}
61 62
Return a fragment that is the original fragment with a bias added to
each sample.
63 64
\end{funcdesc}

65
\begin{funcdesc}{cross}{fragment, width}
66 67
Return the number of zero crossings in the fragment passed as an
argument.
68 69
\end{funcdesc}

70
\begin{funcdesc}{findfactor}{fragment, reference}
71
Return a factor \var{F} such that
72 73 74 75
\code{rms(add(\var{fragment}, mul(\var{reference}, -\var{F})))} is
minimal, i.e., return the factor with which you should multiply
\var{reference} to make it match as well as possible to
\var{fragment}.  The fragments should both contain 2-byte samples.
76

77 78
The time taken by this routine is proportional to
\code{len(\var{fragment})}.
79 80
\end{funcdesc}

81
\begin{funcdesc}{findfit}{fragment, reference}
82 83 84
Try to match \var{reference} as well as possible to a portion of
\var{fragment} (which should be the longer fragment).  This is
(conceptually) done by taking slices out of \var{fragment}, using
85
\function{findfactor()} to compute the best match, and minimizing the
86 87
result.  The fragments should both contain 2-byte samples.  Return a
tuple \code{(\var{offset}, \var{factor})} where \var{offset} is the
88
(integer) offset into \var{fragment} where the optimal match started
89
and \var{factor} is the (floating-point) factor as per
90
\function{findfactor()}.
91 92
\end{funcdesc}

93
\begin{funcdesc}{findmax}{fragment, length}
94 95 96 97
Search \var{fragment} for a slice of length \var{length} samples (not
bytes!)\ with maximum energy, i.e., return \var{i} for which
\code{rms(fragment[i*2:(i+length)*2])} is maximal.  The fragments
should both contain 2-byte samples.
98

99
The routine takes time proportional to \code{len(\var{fragment})}.
100 101
\end{funcdesc}

102
\begin{funcdesc}{getsample}{fragment, width, index}
103
Return the value of sample \var{index} from the fragment.
104 105
\end{funcdesc}

106
\begin{funcdesc}{lin2lin}{fragment, width, newwidth}
107
Convert samples between 1-, 2- and 4-byte formats.
108 109
\end{funcdesc}

110
\begin{funcdesc}{lin2adpcm}{fragment, width, state}
111 112 113 114 115
Convert samples to 4 bit Intel/DVI ADPCM encoding.  ADPCM coding is an
adaptive coding scheme, whereby each 4 bit number is the difference
between one sample and the next, divided by a (varying) step.  The
Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it
may well become a standard.
116

117
\var{state} is a tuple containing the state of the coder.  The coder
118
returns a tuple \code{(\var{adpcmfrag}, \var{newstate})}, and the
119 120 121 122
\var{newstate} should be passed to the next call of
\function{lin2adpcm()}.  In the initial call, \code{None} can be
passed as the state.  \var{adpcmfrag} is the ADPCM coded fragment
packed 2 4-bit values per byte.
123 124
\end{funcdesc}

125
\begin{funcdesc}{lin2adpcm3}{fragment, width, state}
126 127
This is an alternative ADPCM coder that uses only 3 bits per sample.
It is not compatible with the Intel/DVI ADPCM coder and its output is
128
not packed (due to laziness on the side of the author).  Its use is
129 130 131
discouraged.
\end{funcdesc}

132
\begin{funcdesc}{lin2ulaw}{fragment, width}
133 134
Convert samples in the audio fragment to u-LAW encoding and return
this as a Python string.  u-LAW is an audio encoding format whereby
135 136
you get a dynamic range of about 14 bits using only 8 bit samples.  It
is used by the Sun audio hardware, among others.
137 138
\end{funcdesc}

139
\begin{funcdesc}{minmax}{fragment, width}
140 141
Return a tuple consisting of the minimum and maximum values of all
samples in the sound fragment.
142 143
\end{funcdesc}

144
\begin{funcdesc}{max}{fragment, width}
145
Return the maximum of the \emph{absolute value} of all samples in a
146
fragment.
147 148
\end{funcdesc}

149
\begin{funcdesc}{maxpp}{fragment, width}
150
Return the maximum peak-peak value in the sound fragment.
151 152
\end{funcdesc}

153
\begin{funcdesc}{mul}{fragment, width, factor}
154
Return a fragment that has all samples in the original fragment
155
multiplied by the floating-point value \var{factor}.  Overflow is
156 157 158
silently ignored.
\end{funcdesc}

159 160
\begin{funcdesc}{ratecv}{fragment, width, nchannels, inrate, outrate,
                         state\optional{, weightA\optional{, weightB}}}
161 162
Convert the frame rate of the input fragment.

163
\var{state} is a tuple containing the state of the converter.  The
164
converter returns a tuple \code{(\var{newfragment}, \var{newstate})},
165
and \var{newstate} should be passed to the next call of
166 167
\function{ratecv()}.  The initial call should pass \code{None}
as the state.
168

169
The \var{weightA} and \var{weightB} arguments are parameters for a
170
simple digital filter and default to \code{1} and \code{0} respectively.
171 172
\end{funcdesc}

173
\begin{funcdesc}{reverse}{fragment, width}
174
Reverse the samples in a fragment and returns the modified fragment.
175 176
\end{funcdesc}

177
\begin{funcdesc}{rms}{fragment, width}
178
Return the root-mean-square of the fragment, i.e.
179 180 181 182 183 184 185
\begin{displaymath}
\catcode`_=8
\sqrt{\frac{\sum{{S_{i}}^{2}}}{n}}
\end{displaymath}
This is a measure of the power in an audio signal.
\end{funcdesc}

186
\begin{funcdesc}{tomono}{fragment, width, lfactor, rfactor} 
187 188 189
Convert a stereo fragment to a mono fragment.  The left channel is
multiplied by \var{lfactor} and the right channel by \var{rfactor}
before adding the two channels to give a mono signal.
190 191
\end{funcdesc}

192
\begin{funcdesc}{tostereo}{fragment, width, lfactor, rfactor}
193 194 195 196
Generate a stereo fragment from a mono fragment.  Each pair of samples
in the stereo fragment are computed from the mono sample, whereby left
channel samples are multiplied by \var{lfactor} and right channel
samples by \var{rfactor}.
197 198
\end{funcdesc}

199
\begin{funcdesc}{ulaw2lin}{fragment, width}
200 201
Convert sound fragments in u-LAW encoding to linearly encoded sound
fragments.  u-LAW encoding always uses 8 bits samples, so \var{width}
202
refers only to the sample width of the output fragment here.
203 204
\end{funcdesc}

205 206 207 208 209 210
Note that operations such as \function{mul()} or \function{max()} make
no distinction between mono and stereo fragments, i.e.\ all samples
are treated equal.  If this is a problem the stereo fragment should be
split into two mono fragments first and recombined later.  Here is an
example of how to do that:

211
\begin{verbatim}
212 213 214 215 216 217 218 219
def mul_stereo(sample, width, lfactor, rfactor):
    lsample = audioop.tomono(sample, width, 1, 0)
    rsample = audioop.tomono(sample, width, 0, 1)
    lsample = audioop.mul(sample, width, lfactor)
    rsample = audioop.mul(sample, width, rfactor)
    lsample = audioop.tostereo(lsample, width, 1, 0)
    rsample = audioop.tostereo(rsample, width, 0, 1)
    return audioop.add(lsample, rsample, width)
220
\end{verbatim}
221

222
If you use the ADPCM coder to build network packets and you want your
223
protocol to be stateless (i.e.\ to be able to tolerate packet loss)
224
you should not only transmit the data but also the state.  Note that
225
you should send the \var{initial} state (the one you passed to
226 227 228 229
\function{lin2adpcm()}) along to the decoder, not the final state (as
returned by the coder).  If you want to use \function{struct.struct()}
to store the state in binary you can code the first element (the
predicted value) in 16 bits and the second (the delta index) in 8.
230 231

The ADPCM coders have never been tried against other ADPCM coders,
232
only against themselves.  It could well be that I misinterpreted the
233 234 235
standards in which case they will not be interoperable with the
respective standards.

236
The \function{find*()} routines might look a bit funny at first sight.
237
They are primarily meant to do echo cancellation.  A reasonably
238 239 240
fast way to do this is to pick the most energetic piece of the output
sample, locate that in the input sample and subtract the whole output
sample from the input sample:
241

242
\begin{verbatim}
243 244 245 246 247 248 249 250 251 252 253 254
def echocancel(outputdata, inputdata):
    pos = audioop.findmax(outputdata, 800)    # one tenth second
    out_test = outputdata[pos*2:]
    in_test = inputdata[pos*2:]
    ipos, factor = audioop.findfit(in_test, out_test)
    # Optional (for better cancellation):
    # factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)], 
    #              out_test)
    prefill = '\0'*(pos+ipos)*2
    postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))
    outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
    return audioop.add(inputdata, outputdata, 2)
255
\end{verbatim}