fourstep.c 6.35 KB
Newer Older
1
/*
2
 * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */


#include "mpdecimal.h"
#include <assert.h>
#include "numbertheory.h"
#include "sixstep.h"
#include "transpose.h"
#include "umodarith.h"
#include "fourstep.h"


/* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
   form 3 * 2**n (See literature/matrix-transform.txt). */


#ifndef PPRO
static inline void
std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3,
              mpd_uint_t w3table[3], mpd_uint_t umod)
{
    mpd_uint_t r1, r2;
    mpd_uint_t w;
    mpd_uint_t s, tmp;


    /* k = 0 -> w = 1 */
    s = *x1;
    s = addmod(s, *x2, umod);
    s = addmod(s, *x3, umod);

    r1 = s;

    /* k = 1 */
    s = *x1;

    w = w3table[1];
    tmp = MULMOD(*x2, w);
    s = addmod(s, tmp, umod);

    w = w3table[2];
    tmp = MULMOD(*x3, w);
    s = addmod(s, tmp, umod);

    r2 = s;

    /* k = 2 */
    s = *x1;

    w = w3table[2];
    tmp = MULMOD(*x2, w);
    s = addmod(s, tmp, umod);

    w = w3table[1];
    tmp = MULMOD(*x3, w);
    s = addmod(s, tmp, umod);

    *x3 = s;
    *x2 = r2;
    *x1 = r1;
}
#else /* PPRO */
static inline void
ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3],
               mpd_uint_t umod, double *dmod, uint32_t dinvmod[3])
{
    mpd_uint_t r1, r2;
    mpd_uint_t w;
    mpd_uint_t s, tmp;


    /* k = 0 -> w = 1 */
    s = *x1;
    s = addmod(s, *x2, umod);
    s = addmod(s, *x3, umod);

    r1 = s;

    /* k = 1 */
    s = *x1;

    w = w3table[1];
    tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
    s = addmod(s, tmp, umod);

    w = w3table[2];
    tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
    s = addmod(s, tmp, umod);

    r2 = s;

    /* k = 2 */
    s = *x1;

    w = w3table[2];
    tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
    s = addmod(s, tmp, umod);

    w = w3table[1];
    tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
    s = addmod(s, tmp, umod);

    *x3 = s;
    *x2 = r2;
    *x1 = r1;
}
#endif


/* forward transform, sign = -1; transform length = 3 * 2**n */
int
four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
    mpd_size_t R = 3; /* number of rows */
    mpd_size_t C = n / 3; /* number of columns */
    mpd_uint_t w3table[3];
    mpd_uint_t kernel, w0, w1, wstep;
    mpd_uint_t *s, *p0, *p1, *p2;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_size_t i, k;


    assert(n >= 48);
    assert(n <= 3*MPD_MAXTRANSFORM_2N);


    /* Length R transform on the columns. */
    SETMODULUS(modnum);
    _mpd_init_w3table(w3table, -1, modnum);
    for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {

        SIZE3_NTT(p0, p1, p2, w3table);
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    kernel = _mpd_getkernel(n, -1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;                  /* r**(i*0): initial value for k=0 */
        w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
        wstep = MULMOD(w1, w1);  /* r**(2*i) */
        for (k = 0; k < C-1; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Length C transform on the rows. */
    for (s = a; s < a+n; s += C) {
        if (!six_step_fnt(s, C, modnum)) {
            return 0;
        }
    }

187 188
#if 0
    /* An unordered transform is sufficient for convolution. */
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    /* Transpose the matrix. */
    transpose_3xpow2(a, R, C);
#endif

    return 1;
}

/* backward transform, sign = 1; transform length = 3 * 2**n */
int
inv_four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
    mpd_size_t R = 3; /* number of rows */
    mpd_size_t C = n / 3; /* number of columns */
    mpd_uint_t w3table[3];
    mpd_uint_t kernel, w0, w1, wstep;
    mpd_uint_t *s, *p0, *p1, *p2;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_size_t i, k;


    assert(n >= 48);
    assert(n <= 3*MPD_MAXTRANSFORM_2N);


217 218
#if 0
    /* An unordered transform is sufficient for convolution. */
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    /* Transpose the matrix, producing an R*C matrix. */
    transpose_3xpow2(a, C, R);
#endif

    /* Length C transform on the rows. */
    for (s = a; s < a+n; s += C) {
        if (!inv_six_step_fnt(s, C, modnum)) {
            return 0;
        }
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    SETMODULUS(modnum);
    kernel = _mpd_getkernel(n, 1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;
        w1 = POWMOD(kernel, i);
        wstep = MULMOD(w1, w1);
        for (k = 0; k < C; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Length R transform on the columns. */
    _mpd_init_w3table(w3table, 1, modnum);
    for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {

        SIZE3_NTT(p0, p1, p2, w3table);
    }

    return 1;
}