timeit.rst 12.7 KB
Newer Older
1 2 3 4 5 6
:mod:`timeit` --- Measure execution time of small code snippets
===============================================================

.. module:: timeit
   :synopsis: Measure the execution time of small code snippets.

7
**Source code:** :source:`Lib/timeit.py`
8 9 10 11 12

.. index::
   single: Benchmarking
   single: Performance

Raymond Hettinger's avatar
Raymond Hettinger committed
13 14
--------------

15
This module provides a simple way to time small bits of Python code. It has both
16
a :ref:`timeit-command-line-interface` as well as a :ref:`callable <python-interface>`
17 18 19
one.  It avoids a number of common traps for measuring execution times.
See also Tim Peters' introduction to the "Algorithms" chapter in the *Python
Cookbook*, published by O'Reilly.
20 21


22 23
Basic Examples
--------------
24

25
The following example shows how the :ref:`timeit-command-line-interface`
26
can be used to compare three different expressions:
27

28
.. code-block:: sh
29

30 31 32 33 34 35
   $ python3 -m timeit '"-".join(str(n) for n in range(100))'
   10000 loops, best of 3: 30.2 usec per loop
   $ python3 -m timeit '"-".join([str(n) for n in range(100)])'
   10000 loops, best of 3: 27.5 usec per loop
   $ python3 -m timeit '"-".join(map(str, range(100)))'
   10000 loops, best of 3: 23.2 usec per loop
36

37
This can be achieved from the :ref:`python-interface` with::
38

39 40
   >>> import timeit
   >>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)
41
   0.3018611848820001
42
   >>> timeit.timeit('"-".join([str(n) for n in range(100)])', number=10000)
43
   0.2727368790656328
44
   >>> timeit.timeit('"-".join(map(str, range(100)))', number=10000)
45 46
   0.23702679807320237

47 48 49 50

Note however that :mod:`timeit` will automatically determine the number of
repetitions only when the command-line interface is used.  In the
:ref:`timeit-examples` section you can find more advanced examples.
51 52


53
.. _python-interface:
54

55 56
Python Interface
----------------
57

58
The module defines three convenience functions and a public class:
59 60


61
.. function:: timeit(stmt='pass', setup='pass', timer=<default timer>, number=1000000, globals=None)
62

63 64
   Create a :class:`Timer` instance with the given statement, *setup* code and
   *timer* function and run its :meth:`.timeit` method with *number* executions.
65 66 67 68 69
   The optional *globals* argument specifies a namespace in which to execute the
   code.

   .. versionchanged:: 3.5
      The optional *globals* parameter was added.
70 71


72
.. function:: repeat(stmt='pass', setup='pass', timer=<default timer>, repeat=3, number=1000000, globals=None)
73

74 75
   Create a :class:`Timer` instance with the given statement, *setup* code and
   *timer* function and run its :meth:`.repeat` method with the given *repeat*
76 77
   count and *number* executions.  The optional *globals* argument specifies a
   namespace in which to execute the code.
78

79 80
   .. versionchanged:: 3.5
      The optional *globals* parameter was added.
81

82
.. function:: default_timer()
83

Ezio Melotti's avatar
Ezio Melotti committed
84
   The default timer, which is always :func:`time.perf_counter`.
85

Ezio Melotti's avatar
Ezio Melotti committed
86 87
   .. versionchanged:: 3.3
      :func:`time.perf_counter` is now the default timer.
88 89


90
.. class:: Timer(stmt='pass', setup='pass', timer=<timer function>, globals=None)
91

92
   Class for timing execution speed of small code snippets.
93

94 95 96 97
   The constructor takes a statement to be timed, an additional statement used
   for setup, and a timer function.  Both statements default to ``'pass'``;
   the timer function is platform-dependent (see the module doc string).
   *stmt* and *setup* may also contain multiple statements separated by ``;``
98 99 100
   or newlines, as long as they don't contain multi-line string literals.  The
   statement will by default be executed within timeit's namespace; this behavior
   can be controlled by passing a namespace to *globals*.
101

102
   To measure the execution time of the first statement, use the :meth:`.timeit`
103 104
   method.  The :meth:`.repeat` and :meth:`.autorange` methods are convenience
   methods to call :meth:`.timeit` multiple times.
105

106 107
   The execution time of *setup* is excluded from the overall timed execution run.

108 109 110 111
   The *stmt* and *setup* parameters can also take objects that are callable
   without arguments.  This will embed calls to them in a timer function that
   will then be executed by :meth:`.timeit`.  Note that the timing overhead is a
   little larger in this case because of the extra function calls.
112

113 114
   .. versionchanged:: 3.5
      The optional *globals* parameter was added.
115

116
   .. method:: Timer.timeit(number=1000000)
117

118 119 120 121 122 123
      Time *number* executions of the main statement.  This executes the setup
      statement once, and then returns the time it takes to execute the main
      statement a number of times, measured in seconds as a float.
      The argument is the number of times through the loop, defaulting to one
      million.  The main statement, the setup statement and the timer function
      to be used are passed to the constructor.
124

125
      .. note::
126

127 128 129 130 131 132
         By default, :meth:`.timeit` temporarily turns off :term:`garbage
         collection` during the timing.  The advantage of this approach is that
         it makes independent timings more comparable.  This disadvantage is
         that GC may be an important component of the performance of the
         function being measured.  If so, GC can be re-enabled as the first
         statement in the *setup* string.  For example::
133

134
            timeit.Timer('for i in range(10): oct(i)', 'gc.enable()').timeit()
135

136

137 138 139 140 141 142 143 144 145 146 147 148 149 150
    .. method:: Timer.autorange(callback=None)

       Automatically determine how many times to call :meth:`.timeit`.

       This is a convenience function that calls :meth:`.timeit` repeatedly
       so that the total time >= 0.2 second, returning the eventual
       (number of loops, time taken for that number of loops). It calls
       :meth:`.timeit` with *number* set to successive powers of ten (10,
       100, 1000, ...) up to a maximum of one billion, until the time taken
       is at least 0.2 second, or the maximum is reached.

        If *callback* is given and is not *None*, it will be called after
        each trial with two arguments: ``callback(number, time_taken)``.

151 152
        .. versionadded:: 3.6

153

154
   .. method:: Timer.repeat(repeat=3, number=1000000)
155

156
      Call :meth:`.timeit` a few times.
157

158 159 160 161
      This is a convenience function that calls the :meth:`.timeit` repeatedly,
      returning a list of results.  The first argument specifies how many times
      to call :meth:`.timeit`.  The second argument specifies the *number*
      argument for :meth:`.timeit`.
162

163
      .. note::
164

165 166 167 168 169 170 171 172 173
         It's tempting to calculate mean and standard deviation from the result
         vector and report these.  However, this is not very useful.
         In a typical case, the lowest value gives a lower bound for how fast
         your machine can run the given code snippet; higher values in the
         result vector are typically not caused by variability in Python's
         speed, but by other processes interfering with your timing accuracy.
         So the :func:`min` of the result is probably the only number you
         should be interested in.  After that, you should look at the entire
         vector and apply common sense rather than statistics.
174 175


176 177 178 179 180 181 182 183 184
   .. method:: Timer.print_exc(file=None)

      Helper to print a traceback from the timed code.

      Typical use::

         t = Timer(...)       # outside the try/except
         try:
             t.timeit(...)    # or t.repeat(...)
185
         except Exception:
186 187 188 189 190 191 192
             t.print_exc()

      The advantage over the standard traceback is that source lines in the
      compiled template will be displayed.  The optional *file* argument directs
      where the traceback is sent; it defaults to :data:`sys.stderr`.


193
.. _timeit-command-line-interface:
194 195

Command-Line Interface
196 197 198 199
----------------------

When called as a program from the command line, the following form is used::

200
   python -m timeit [-n N] [-r N] [-u U] [-s S] [-t] [-c] [-h] [statement ...]
201

202 203 204 205 206
Where the following options are understood:

.. program:: timeit

.. cmdoption:: -n N, --number=N
207 208 209

   how many times to execute 'statement'

210 211
.. cmdoption:: -r N, --repeat=N

212 213
   how many times to repeat the timer (default 3)

214 215 216 217
.. cmdoption:: -s S, --setup=S

   statement to be executed once initially (default ``pass``)

218 219 220 221 222 223 224
.. cmdoption:: -p, --process

   measure process time, not wallclock time, using :func:`time.process_time`
   instead of :func:`time.perf_counter`, which is the default

   .. versionadded:: 3.3

225
.. cmdoption:: -t, --time
226

227
   use :func:`time.time` (deprecated)
228

229 230 231 232 233 234
.. cmdoption:: -u, --unit=U

    specify a time unit for timer output; can select usec, msec, or sec

   .. versionadded:: 3.5

235 236
.. cmdoption:: -c, --clock

237
   use :func:`time.clock` (deprecated)
238

239 240
.. cmdoption:: -v, --verbose

241 242
   print raw timing results; repeat for more digits precision

243 244
.. cmdoption:: -h, --help

245 246 247 248 249 250 251 252 253 254
   print a short usage message and exit

A multi-line statement may be given by specifying each line as a separate
statement argument; indented lines are possible by enclosing an argument in
quotes and using leading spaces.  Multiple :option:`-s` options are treated
similarly.

If :option:`-n` is not given, a suitable number of loops is calculated by trying
successive powers of 10 until the total time is at least 0.2 seconds.

255 256 257 258 259
:func:`default_timer` measurements can be affected by other programs running on
the same machine, so the best thing to do when accurate timing is necessary is
to repeat the timing a few times and use the best time.  The :option:`-r`
option is good for this; the default of 3 repetitions is probably enough in
most cases.  You can use :func:`time.process_time` to measure CPU time.
260 261 262 263 264

.. note::

   There is a certain baseline overhead associated with executing a pass statement.
   The code here doesn't try to hide it, but you should be aware of it.  The
265 266
   baseline overhead can be measured by invoking the program without arguments,
   and it might differ between Python versions.
267 268


269
.. _timeit-examples:
270 271 272 273

Examples
--------

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
It is possible to provide a setup statement that is executed only once at the beginning:

.. code-block:: sh

   $ python -m timeit -s 'text = "sample string"; char = "g"'  'char in text'
   10000000 loops, best of 3: 0.0877 usec per loop
   $ python -m timeit -s 'text = "sample string"; char = "g"'  'text.find(char)'
   1000000 loops, best of 3: 0.342 usec per loop

::

   >>> import timeit
   >>> timeit.timeit('char in text', setup='text = "sample string"; char = "g"')
   0.41440500499993504
   >>> timeit.timeit('text.find(char)', setup='text = "sample string"; char = "g"')
   1.7246671520006203

The same can be done using the :class:`Timer` class and its methods::

   >>> import timeit
   >>> t = timeit.Timer('char in text', setup='text = "sample string"; char = "g"')
   >>> t.timeit()
   0.3955516149999312
   >>> t.repeat()
   [0.40193588800002544, 0.3960157959998014, 0.39594301399984033]


The following examples show how to time expressions that contain multiple lines.
Here we compare the cost of using :func:`hasattr` vs. :keyword:`try`/:keyword:`except`
to test for missing and present object attributes:

.. code-block:: sh
306

307
   $ python -m timeit 'try:' '  str.__bool__' 'except AttributeError:' '  pass'
308
   100000 loops, best of 3: 15.7 usec per loop
309
   $ python -m timeit 'if hasattr(str, "__bool__"): pass'
310
   100000 loops, best of 3: 4.26 usec per loop
311

312
   $ python -m timeit 'try:' '  int.__bool__' 'except AttributeError:' '  pass'
313
   1000000 loops, best of 3: 1.43 usec per loop
314
   $ python -m timeit 'if hasattr(int, "__bool__"): pass'
315 316 317 318 319
   100000 loops, best of 3: 2.23 usec per loop

::

   >>> import timeit
320
   >>> # attribute is missing
321 322 323 324 325 326
   >>> s = """\
   ... try:
   ...     str.__bool__
   ... except AttributeError:
   ...     pass
   ... """
327 328 329 330 331 332 333
   >>> timeit.timeit(stmt=s, number=100000)
   0.9138244460009446
   >>> s = "if hasattr(str, '__bool__'): pass"
   >>> timeit.timeit(stmt=s, number=100000)
   0.5829014980008651
   >>>
   >>> # attribute is present
334 335 336 337 338 339
   >>> s = """\
   ... try:
   ...     int.__bool__
   ... except AttributeError:
   ...     pass
   ... """
340 341 342 343 344 345
   >>> timeit.timeit(stmt=s, number=100000)
   0.04215312199994514
   >>> s = "if hasattr(int, '__bool__'): pass"
   >>> timeit.timeit(stmt=s, number=100000)
   0.08588060699912603

346 347

To give the :mod:`timeit` module access to functions you define, you can pass a
348
*setup* parameter which contains an import statement::
349 350

   def test():
351
       """Stupid test function"""
352
       L = [i for i in range(100)]
353

354
   if __name__ == '__main__':
355 356
       import timeit
       print(timeit.timeit("test()", setup="from __main__ import test"))
357 358 359 360 361 362 363 364 365 366 367 368 369 370

Another option is to pass :func:`globals` to the  *globals* parameter, which will cause the code
to be executed within your current global namespace.  This can be more convenient
than individually specifying imports::

   def f(x):
       return x**2
   def g(x):
       return x**4
   def h(x):
       return x**8

   import timeit
   print(timeit.timeit('[func(42) for func in (f,g,h)]', globals=globals()))