test_descrtut.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
# This contains most of the executable examples from Guido's descr
# tutorial, once at
#
#     http://www.python.org/2.2/descrintro.html
#
# A few examples left implicit in the writeup were fleshed out, a few were
# skipped due to lack of interest (e.g., faking super() by hand isn't
# of much interest anymore), and a few were fiddled to make the output
# deterministic.

11
from test.support import sortdict
12 13
import pprint

14
class defaultdict(dict):
15
    def __init__(self, default=None):
16
        dict.__init__(self)
17 18 19 20
        self.default = default

    def __getitem__(self, key):
        try:
21
            return dict.__getitem__(self, key)
22 23 24 25 26 27
        except KeyError:
            return self.default

    def get(self, key, *args):
        if not args:
            args = (self.default,)
28
        return dict.get(self, key, *args)
29 30 31 32 33 34 35 36 37 38

    def merge(self, other):
        for key in other:
            if key not in self:
                self[key] = other[key]

test_1 = """

Here's the new type at work:

39
    >>> print(defaultdict)              # show our type
40
    <class 'test.test_descrtut.defaultdict'>
41
    >>> print(type(defaultdict))        # its metatype
42
    <class 'type'>
43
    >>> a = defaultdict(default=0.0)    # create an instance
44
    >>> print(a)                        # show the instance
45
    {}
46
    >>> print(type(a))                  # show its type
47
    <class 'test.test_descrtut.defaultdict'>
48
    >>> print(a.__class__)              # show its class
49
    <class 'test.test_descrtut.defaultdict'>
50
    >>> print(type(a) is a.__class__)   # its type is its class
51
    True
52
    >>> a[1] = 3.25                     # modify the instance
53
    >>> print(a)                        # show the new value
54
    {1: 3.25}
55
    >>> print(a[1])                     # show the new item
56
    3.25
57
    >>> print(a[0])                     # a non-existent item
58
    0.0
59
    >>> a.merge({1:100, 2:200})         # use a dict method
60
    >>> print(sortdict(a))              # show the result
61 62 63 64 65 66 67
    {1: 3.25, 2: 200}
    >>>

We can also use the new type in contexts where classic only allows "real"
dictionaries, such as the locals/globals dictionaries for the exec
statement or the built-in function eval():

68
    >>> print(sorted(a.keys()))
69
    [1, 2]
70 71
    >>> a['print'] = print              # need the print function here
    >>> exec("x = 3; print(x)", a)
72
    3
73
    >>> print(sorted(a.keys(), key=lambda x: (str(type(x)), x)))
74
    [1, 2, '__builtins__', 'print', 'x']
75
    >>> print(a['x'])
76 77 78 79 80 81 82
    3
    >>>

Now I'll show that defaultdict instances have dynamic instance variables,
just like classic classes:

    >>> a.default = -1
83
    >>> print(a["noway"])
84 85
    -1
    >>> a.default = -1000
86
    >>> print(a["noway"])
87
    -1000
88
    >>> 'default' in dir(a)
89
    True
90 91
    >>> a.x1 = 100
    >>> a.x2 = 200
92
    >>> print(a.x1)
93
    100
94 95
    >>> d = dir(a)
    >>> 'default' in d and 'x1' in d and 'x2' in d
96
    True
97
    >>> print(sortdict(a.__dict__))
98
    {'default': -1000, 'x1': 100, 'x2': 200}
99 100 101
    >>>
"""

102
class defaultdict2(dict):
103 104 105
    __slots__ = ['default']

    def __init__(self, default=None):
106
        dict.__init__(self)
107 108 109 110
        self.default = default

    def __getitem__(self, key):
        try:
111
            return dict.__getitem__(self, key)
112 113 114 115 116 117
        except KeyError:
            return self.default

    def get(self, key, *args):
        if not args:
            args = (self.default,)
118
        return dict.get(self, key, *args)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    def merge(self, other):
        for key in other:
            if key not in self:
                self[key] = other[key]

test_2 = """

The __slots__ declaration takes a list of instance variables, and reserves
space for exactly these in the instance. When __slots__ is used, other
instance variables cannot be assigned to:

    >>> a = defaultdict2(default=0.0)
    >>> a[1]
    0.0
    >>> a.default = -1
    >>> a[1]
    -1
    >>> a.x1 = 1
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
    AttributeError: 'defaultdict2' object has no attribute 'x1'
    >>>

"""

test_3 = """

Introspecting instances of built-in types

For instance of built-in types, x.__class__ is now the same as type(x):

    >>> type([])
152
    <class 'list'>
153
    >>> [].__class__
154
    <class 'list'>
155
    >>> list
156
    <class 'list'>
157
    >>> isinstance([], list)
158
    True
159
    >>> isinstance([], dict)
160
    False
161
    >>> isinstance([], object)
162
    True
163 164
    >>>

165
You can get the information from the list type:
166 167 168 169 170 171 172

    >>> pprint.pprint(dir(list))    # like list.__dict__.keys(), but sorted
    ['__add__',
     '__class__',
     '__contains__',
     '__delattr__',
     '__delitem__',
173
     '__dir__',
174
     '__doc__',
175
     '__eq__',
176
     '__format__',
177
     '__ge__',
178
     '__getattribute__',
179 180 181 182 183 184
     '__getitem__',
     '__gt__',
     '__hash__',
     '__iadd__',
     '__imul__',
     '__init__',
185
     '__init_subclass__',
186
     '__iter__',
187 188 189 190 191 192
     '__le__',
     '__len__',
     '__lt__',
     '__mul__',
     '__ne__',
     '__new__',
193
     '__reduce__',
194
     '__reduce_ex__',
195
     '__repr__',
196
     '__reversed__',
197 198 199
     '__rmul__',
     '__setattr__',
     '__setitem__',
200
     '__sizeof__',
201
     '__str__',
Christian Heimes's avatar
Christian Heimes committed
202
     '__subclasshook__',
203
     'append',
204 205
     'clear',
     'copy',
206 207 208 209 210 211 212
     'count',
     'extend',
     'index',
     'insert',
     'pop',
     'remove',
     'reverse',
213
     'sort']
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

The new introspection API gives more information than the old one:  in
addition to the regular methods, it also shows the methods that are
normally invoked through special notations, e.g. __iadd__ (+=), __len__
(len), __ne__ (!=). You can invoke any method from this list directly:

    >>> a = ['tic', 'tac']
    >>> list.__len__(a)          # same as len(a)
    2
    >>> a.__len__()              # ditto
    2
    >>> list.append(a, 'toe')    # same as a.append('toe')
    >>> a
    ['tic', 'tac', 'toe']
    >>>

This is just like it is for user-defined classes.
"""

test_4 = """

Static methods and class methods

The new introspection API makes it possible to add static methods and class
methods. Static methods are easy to describe: they behave pretty much like
static methods in C++ or Java. Here's an example:

    >>> class C:
242
    ...
Guido van Rossum's avatar
Guido van Rossum committed
243
    ...     @staticmethod
244
    ...     def foo(x, y):
245
    ...         print("staticmethod", x, y)
246 247 248 249 250 251 252 253 254 255 256

    >>> C.foo(1, 2)
    staticmethod 1 2
    >>> c = C()
    >>> c.foo(1, 2)
    staticmethod 1 2

Class methods use a similar pattern to declare methods that receive an
implicit first argument that is the *class* for which they are invoked.

    >>> class C:
Guido van Rossum's avatar
Guido van Rossum committed
257
    ...     @classmethod
258
    ...     def foo(cls, y):
259
    ...         print("classmethod", cls, y)
260 261

    >>> C.foo(1)
262
    classmethod <class 'test.test_descrtut.C'> 1
263 264
    >>> c = C()
    >>> c.foo(1)
265
    classmethod <class 'test.test_descrtut.C'> 1
266 267 268 269 270

    >>> class D(C):
    ...     pass

    >>> D.foo(1)
271
    classmethod <class 'test.test_descrtut.D'> 1
272 273
    >>> d = D()
    >>> d.foo(1)
274
    classmethod <class 'test.test_descrtut.D'> 1
275 276 277 278 279 280 281 282

This prints "classmethod __main__.D 1" both times; in other words, the
class passed as the first argument of foo() is the class involved in the
call, not the class involved in the definition of foo().

But notice this:

    >>> class E(C):
Guido van Rossum's avatar
Guido van Rossum committed
283
    ...     @classmethod
284
    ...     def foo(cls, y): # override C.foo
285
    ...         print("E.foo() called")
286 287 288 289
    ...         C.foo(y)

    >>> E.foo(1)
    E.foo() called
290
    classmethod <class 'test.test_descrtut.C'> 1
291 292 293
    >>> e = E()
    >>> e.foo(1)
    E.foo() called
294
    classmethod <class 'test.test_descrtut.C'> 1
295 296 297 298 299 300 301 302 303 304 305 306 307

In this example, the call to C.foo() from E.foo() will see class C as its
first argument, not class E. This is to be expected, since the call
specifies the class C. But it stresses the difference between these class
methods and methods defined in metaclasses (where an upcall to a metamethod
would pass the target class as an explicit first argument).
"""

test_5 = """

Attributes defined by get/set methods


308
    >>> class property(object):
309 310 311 312 313 314 315 316 317 318
    ...
    ...     def __init__(self, get, set=None):
    ...         self.__get = get
    ...         self.__set = set
    ...
    ...     def __get__(self, inst, type=None):
    ...         return self.__get(inst)
    ...
    ...     def __set__(self, inst, value):
    ...         if self.__set is None:
319
    ...             raise AttributeError("this attribute is read-only")
320 321 322
    ...         return self.__set(inst, value)

Now let's define a class with an attribute x defined by a pair of methods,
323
getx() and setx():
324 325 326 327 328 329 330 331 332 333 334 335 336

    >>> class C(object):
    ...
    ...     def __init__(self):
    ...         self.__x = 0
    ...
    ...     def getx(self):
    ...         return self.__x
    ...
    ...     def setx(self, x):
    ...         if x < 0: x = 0
    ...         self.__x = x
    ...
337
    ...     x = property(getx, setx)
338 339 340 341 342

Here's a small demonstration:

    >>> a = C()
    >>> a.x = 10
343
    >>> print(a.x)
344 345
    10
    >>> a.x = -10
346
    >>> print(a.x)
347 348 349
    0
    >>>

350
Hmm -- property is builtin now, so let's try it that way too.
351

352 353
    >>> del property  # unmask the builtin
    >>> property
354
    <class 'property'>
355 356 357 358 359 360 361 362 363

    >>> class C(object):
    ...     def __init__(self):
    ...         self.__x = 0
    ...     def getx(self):
    ...         return self.__x
    ...     def setx(self, x):
    ...         if x < 0: x = 0
    ...         self.__x = x
364
    ...     x = property(getx, setx)
365 366 367 368


    >>> a = C()
    >>> a.x = 10
369
    >>> print(a.x)
370 371
    10
    >>> a.x = -10
372
    >>> print(a.x)
373 374 375 376 377 378 379 380 381 382
    0
    >>>
"""

test_6 = """

Method resolution order

This example is implicit in the writeup.

383
>>> class A:    # implicit new-style class
384
...     def save(self):
385
...         print("called A.save()")
386 387 388 389
>>> class B(A):
...     pass
>>> class C(A):
...     def save(self):
390
...         print("called C.save()")
391 392 393 394
>>> class D(B, C):
...     pass

>>> D().save()
395
called C.save()
396

397
>>> class A(object):  # explicit new-style class
398
...     def save(self):
399
...         print("called A.save()")
400 401 402 403
>>> class B(A):
...     pass
>>> class C(A):
...     def save(self):
404
...         print("called C.save()")
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
>>> class D(B, C):
...     pass

>>> D().save()
called C.save()
"""

class A(object):
    def m(self):
        return "A"

class B(A):
    def m(self):
        return "B" + super(B, self).m()

class C(A):
    def m(self):
        return "C" + super(C, self).m()

class D(C, B):
    def m(self):
        return "D" + super(D, self).m()


test_7 = """

Cooperative methods and "super"

433
>>> print(D().m()) # "DCBA"
434 435 436 437 438 439 440 441 442
DCBA
"""

test_8 = """

Backwards incompatibilities

>>> class A:
...     def foo(self):
443
...         print("called A.foo()")
444 445 446 447 448 449 450 451 452

>>> class B(A):
...     pass

>>> class C(A):
...     def foo(self):
...         B.foo(self)

>>> C().foo()
453
called A.foo()
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

>>> class C(A):
...     def foo(self):
...         A.foo(self)
>>> C().foo()
called A.foo()
"""

__test__ = {"tut1": test_1,
            "tut2": test_2,
            "tut3": test_3,
            "tut4": test_4,
            "tut5": test_5,
            "tut6": test_6,
            "tut7": test_7,
            "tut8": test_8}

# Magic test name that regrtest.py invokes *after* importing this module.
# This worms around a bootstrap problem.
# Note that doctest and regrtest both look in sys.argv for a "-v" argument,
# so this works as expected in both ways of running regrtest.
475 476 477 478 479 480
def test_main(verbose=None):
    # Obscure:  import this module as test.test_descrtut instead of as
    # plain test_descrtut because the name of this module works its way
    # into the doctest examples, and unless the full test.test_descrtut
    # business is used the name can change depending on how the test is
    # invoked.
481
    from test import support, test_descrtut
482
    support.run_doctest(test_descrtut, verbose)
483 484 485

# This part isn't needed for regrtest, but for running the test directly.
if __name__ == "__main__":
486
    test_main(1)