object.h 31 KB
Newer Older
1 2 3 4 5 6
#ifndef Py_OBJECT_H
#define Py_OBJECT_H
#ifdef __cplusplus
extern "C" {
#endif

7

Guido van Rossum's avatar
Guido van Rossum committed
8 9 10 11 12 13 14 15
/* Object and type object interface */

/*
Objects are structures allocated on the heap.  Special rules apply to
the use of objects to ensure they are properly garbage-collected.
Objects are never allocated statically or on the stack; they must be
accessed through special macros and functions only.  (Type objects are
exceptions to the first rule; the standard types are represented by
16 17
statically initialized type objects, although work on type/class unification
for Python 2.2 made it possible to have heap-allocated type objects too).
Guido van Rossum's avatar
Guido van Rossum committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

An object has a 'reference count' that is increased or decreased when a
pointer to the object is copied or deleted; when the reference count
reaches zero there are no references to the object left and it can be
removed from the heap.

An object has a 'type' that determines what it represents and what kind
of data it contains.  An object's type is fixed when it is created.
Types themselves are represented as objects; an object contains a
pointer to the corresponding type object.  The type itself has a type
pointer pointing to the object representing the type 'type', which
contains a pointer to itself!).

Objects do not float around in memory; once allocated an object keeps
the same size and address.  Objects that must hold variable-size data
can contain pointers to variable-size parts of the object.  Not all
objects of the same type have the same size; but the size cannot change
after allocation.  (These restrictions are made so a reference to an
object can be simply a pointer -- moving an object would require
updating all the pointers, and changing an object's size would require
moving it if there was another object right next to it.)

40 41
Objects are always accessed through pointers of the type 'PyObject *'.
The type 'PyObject' is a structure that only contains the reference count
Guido van Rossum's avatar
Guido van Rossum committed
42 43 44
and the type pointer.  The actual memory allocated for an object
contains other data that can only be accessed after casting the pointer
to a pointer to a longer structure type.  This longer type must start
45
with the reference count and type fields; the macro PyObject_HEAD should be
46
used for this (to accommodate for future changes).  The implementation
Guido van Rossum's avatar
Guido van Rossum committed
47 48 49 50 51 52 53
of a particular object type can cast the object pointer to the proper
type and back.

A standard interface exists for objects that contain an array of items
whose size is determined when the object is allocated.
*/

54 55
/* Py_DEBUG implies Py_TRACE_REFS. */
#if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
56
#define Py_TRACE_REFS
57
#endif
Guido van Rossum's avatar
Guido van Rossum committed
58

59 60
/* Py_TRACE_REFS implies Py_REF_DEBUG. */
#if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
61
#define Py_REF_DEBUG
62
#endif
Guido van Rossum's avatar
Guido van Rossum committed
63

64
#ifdef Py_TRACE_REFS
65 66 67 68 69 70 71 72 73 74 75 76 77
/* Define pointers to support a doubly-linked list of all live heap objects. */
#define _PyObject_HEAD_EXTRA		\
	struct _object *_ob_next;	\
	struct _object *_ob_prev;

#define _PyObject_EXTRA_INIT 0, 0,

#else
#define _PyObject_HEAD_EXTRA
#define _PyObject_EXTRA_INIT
#endif

/* PyObject_HEAD defines the initial segment of every PyObject. */
78
#define PyObject_HEAD		        PyObject ob_base;
Guido van Rossum's avatar
Guido van Rossum committed
79

80
#define PyObject_HEAD_INIT(type)	\
81 82 83 84 85
	{ _PyObject_EXTRA_INIT		\
	1, type },

#define PyVarObject_HEAD_INIT(type, size)	\
	{ PyObject_HEAD_INIT(type) size },
86 87 88 89 90 91 92

/* PyObject_VAR_HEAD defines the initial segment of all variable-size
 * container objects.  These end with a declaration of an array with 1
 * element, but enough space is malloc'ed so that the array actually
 * has room for ob_size elements.  Note that ob_size is an element count,
 * not necessarily a byte count.
 */
93
#define PyObject_VAR_HEAD      PyVarObject ob_base;
Martin v. Löwis's avatar
Martin v. Löwis committed
94
#define Py_INVALID_SIZE (Py_ssize_t)-1
95

96 97 98 99 100
/* Nothing is actually declared to be a PyObject, but every pointer to
 * a Python object can be cast to a PyObject*.  This is inheritance built
 * by hand.  Similarly every pointer to a variable-size Python object can,
 * in addition, be cast to PyVarObject*.
 */
Guido van Rossum's avatar
Guido van Rossum committed
101
typedef struct _object {
102 103 104
	_PyObject_HEAD_EXTRA
	Py_ssize_t ob_refcnt;
	struct _typeobject *ob_type;
105
} PyObject;
Guido van Rossum's avatar
Guido van Rossum committed
106 107

typedef struct {
108 109
	PyObject ob_base;
	Py_ssize_t ob_size; /* Number of items in variable part */
110
} PyVarObject;
Guido van Rossum's avatar
Guido van Rossum committed
111

112 113 114
#define Py_REFCNT(ob)		(((PyObject*)(ob))->ob_refcnt)
#define Py_TYPE(ob)		(((PyObject*)(ob))->ob_type)
#define Py_SIZE(ob)		(((PyVarObject*)(ob))->ob_size)
Guido van Rossum's avatar
Guido van Rossum committed
115 116 117

/*
Type objects contain a string containing the type name (to help somewhat
118 119 120
in debugging), the allocation parameters (see PyObject_New() and
PyObject_NewVar()),
and methods for accessing objects of the type.  Methods are optional, a
Guido van Rossum's avatar
Guido van Rossum committed
121
nil pointer meaning that particular kind of access is not available for
122
this type.  The Py_DECREF() macro uses the tp_dealloc method without
Guido van Rossum's avatar
Guido van Rossum committed
123 124
checking for a nil pointer; it should always be implemented except if
the implementation can guarantee that the reference count will never
125
reach zero (e.g., for statically allocated type objects).
Guido van Rossum's avatar
Guido van Rossum committed
126 127 128 129 130

NB: the methods for certain type groups are now contained in separate
method blocks.
*/

131 132 133 134
typedef PyObject * (*unaryfunc)(PyObject *);
typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
typedef int (*inquiry)(PyObject *);
Martin v. Löwis's avatar
Martin v. Löwis committed
135 136 137 138 139
typedef Py_ssize_t (*lenfunc)(PyObject *);
typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
140
typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
Martin v. Löwis's avatar
Martin v. Löwis committed
141

142 143 144

/* buffer interface */
typedef struct bufferinfo {
145
	void *buf;   
146
	PyObject *obj;        /* owned reference */
147 148 149 150 151 152 153 154 155 156 157 158
	Py_ssize_t len;
	Py_ssize_t itemsize;  /* This is Py_ssize_t so it can be 
			         pointed to by strides in simple case.*/
	int readonly;
	int ndim;
	char *format;
	Py_ssize_t *shape;
	Py_ssize_t *strides;
	Py_ssize_t *suboffsets;
	Py_ssize_t smalltable[2];  /* static store for shape and strides of
				      mono-dimensional buffers. */
	void *internal;
159
} Py_buffer;
160

161 162
typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
163 164 165

        /* Flags for getting buffers */
#define PyBUF_SIMPLE 0
166
#define PyBUF_WRITABLE 0x0001
167 168
/*  we used to include an E, backwards compatible alias  */
#define PyBUF_WRITEABLE PyBUF_WRITABLE
169 170 171 172 173 174 175
#define PyBUF_FORMAT 0x0004
#define PyBUF_ND 0x0008
#define PyBUF_STRIDES (0x0010 | PyBUF_ND)
#define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
#define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
#define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
#define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
176

177
#define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
178 179
#define PyBUF_CONTIG_RO (PyBUF_ND)

180
#define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
181 182
#define PyBUF_STRIDED_RO (PyBUF_STRIDES)

183
#define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
184 185
#define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)

186
#define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
187 188 189 190 191 192 193 194
#define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)


#define PyBUF_READ  0x100
#define PyBUF_WRITE 0x200
#define PyBUF_SHADOW 0x400

/* End buffer interface */
Martin v. Löwis's avatar
Martin v. Löwis committed
195

196 197 198
typedef int (*objobjproc)(PyObject *, PyObject *);
typedef int (*visitproc)(PyObject *, void *);
typedef int (*traverseproc)(PyObject *, visitproc, void *);
199

Guido van Rossum's avatar
Guido van Rossum committed
200
typedef struct {
201
	/* Number implementations must check *both*
202 203
	   arguments for proper type and implement the necessary conversions
	   in the slot functions themselves. */
204

205 206 207 208 209
	binaryfunc nb_add;
	binaryfunc nb_subtract;
	binaryfunc nb_multiply;
	binaryfunc nb_remainder;
	binaryfunc nb_divmod;
210
	ternaryfunc nb_power;
211 212 213
	unaryfunc nb_negative;
	unaryfunc nb_positive;
	unaryfunc nb_absolute;
214
	inquiry nb_bool;
215 216 217 218 219 220 221
	unaryfunc nb_invert;
	binaryfunc nb_lshift;
	binaryfunc nb_rshift;
	binaryfunc nb_and;
	binaryfunc nb_xor;
	binaryfunc nb_or;
	unaryfunc nb_int;
222
	void *nb_reserved;  /* the slot formerly known as nb_long */
223
	unaryfunc nb_float;
224

225 226 227 228 229 230 231 232 233 234
	binaryfunc nb_inplace_add;
	binaryfunc nb_inplace_subtract;
	binaryfunc nb_inplace_multiply;
	binaryfunc nb_inplace_remainder;
	ternaryfunc nb_inplace_power;
	binaryfunc nb_inplace_lshift;
	binaryfunc nb_inplace_rshift;
	binaryfunc nb_inplace_and;
	binaryfunc nb_inplace_xor;
	binaryfunc nb_inplace_or;
235 236 237 238 239

	binaryfunc nb_floor_divide;
	binaryfunc nb_true_divide;
	binaryfunc nb_inplace_floor_divide;
	binaryfunc nb_inplace_true_divide;
240

241
	unaryfunc nb_index;
242
} PyNumberMethods;
Guido van Rossum's avatar
Guido van Rossum committed
243 244

typedef struct {
Martin v. Löwis's avatar
Martin v. Löwis committed
245
	lenfunc sq_length;
246
	binaryfunc sq_concat;
Martin v. Löwis's avatar
Martin v. Löwis committed
247 248
	ssizeargfunc sq_repeat;
	ssizeargfunc sq_item;
249
	void *was_sq_slice;
Martin v. Löwis's avatar
Martin v. Löwis committed
250
	ssizeobjargproc sq_ass_item;
251
	void *was_sq_ass_slice;
252
	objobjproc sq_contains;
253

254
	binaryfunc sq_inplace_concat;
Martin v. Löwis's avatar
Martin v. Löwis committed
255
	ssizeargfunc sq_inplace_repeat;
256
} PySequenceMethods;
Guido van Rossum's avatar
Guido van Rossum committed
257 258

typedef struct {
Martin v. Löwis's avatar
Martin v. Löwis committed
259
	lenfunc mp_length;
260 261
	binaryfunc mp_subscript;
	objobjargproc mp_ass_subscript;
262
} PyMappingMethods;
Guido van Rossum's avatar
Guido van Rossum committed
263

264

265
typedef struct {
266 267
     getbufferproc bf_getbuffer;
     releasebufferproc bf_releasebuffer;
268
} PyBufferProcs;
269

270
typedef void (*freefunc)(void *);
271 272
typedef void (*destructor)(PyObject *);
typedef int (*printfunc)(PyObject *, FILE *, int);
273
typedef PyObject *(*getattrfunc)(PyObject *, char *);
274
typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
275
typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
276 277 278
typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
typedef PyObject *(*reprfunc)(PyObject *);
typedef long (*hashfunc)(PyObject *);
279
typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
280
typedef PyObject *(*getiterfunc) (PyObject *);
281
typedef PyObject *(*iternextfunc) (PyObject *);
282 283 284 285
typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
Martin v. Löwis's avatar
Martin v. Löwis committed
286
typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
287

Guido van Rossum's avatar
Guido van Rossum committed
288
typedef struct _typeobject {
289
	PyObject_VAR_HEAD
290
	const char *tp_name; /* For printing, in format "<module>.<name>" */
291
	Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
292

Guido van Rossum's avatar
Guido van Rossum committed
293
	/* Methods to implement standard operations */
294

295 296 297 298
	destructor tp_dealloc;
	printfunc tp_print;
	getattrfunc tp_getattr;
	setattrfunc tp_setattr;
299
	void *tp_reserved; /* formerly known as tp_compare */
300
	reprfunc tp_repr;
301

Guido van Rossum's avatar
Guido van Rossum committed
302
	/* Method suites for standard classes */
303

304 305 306
	PyNumberMethods *tp_as_number;
	PySequenceMethods *tp_as_sequence;
	PyMappingMethods *tp_as_mapping;
307

308
	/* More standard operations (here for binary compatibility) */
309

310
	hashfunc tp_hash;
311
	ternaryfunc tp_call;
312
	reprfunc tp_str;
313 314
	getattrofunc tp_getattro;
	setattrofunc tp_setattro;
315

316 317
	/* Functions to access object as input/output buffer */
	PyBufferProcs *tp_as_buffer;
318

319 320
	/* Flags to define presence of optional/expanded features */
	long tp_flags;
321

322
	const char *tp_doc; /* Documentation string */
323

324
	/* Assigned meaning in release 2.0 */
325 326
	/* call function for all accessible objects */
	traverseproc tp_traverse;
327

328 329 330
	/* delete references to contained objects */
	inquiry tp_clear;

331
	/* Assigned meaning in release 2.1 */
332 333 334
	/* rich comparisons */
	richcmpfunc tp_richcompare;

335
	/* weak reference enabler */
336
	Py_ssize_t tp_weaklistoffset;
337

338 339
	/* Iterators */
	getiterfunc tp_iter;
340
	iternextfunc tp_iternext;
341

342 343
	/* Attribute descriptor and subclassing stuff */
	struct PyMethodDef *tp_methods;
344
	struct PyMemberDef *tp_members;
345
	struct PyGetSetDef *tp_getset;
346 347 348 349
	struct _typeobject *tp_base;
	PyObject *tp_dict;
	descrgetfunc tp_descr_get;
	descrsetfunc tp_descr_set;
350
	Py_ssize_t tp_dictoffset;
351 352 353
	initproc tp_init;
	allocfunc tp_alloc;
	newfunc tp_new;
354
	freefunc tp_free; /* Low-level free-memory routine */
355
	inquiry tp_is_gc; /* For PyObject_IS_GC */
356 357
	PyObject *tp_bases;
	PyObject *tp_mro; /* method resolution order */
358
	PyObject *tp_cache;
359 360
	PyObject *tp_subclasses;
	PyObject *tp_weaklist;
361
	destructor tp_del;
362

363 364 365
	/* Type attribute cache version tag. Added in version 2.6 */
	unsigned int tp_version_tag;

366
#ifdef COUNT_ALLOCS
367
	/* these must be last and never explicitly initialized */
368 369 370
	Py_ssize_t tp_allocs;
	Py_ssize_t tp_frees;
	Py_ssize_t tp_maxalloc;
371
	struct _typeobject *tp_prev;
372 373
	struct _typeobject *tp_next;
#endif
374
} PyTypeObject;
Guido van Rossum's avatar
Guido van Rossum committed
375 376


377 378 379 380
/* The *real* layout of a type object when allocated on the heap */
typedef struct _heaptypeobject {
	/* Note: there's a dependency on the order of these members
	   in slotptr() in typeobject.c . */
381
	PyTypeObject ht_type;
382 383 384 385 386 387 388 389
	PyNumberMethods as_number;
	PyMappingMethods as_mapping;
	PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
					  so that the mapping wins when both
					  the mapping and the sequence define
					  a given operator (e.g. __getitem__).
					  see add_operators() in typeobject.c . */
	PyBufferProcs as_buffer;
390
	PyObject *ht_name, *ht_slots;
391 392 393 394 395
	/* here are optional user slots, followed by the members. */
} PyHeapTypeObject;

/* access macro to the members which are floating "behind" the object */
#define PyHeapType_GET_MEMBERS(etype) \
396
    ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize))
397 398


399
/* Generic type check */
400
PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
401
#define PyObject_TypeCheck(ob, tp) \
402
	(Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
403

404 405 406
PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
407

408
#define PyType_Check(op) \
409 410
	PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS)
#define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
411

412
PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
Martin v. Löwis's avatar
Martin v. Löwis committed
413
PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
414
PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
415
					       PyObject *, PyObject *);
416
PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
417
PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, char *, PyObject **);
418
PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
Georg Brandl's avatar
Georg Brandl committed
419
PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
Guido van Rossum's avatar
Guido van Rossum committed
420

Guido van Rossum's avatar
Guido van Rossum committed
421
/* Generic operations on objects */
422
PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
423
PyAPI_FUNC(void) _Py_BreakPoint(void);
424 425 426
PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
427
PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *);
428
PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *);
429 430
PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
431 432 433
PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
434 435 436 437
PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
438
PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
439
PyAPI_FUNC(PyObject *) _PyObject_NextNotImplemented(PyObject *);
440 441
PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
442
					      PyObject *, PyObject *);
443
PyAPI_FUNC(long) PyObject_Hash(PyObject *);
444
PyAPI_FUNC(long) PyObject_HashNotImplemented(PyObject *);
445 446 447
PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
PyAPI_FUNC(int) PyObject_Not(PyObject *);
PyAPI_FUNC(int) PyCallable_Check(PyObject *);
Guido van Rossum's avatar
Guido van Rossum committed
448

449
PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
450

451

452 453
/* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a
   list of strings.  PyObject_Dir(NULL) is like builtins.dir(),
454 455 456
   returning the names of the current locals.  In this case, if there are
   no current locals, NULL is returned, and PyErr_Occurred() is false.
*/
457
PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
458 459


460
/* Helpers for printing recursive container types */
461 462
PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
463

464
/* Helpers for hash functions */
465 466
PyAPI_FUNC(long) _Py_HashDouble(double);
PyAPI_FUNC(long) _Py_HashPointer(void*);
467

468
/* Helper for passing objects to printf and the like */
469
#define PyObject_REPR(obj) _PyUnicode_AsString(PyObject_Repr(obj))
470

Guido van Rossum's avatar
Guido van Rossum committed
471
/* Flag bits for printing: */
472
#define Py_PRINT_RAW	1	/* No string quotes etc. */
Guido van Rossum's avatar
Guido van Rossum committed
473

474
/*
475
`Type flags (tp_flags)
476 477 478 479 480 481 482 483 484 485 486

These flags are used to extend the type structure in a backwards-compatible
fashion. Extensions can use the flags to indicate (and test) when a given
type structure contains a new feature. The Python core will use these when
introducing new functionality between major revisions (to avoid mid-version
changes in the PYTHON_API_VERSION).

Arbitration of the flag bit positions will need to be coordinated among
all extension writers who publically release their extensions (this will
be fewer than you might expect!)..

487 488 489
Most flags were removed as of Python 3.0 to make room for new flags.  (Some
flags are not for backwards compatibility but to indicate the presence of an
optional feature; these flags remain of course.)
490 491 492 493 494 495 496

Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.

Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
given type object has a specified feature.
*/

497 498 499 500 501 502
/* Set if the type object is dynamically allocated */
#define Py_TPFLAGS_HEAPTYPE (1L<<9)

/* Set if the type allows subclassing */
#define Py_TPFLAGS_BASETYPE (1L<<10)

503 504 505 506 507 508
/* Set if the type is 'ready' -- fully initialized */
#define Py_TPFLAGS_READY (1L<<12)

/* Set while the type is being 'readied', to prevent recursive ready calls */
#define Py_TPFLAGS_READYING (1L<<13)

509 510 511
/* Objects support garbage collection (see objimp.h) */
#define Py_TPFLAGS_HAVE_GC (1L<<14)

512
/* These two bits are preserved for Stackless Python, next after this is 17 */
513
#ifdef STACKLESS
514
#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
515
#else
516
#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
517 518
#endif

519 520 521 522
/* Objects support type attribute cache */
#define Py_TPFLAGS_HAVE_VERSION_TAG   (1L<<18)
#define Py_TPFLAGS_VALID_VERSION_TAG  (1L<<19)

Christian Heimes's avatar
Christian Heimes committed
523 524 525
/* Type is abstract and cannot be instantiated */
#define Py_TPFLAGS_IS_ABSTRACT (1L<<20)

526 527 528 529 530
/* These flags are used to determine if a type is a subclass. */
#define Py_TPFLAGS_INT_SUBCLASS		(1L<<23)
#define Py_TPFLAGS_LONG_SUBCLASS	(1L<<24)
#define Py_TPFLAGS_LIST_SUBCLASS	(1L<<25)
#define Py_TPFLAGS_TUPLE_SUBCLASS	(1L<<26)
531
#define Py_TPFLAGS_BYTES_SUBCLASS	(1L<<27)
532 533 534 535 536
#define Py_TPFLAGS_UNICODE_SUBCLASS	(1L<<28)
#define Py_TPFLAGS_DICT_SUBCLASS	(1L<<29)
#define Py_TPFLAGS_BASE_EXC_SUBCLASS	(1L<<30)
#define Py_TPFLAGS_TYPE_SUBCLASS	(1L<<31)

537
#define Py_TPFLAGS_DEFAULT  ( \
538
                             Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
539
                             Py_TPFLAGS_HAVE_VERSION_TAG | \
540
                            0)
541 542

#define PyType_HasFeature(t,f)  (((t)->tp_flags & (f)) != 0)
543
#define PyType_FastSubclass(t,f)  PyType_HasFeature(t,f)
544 545


Guido van Rossum's avatar
Guido van Rossum committed
546
/*
547
The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
548 549
reference counts.  Py_DECREF calls the object's deallocator function when
the refcount falls to 0; for
Guido van Rossum's avatar
Guido van Rossum committed
550 551
objects that don't contain references to other objects or heap memory
this can be the standard function free().  Both macros can be used
552
wherever a void expression is allowed.  The argument must not be a
553
NULL pointer.  If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
554 555 556
The macro _Py_NewReference(op) initialize reference counts to 1, and
in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
bookkeeping appropriate to the special build.
Guido van Rossum's avatar
Guido van Rossum committed
557 558

We assume that the reference count field can never overflow; this can
559 560 561 562 563 564 565 566
be proven when the size of the field is the same as the pointer size, so
we ignore the possibility.  Provided a C int is at least 32 bits (which
is implicitly assumed in many parts of this code), that's enough for
about 2**31 references to an object.

XXX The following became out of date in Python 2.2, but I'm not sure
XXX what the full truth is now.  Certainly, heap-allocated type objects
XXX can and should be deallocated.
Guido van Rossum's avatar
Guido van Rossum committed
567 568 569 570 571 572
Type objects should never be deallocated; the type pointer in an object
is not considered to be a reference to the type object, to save
complications in the deallocation function.  (This is actually a
decision that's up to the implementer of each new type so if you want,
you can count such references to the type object.)

573
*** WARNING*** The Py_DECREF macro must have a side-effect-free argument
Guido van Rossum's avatar
Guido van Rossum committed
574 575 576 577 578 579
since it may evaluate its argument multiple times.  (The alternative
would be to mace it a proper function or assign it to a global temporary
variable first, both of which are slower; and in a multi-threaded
environment the global variable trick is not safe.)
*/

580 581 582 583 584 585 586 587 588
/* First define a pile of simple helper macros, one set per special
 * build symbol.  These either expand to the obvious things, or to
 * nothing at all when the special mode isn't in effect.  The main
 * macros can later be defined just once then, yet expand to different
 * things depending on which special build options are and aren't in effect.
 * Trust me <wink>:  while painful, this is 20x easier to understand than,
 * e.g, defining _Py_NewReference five different times in a maze of nested
 * #ifdefs (we used to do that -- it was impenetrable).
 */
589
#ifdef Py_REF_DEBUG
590
PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
591
PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
592
					    int lineno, PyObject *op);
593 594 595
PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
596 597 598 599
#define _Py_INC_REFTOTAL	_Py_RefTotal++
#define _Py_DEC_REFTOTAL	_Py_RefTotal--
#define _Py_REF_DEBUG_COMMA	,
#define _Py_CHECK_REFCNT(OP)					\
600
{	if (((PyObject*)OP)->ob_refcnt < 0)				\
601 602 603
		_Py_NegativeRefcount(__FILE__, __LINE__,	\
				     (PyObject *)(OP));		\
}
604
#else
605 606 607 608
#define _Py_INC_REFTOTAL
#define _Py_DEC_REFTOTAL
#define _Py_REF_DEBUG_COMMA
#define _Py_CHECK_REFCNT(OP)	/* a semicolon */;
609
#endif /* Py_REF_DEBUG */
610 611

#ifdef COUNT_ALLOCS
612
PyAPI_FUNC(void) inc_count(PyTypeObject *);
613
PyAPI_FUNC(void) dec_count(PyTypeObject *);
614 615 616
#define _Py_INC_TPALLOCS(OP)	inc_count(Py_TYPE(OP))
#define _Py_INC_TPFREES(OP)	dec_count(Py_TYPE(OP))
#define _Py_DEC_TPFREES(OP)	Py_TYPE(OP)->tp_frees--
617
#define _Py_COUNT_ALLOCS_COMMA	,
618
#else
619 620 621 622
#define _Py_INC_TPALLOCS(OP)
#define _Py_INC_TPFREES(OP)
#define _Py_DEC_TPFREES(OP)
#define _Py_COUNT_ALLOCS_COMMA
623
#endif /* COUNT_ALLOCS */
Guido van Rossum's avatar
Guido van Rossum committed
624

625
#ifdef Py_TRACE_REFS
626
/* Py_TRACE_REFS is such major surgery that we call external routines. */
627 628 629 630
PyAPI_FUNC(void) _Py_NewReference(PyObject *);
PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
631
PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
632
PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
Guido van Rossum's avatar
Guido van Rossum committed
633

634 635 636 637
#else
/* Without Py_TRACE_REFS, there's little enough to do that we expand code
 * inline.
 */
638 639 640
#define _Py_NewReference(op) (				\
	_Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA	\
	_Py_INC_REFTOTAL  _Py_REF_DEBUG_COMMA		\
641
	Py_REFCNT(op) = 1)
642

643
#define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
644

645
#define _Py_Dealloc(op) (				\
646
	_Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA	\
647
	(*Py_TYPE(op)->tp_dealloc)((PyObject *)(op)))
648 649
#endif /* !Py_TRACE_REFS */

650 651
#define Py_INCREF(op) (				\
	_Py_INC_REFTOTAL  _Py_REF_DEBUG_COMMA	\
652
	((PyObject*)(op))->ob_refcnt++)
653

654
#define Py_DECREF(op)					\
655 656 657 658 659 660 661
	do {						\
	    if (_Py_DEC_REFTOTAL  _Py_REF_DEBUG_COMMA	\
		--((PyObject*)(op))->ob_refcnt != 0)	\
		    _Py_CHECK_REFCNT(op)		\
	    else					\
		_Py_Dealloc((PyObject *)(op));		\
        } while (0)
Guido van Rossum's avatar
Guido van Rossum committed
662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
 * and tp_dealloc implementatons.
 *
 * Note that "the obvious" code can be deadly:
 *
 *     Py_XDECREF(op);
 *     op = NULL;
 *
 * Typically, `op` is something like self->containee, and `self` is done
 * using its `containee` member.  In the code sequence above, suppose
 * `containee` is non-NULL with a refcount of 1.  Its refcount falls to
 * 0 on the first line, which can trigger an arbitrary amount of code,
 * possibly including finalizers (like __del__ methods or weakref callbacks)
 * coded in Python, which in turn can release the GIL and allow other threads
 * to run, etc.  Such code may even invoke methods of `self` again, or cause
 * cyclic gc to trigger, but-- oops! --self->containee still points to the
 * object being torn down, and it may be in an insane state while being torn
 * down.  This has in fact been a rich historic source of miserable (rare &
 * hard-to-diagnose) segfaulting (and other) bugs.
 *
 * The safe way is:
 *
 *      Py_CLEAR(op);
 *
 * That arranges to set `op` to NULL _before_ decref'ing, so that any code
 * triggered as a side-effect of `op` getting torn down no longer believes
 * `op` points to a valid object.
 *
 * There are cases where it's safe to use the naive code, but they're brittle.
 * For example, if `op` points to a Python integer, you know that destroying
 * one of those can't cause problems -- but in part that relies on that
 * Python integers aren't currently weakly referencable.  Best practice is
 * to use Py_CLEAR() even if you can't think of a reason for why you need to.
 */
697 698 699
#define Py_CLEAR(op)				\
        do {                            	\
                if (op) {			\
Georg Brandl's avatar
Georg Brandl committed
700
                        PyObject *_py_tmp = (PyObject *)(op);	\
701
                        (op) = NULL;		\
Georg Brandl's avatar
Georg Brandl committed
702
                        Py_DECREF(_py_tmp);	\
703 704 705
                }				\
        } while (0)

Guido van Rossum's avatar
Guido van Rossum committed
706
/* Macros to use in case the object pointer may be NULL: */
707 708
#define Py_XINCREF(op) do { if ((op) == NULL) ; else Py_INCREF(op); } while (0)
#define Py_XDECREF(op) do { if ((op) == NULL) ; else Py_DECREF(op); } while (0)
Guido van Rossum's avatar
Guido van Rossum committed
709

710 711 712 713 714 715 716
/*
These are provided as conveniences to Python runtime embedders, so that
they can have object code that is not dependent on Python compilation flags.
*/
PyAPI_FUNC(void) Py_IncRef(PyObject *);
PyAPI_FUNC(void) Py_DecRef(PyObject *);

Guido van Rossum's avatar
Guido van Rossum committed
717
/*
718
_Py_NoneStruct is an object of undefined type which can be used in contexts
Guido van Rossum's avatar
Guido van Rossum committed
719 720
where NULL (nil) is not suitable (since NULL often means 'error').

721
Don't forget to apply Py_INCREF() when returning this value!!!
Guido van Rossum's avatar
Guido van Rossum committed
722
*/
723
PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
724
#define Py_None (&_Py_NoneStruct)
Guido van Rossum's avatar
Guido van Rossum committed
725

726
/* Macro for returning Py_None from a function */
727
#define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
728

729 730 731 732
/*
Py_NotImplemented is a singleton used to signal that an operation is
not implemented for a given type combination.
*/
733
PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
734
#define Py_NotImplemented (&_Py_NotImplementedStruct)
Guido van Rossum's avatar
Guido van Rossum committed
735

736 737 738 739 740 741 742 743
/* Rich comparison opcodes */
#define Py_LT 0
#define Py_LE 1
#define Py_EQ 2
#define Py_NE 3
#define Py_GT 4
#define Py_GE 5

744 745 746 747 748
/* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
 * Defined in object.c.
 */
PyAPI_DATA(int) _Py_SwappedOp[];

749

Guido van Rossum's avatar
Guido van Rossum committed
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/*
More conventions
================

Argument Checking
-----------------

Functions that take objects as arguments normally don't check for nil
arguments, but they do check the type of the argument, and return an
error if the function doesn't apply to the type.

Failure Modes
-------------

Functions may fail for a variety of reasons, including running out of
Guido van Rossum's avatar
Guido van Rossum committed
765 766 767 768 769
memory.  This is communicated to the caller in two ways: an error string
is set (see errors.h), and the function result differs: functions that
normally return a pointer return NULL for failure, functions returning
an integer return -1 (which could be a legal return value too!), and
other functions return 0 for success and -1 for failure.
770 771 772
Callers should always check for errors before using the result.  If
an error was set, the caller must either explicitly clear it, or pass
the error on to its caller.
Guido van Rossum's avatar
Guido van Rossum committed
773 774 775 776 777 778 779

Reference Counts
----------------

It takes a while to get used to the proper usage of reference counts.

Functions that create an object set the reference count to 1; such new
780
objects must be stored somewhere or destroyed again with Py_DECREF().
781 782
Some functions that 'store' objects, such as PyTuple_SetItem() and
PyList_SetItem(),
Guido van Rossum's avatar
Guido van Rossum committed
783 784
don't increment the reference count of the object, since the most
frequent use is to store a fresh object.  Functions that 'retrieve'
785
objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
786
don't increment
Guido van Rossum's avatar
Guido van Rossum committed
787 788
the reference count, since most frequently the object is only looked at
quickly.  Thus, to retrieve an object and store it again, the caller
789
must call Py_INCREF() explicitly.
Guido van Rossum's avatar
Guido van Rossum committed
790

791 792 793
NOTE: functions that 'consume' a reference count, like
PyList_SetItem(), consume the reference even if the object wasn't
successfully stored, to simplify error handling.
Guido van Rossum's avatar
Guido van Rossum committed
794 795

It seems attractive to make other functions that take an object as
796
argument consume a reference count; however, this may quickly get
Guido van Rossum's avatar
Guido van Rossum committed
797
confusing (even the current practice is already confusing).  Consider
798
it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
Guido van Rossum's avatar
Guido van Rossum committed
799 800
times.
*/
801

802

803
/* Trashcan mechanism, thanks to Christian Tismer.
804

805 806 807 808
When deallocating a container object, it's possible to trigger an unbounded
chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
next" object in the chain to 0.  This can easily lead to stack faults, and
especially in threads (which typically have less stack space to work with).
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
A container object that participates in cyclic gc can avoid this by
bracketing the body of its tp_dealloc function with a pair of macros:

static void
mytype_dealloc(mytype *p)
{
        ... declarations go here ...

 	PyObject_GC_UnTrack(p);	   // must untrack first
	Py_TRASHCAN_SAFE_BEGIN(p)
	... The body of the deallocator goes here, including all calls ...
	... to Py_DECREF on contained objects.                         ...
	Py_TRASHCAN_SAFE_END(p)
}

825 826 827 828 829
CAUTION:  Never return from the middle of the body!  If the body needs to
"get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
call, and goto it.  Else the call-depth counter (see below) will stay
above 0 forever, and the trashcan will never get emptied.

830 831 832 833 834 835 836 837 838 839 840 841 842
How it works:  The BEGIN macro increments a call-depth counter.  So long
as this counter is small, the body of the deallocator is run directly without
further ado.  But if the counter gets large, it instead adds p to a list of
objects to be deallocated later, skips the body of the deallocator, and
resumes execution after the END macro.  The tp_dealloc routine then returns
without deallocating anything (and so unbounded call-stack depth is avoided).

When the call stack finishes unwinding again, code generated by the END macro
notices this, and calls another routine to deallocate all the objects that
may have been added to the list of deferred deallocations.  In effect, a
chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
*/
843

844 845 846 847
PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
PyAPI_DATA(int) _PyTrash_delete_nesting;
PyAPI_DATA(PyObject *) _PyTrash_delete_later;
848

849
#define PyTrash_UNWIND_LEVEL 50
850

851 852 853 854 855 856 857 858 859 860 861
#define Py_TRASHCAN_SAFE_BEGIN(op) \
	if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
		++_PyTrash_delete_nesting;
		/* The body of the deallocator is here. */
#define Py_TRASHCAN_SAFE_END(op) \
		--_PyTrash_delete_nesting; \
		if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
			_PyTrash_destroy_chain(); \
	} \
	else \
		_PyTrash_deposit_object((PyObject*)op);
862

863 864 865 866
#ifdef __cplusplus
}
#endif
#endif /* !Py_OBJECT_H */