gcmodule.c 48.3 KB
Newer Older
1
/*
2

3 4 5
  Reference Cycle Garbage Collection
  ==================================

6
  Neil Schemenauer <nas@arctrix.com>
7 8 9 10

  Based on a post on the python-dev list.  Ideas from Guido van Rossum,
  Eric Tiedemann, and various others.

11
  http://www.arctrix.com/nas/python/gc/
12 13 14 15 16 17 18 19 20 21
  http://www.python.org/pipermail/python-dev/2000-March/003869.html
  http://www.python.org/pipermail/python-dev/2000-March/004010.html
  http://www.python.org/pipermail/python-dev/2000-March/004022.html

  For a highlevel view of the collection process, read the collect
  function.

*/

#include "Python.h"
22
#include "frameobject.h"        /* for PyFrame_ClearFreeList */
23

24 25 26 27 28 29
/* Get an object's GC head */
#define AS_GC(o) ((PyGC_Head *)(o)-1)

/* Get the object given the GC head */
#define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))

30 31
/*** Global GC state ***/

32
struct gc_generation {
33 34 35 36
    PyGC_Head head;
    int threshold; /* collection threshold */
    int count; /* count of allocations or collections of younger
                  generations */
37 38 39 40 41
};

#define NUM_GENERATIONS 3
#define GEN_HEAD(n) (&generations[n].head)

42
/* linked lists of container objects */
43
static struct gc_generation generations[NUM_GENERATIONS] = {
44 45 46 47
    /* PyGC_Head,                               threshold,      count */
    {{{GEN_HEAD(0), GEN_HEAD(0), 0}},           700,            0},
    {{{GEN_HEAD(1), GEN_HEAD(1), 0}},           10,             0},
    {{{GEN_HEAD(2), GEN_HEAD(2), 0}},           10,             0},
48
};
49

50
PyGC_Head *_PyGC_generation0 = GEN_HEAD(0);
51

52
static int enabled = 1; /* automatic collection enabled? */
53

54
/* true if we are currently running the collector */
55
static int collecting = 0;
56

57
/* list of uncollectable objects */
58
static PyObject *garbage = NULL;
59 60

/* Python string to use if unhandled exception occurs */
61
static PyObject *gc_str = NULL;
62

63 64
/* Python string used to look for __del__ attribute. */
static PyObject *delstr = NULL;
Jeremy Hylton's avatar
Jeremy Hylton committed
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* This is the number of objects who survived the last full collection. It
   approximates the number of long lived objects tracked by the GC.

   (by "full collection", we mean a collection of the oldest generation).
*/
static Py_ssize_t long_lived_total = 0;

/* This is the number of objects who survived all "non-full" collections,
   and are awaiting to undergo a full collection for the first time.

*/
static Py_ssize_t long_lived_pending = 0;

/*
   NOTE: about the counting of long-lived objects.

   To limit the cost of garbage collection, there are two strategies;
     - make each collection faster, e.g. by scanning fewer objects
     - do less collections
   This heuristic is about the latter strategy.

   In addition to the various configurable thresholds, we only trigger a
   full collection if the ratio
89
    long_lived_pending / long_lived_total
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
   is above a given value (hardwired to 25%).

   The reason is that, while "non-full" collections (i.e., collections of
   the young and middle generations) will always examine roughly the same
   number of objects -- determined by the aforementioned thresholds --,
   the cost of a full collection is proportional to the total number of
   long-lived objects, which is virtually unbounded.

   Indeed, it has been remarked that doing a full collection every
   <constant number> of object creations entails a dramatic performance
   degradation in workloads which consist in creating and storing lots of
   long-lived objects (e.g. building a large list of GC-tracked objects would
   show quadratic performance, instead of linear as expected: see issue #4074).

   Using the above ratio, instead, yields amortized linear performance in
   the total number of objects (the effect of which can be summarized
   thusly: "each full garbage collection is more and more costly as the
   number of objects grows, but we do fewer and fewer of them").

   This heuristic was suggested by Martin von Löwis on python-dev in
   June 2008. His original analysis and proposal can be found at:
111
    http://mail.python.org/pipermail/python-dev/2008-June/080579.html
112 113 114
*/


115
/* set for debugging information */
116 117 118 119 120 121 122 123 124 125 126
#define DEBUG_STATS             (1<<0) /* print collection statistics */
#define DEBUG_COLLECTABLE       (1<<1) /* print collectable objects */
#define DEBUG_UNCOLLECTABLE     (1<<2) /* print uncollectable objects */
#define DEBUG_INSTANCES         (1<<3) /* print instances */
#define DEBUG_OBJECTS           (1<<4) /* print other objects */
#define DEBUG_SAVEALL           (1<<5) /* save all garbage in gc.garbage */
#define DEBUG_LEAK              DEBUG_COLLECTABLE | \
                DEBUG_UNCOLLECTABLE | \
                DEBUG_INSTANCES | \
                DEBUG_OBJECTS | \
                DEBUG_SAVEALL
127
static int debug;
128
static PyObject *tmod = NULL;
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*--------------------------------------------------------------------------
gc_refs values.

Between collections, every gc'ed object has one of two gc_refs values:

GC_UNTRACKED
    The initial state; objects returned by PyObject_GC_Malloc are in this
    state.  The object doesn't live in any generation list, and its
    tp_traverse slot must not be called.

GC_REACHABLE
    The object lives in some generation list, and its tp_traverse is safe to
    call.  An object transitions to GC_REACHABLE when PyObject_GC_Track
    is called.

During a collection, gc_refs can temporarily take on other states:

>= 0
    At the start of a collection, update_refs() copies the true refcount
    to gc_refs, for each object in the generation being collected.
    subtract_refs() then adjusts gc_refs so that it equals the number of
    times an object is referenced directly from outside the generation
    being collected.
Martin v. Löwis's avatar
Martin v. Löwis committed
153
    gc_refs remains >= 0 throughout these steps.
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

GC_TENTATIVELY_UNREACHABLE
    move_unreachable() then moves objects not reachable (whether directly or
    indirectly) from outside the generation into an "unreachable" set.
    Objects that are found to be reachable have gc_refs set to GC_REACHABLE
    again.  Objects that are found to be unreachable have gc_refs set to
    GC_TENTATIVELY_UNREACHABLE.  It's "tentatively" because the pass doing
    this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may
    transition back to GC_REACHABLE.

    Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates
    for collection.  If it's decided not to collect such an object (e.g.,
    it has a __del__ method), its gc_refs is restored to GC_REACHABLE again.
----------------------------------------------------------------------------
*/
169 170 171
#define GC_UNTRACKED                    _PyGC_REFS_UNTRACKED
#define GC_REACHABLE                    _PyGC_REFS_REACHABLE
#define GC_TENTATIVELY_UNREACHABLE      _PyGC_REFS_TENTATIVELY_UNREACHABLE
172

173
#define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED)
174 175
#define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE)
#define IS_TENTATIVELY_UNREACHABLE(o) ( \
176
    (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE)
177

178 179 180 181 182
/*** list functions ***/

static void
gc_list_init(PyGC_Head *list)
{
183 184
    list->gc.gc_prev = list;
    list->gc.gc_next = list;
185 186
}

187 188 189
static int
gc_list_is_empty(PyGC_Head *list)
{
190
    return (list->gc.gc_next == list);
191 192
}

Tim Peters's avatar
Tim Peters committed
193 194 195
#if 0
/* This became unused after gc_list_move() was introduced. */
/* Append `node` to `list`. */
196 197 198
static void
gc_list_append(PyGC_Head *node, PyGC_Head *list)
{
199 200 201 202
    node->gc.gc_next = list;
    node->gc.gc_prev = list->gc.gc_prev;
    node->gc.gc_prev->gc.gc_next = node;
    list->gc.gc_prev = node;
203
}
Tim Peters's avatar
Tim Peters committed
204
#endif
205

Tim Peters's avatar
Tim Peters committed
206
/* Remove `node` from the gc list it's currently in. */
207 208 209
static void
gc_list_remove(PyGC_Head *node)
{
210 211 212
    node->gc.gc_prev->gc.gc_next = node->gc.gc_next;
    node->gc.gc_next->gc.gc_prev = node->gc.gc_prev;
    node->gc.gc_next = NULL; /* object is not currently tracked */
213 214
}

Tim Peters's avatar
Tim Peters committed
215 216 217 218 219 220 221
/* Move `node` from the gc list it's currently in (which is not explicitly
 * named here) to the end of `list`.  This is semantically the same as
 * gc_list_remove(node) followed by gc_list_append(node, list).
 */
static void
gc_list_move(PyGC_Head *node, PyGC_Head *list)
{
222 223 224 225 226 227 228 229 230 231
    PyGC_Head *new_prev;
    PyGC_Head *current_prev = node->gc.gc_prev;
    PyGC_Head *current_next = node->gc.gc_next;
    /* Unlink from current list. */
    current_prev->gc.gc_next = current_next;
    current_next->gc.gc_prev = current_prev;
    /* Relink at end of new list. */
    new_prev = node->gc.gc_prev = list->gc.gc_prev;
    new_prev->gc.gc_next = list->gc.gc_prev = node;
    node->gc.gc_next = list;
Tim Peters's avatar
Tim Peters committed
232 233 234
}

/* append list `from` onto list `to`; `from` becomes an empty list */
235 236 237
static void
gc_list_merge(PyGC_Head *from, PyGC_Head *to)
{
238 239 240 241 242 243 244 245 246 247
    PyGC_Head *tail;
    assert(from != to);
    if (!gc_list_is_empty(from)) {
        tail = to->gc.gc_prev;
        tail->gc.gc_next = from->gc.gc_next;
        tail->gc.gc_next->gc.gc_prev = tail;
        to->gc.gc_prev = from->gc.gc_prev;
        to->gc.gc_prev->gc.gc_next = to;
    }
    gc_list_init(from);
248 249
}

250
static Py_ssize_t
251 252
gc_list_size(PyGC_Head *list)
{
253 254 255 256 257 258
    PyGC_Head *gc;
    Py_ssize_t n = 0;
    for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
        n++;
    }
    return n;
259 260
}

261 262 263 264 265 266
/* Append objects in a GC list to a Python list.
 * Return 0 if all OK, < 0 if error (out of memory for list).
 */
static int
append_objects(PyObject *py_list, PyGC_Head *gc_list)
{
267 268 269 270 271 272 273 274 275 276
    PyGC_Head *gc;
    for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) {
        PyObject *op = FROM_GC(gc);
        if (op != py_list) {
            if (PyList_Append(py_list, op)) {
                return -1; /* exception */
            }
        }
    }
    return 0;
277 278
}

279 280 281
/*** end of list stuff ***/


282 283 284
/* Set all gc_refs = ob_refcnt.  After this, gc_refs is > 0 for all objects
 * in containers, and is GC_REACHABLE for all tracked gc objects not in
 * containers.
285
 */
286 287 288
static void
update_refs(PyGC_Head *containers)
{
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    PyGC_Head *gc = containers->gc.gc_next;
    for (; gc != containers; gc = gc->gc.gc_next) {
        assert(gc->gc.gc_refs == GC_REACHABLE);
        gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc));
        /* Python's cyclic gc should never see an incoming refcount
         * of 0:  if something decref'ed to 0, it should have been
         * deallocated immediately at that time.
         * Possible cause (if the assert triggers):  a tp_dealloc
         * routine left a gc-aware object tracked during its teardown
         * phase, and did something-- or allowed something to happen --
         * that called back into Python.  gc can trigger then, and may
         * see the still-tracked dying object.  Before this assert
         * was added, such mistakes went on to allow gc to try to
         * delete the object again.  In a debug build, that caused
         * a mysterious segfault, when _Py_ForgetReference tried
         * to remove the object from the doubly-linked list of all
         * objects a second time.  In a release build, an actual
         * double deallocation occurred, which leads to corruption
         * of the allocator's internal bookkeeping pointers.  That's
         * so serious that maybe this should be a release-build
         * check instead of an assert?
         */
        assert(gc->gc.gc_refs != 0);
    }
313 314
}

315
/* A traversal callback for subtract_refs. */
316 317 318
static int
visit_decref(PyObject *op, void *data)
{
319 320 321 322 323 324 325 326 327 328 329 330
    assert(op != NULL);
    if (PyObject_IS_GC(op)) {
        PyGC_Head *gc = AS_GC(op);
        /* We're only interested in gc_refs for objects in the
         * generation being collected, which can be recognized
         * because only they have positive gc_refs.
         */
        assert(gc->gc.gc_refs != 0); /* else refcount was too small */
        if (gc->gc.gc_refs > 0)
            gc->gc.gc_refs--;
    }
    return 0;
331 332
}

333 334 335 336 337
/* Subtract internal references from gc_refs.  After this, gc_refs is >= 0
 * for all objects in containers, and is GC_REACHABLE for all tracked gc
 * objects not in containers.  The ones with gc_refs > 0 are directly
 * reachable from outside containers, and so can't be collected.
 */
338 339 340
static void
subtract_refs(PyGC_Head *containers)
{
341 342 343 344 345 346 347 348
    traverseproc traverse;
    PyGC_Head *gc = containers->gc.gc_next;
    for (; gc != containers; gc=gc->gc.gc_next) {
        traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
        (void) traverse(FROM_GC(gc),
                       (visitproc)visit_decref,
                       NULL);
    }
349 350
}

351
/* A traversal callback for move_unreachable. */
352
static int
353
visit_reachable(PyObject *op, PyGC_Head *reachable)
354
{
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    if (PyObject_IS_GC(op)) {
        PyGC_Head *gc = AS_GC(op);
        const Py_ssize_t gc_refs = gc->gc.gc_refs;

        if (gc_refs == 0) {
            /* This is in move_unreachable's 'young' list, but
             * the traversal hasn't yet gotten to it.  All
             * we need to do is tell move_unreachable that it's
             * reachable.
             */
            gc->gc.gc_refs = 1;
        }
        else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
            /* This had gc_refs = 0 when move_unreachable got
             * to it, but turns out it's reachable after all.
             * Move it back to move_unreachable's 'young' list,
             * and move_unreachable will eventually get to it
             * again.
             */
            gc_list_move(gc, reachable);
            gc->gc.gc_refs = 1;
        }
        /* Else there's nothing to do.
         * If gc_refs > 0, it must be in move_unreachable's 'young'
         * list, and move_unreachable will eventually get to it.
         * If gc_refs == GC_REACHABLE, it's either in some other
         * generation so we don't care about it, or move_unreachable
         * already dealt with it.
         * If gc_refs == GC_UNTRACKED, it must be ignored.
         */
         else {
            assert(gc_refs > 0
                   || gc_refs == GC_REACHABLE
                   || gc_refs == GC_UNTRACKED);
         }
    }
    return 0;
392 393
}

394 395 396 397 398 399 400
/* Move the unreachable objects from young to unreachable.  After this,
 * all objects in young have gc_refs = GC_REACHABLE, and all objects in
 * unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE.  All tracked
 * gc objects not in young or unreachable still have gc_refs = GC_REACHABLE.
 * All objects in young after this are directly or indirectly reachable
 * from outside the original young; and all objects in unreachable are
 * not.
401
 */
402
static void
403
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
404
{
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    PyGC_Head *gc = young->gc.gc_next;

    /* Invariants:  all objects "to the left" of us in young have gc_refs
     * = GC_REACHABLE, and are indeed reachable (directly or indirectly)
     * from outside the young list as it was at entry.  All other objects
     * from the original young "to the left" of us are in unreachable now,
     * and have gc_refs = GC_TENTATIVELY_UNREACHABLE.  All objects to the
     * left of us in 'young' now have been scanned, and no objects here
     * or to the right have been scanned yet.
     */

    while (gc != young) {
        PyGC_Head *next;

        if (gc->gc.gc_refs) {
            /* gc is definitely reachable from outside the
             * original 'young'.  Mark it as such, and traverse
             * its pointers to find any other objects that may
             * be directly reachable from it.  Note that the
             * call to tp_traverse may append objects to young,
             * so we have to wait until it returns to determine
             * the next object to visit.
             */
            PyObject *op = FROM_GC(gc);
            traverseproc traverse = Py_TYPE(op)->tp_traverse;
            assert(gc->gc.gc_refs > 0);
            gc->gc.gc_refs = GC_REACHABLE;
            (void) traverse(op,
                            (visitproc)visit_reachable,
                            (void *)young);
            next = gc->gc.gc_next;
            if (PyTuple_CheckExact(op)) {
                _PyTuple_MaybeUntrack(op);
            }
            else if (PyDict_CheckExact(op)) {
                _PyDict_MaybeUntrack(op);
            }
        }
        else {
            /* This *may* be unreachable.  To make progress,
             * assume it is.  gc isn't directly reachable from
             * any object we've already traversed, but may be
             * reachable from an object we haven't gotten to yet.
             * visit_reachable will eventually move gc back into
             * young if that's so, and we'll see it again.
             */
            next = gc->gc.gc_next;
            gc_list_move(gc, unreachable);
            gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
        }
        gc = next;
    }
457 458
}

459 460
/* Return true if object has a finalization method.
 * CAUTION:  An instance of an old-style class has to be checked for a
461 462 463 464
 *__del__ method, and earlier versions of this used to call PyObject_HasAttr,
 * which in turn could call the class's __getattr__ hook (if any).  That
 * could invoke arbitrary Python code, mutating the object graph in arbitrary
 * ways, and that was the source of some excruciatingly subtle bugs.
465
 */
466 467
static int
has_finalizer(PyObject *op)
468
{
469 470 471 472 473 474 475 476 477 478
    if (PyInstance_Check(op)) {
        assert(delstr != NULL);
        return _PyInstance_Lookup(op, delstr) != NULL;
    }
    else if (PyType_HasFeature(op->ob_type, Py_TPFLAGS_HEAPTYPE))
        return op->ob_type->tp_del != NULL;
    else if (PyGen_CheckExact(op))
        return PyGen_NeedsFinalizing((PyGenObject *)op);
    else
        return 0;
479 480
}

481 482 483
/* Move the objects in unreachable with __del__ methods into `finalizers`.
 * Objects moved into `finalizers` have gc_refs set to GC_REACHABLE; the
 * objects remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE.
Jeremy Hylton's avatar
Jeremy Hylton committed
484
 */
485
static void
486
move_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
487
{
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    PyGC_Head *gc;
    PyGC_Head *next;

    /* March over unreachable.  Move objects with finalizers into
     * `finalizers`.
     */
    for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
        PyObject *op = FROM_GC(gc);

        assert(IS_TENTATIVELY_UNREACHABLE(op));
        next = gc->gc.gc_next;

        if (has_finalizer(op)) {
            gc_list_move(gc, finalizers);
            gc->gc.gc_refs = GC_REACHABLE;
        }
    }
505 506 507 508 509 510
}

/* A traversal callback for move_finalizer_reachable. */
static int
visit_move(PyObject *op, PyGC_Head *tolist)
{
511 512 513 514 515 516 517 518
    if (PyObject_IS_GC(op)) {
        if (IS_TENTATIVELY_UNREACHABLE(op)) {
            PyGC_Head *gc = AS_GC(op);
            gc_list_move(gc, tolist);
            gc->gc.gc_refs = GC_REACHABLE;
        }
    }
    return 0;
519 520
}

521
/* Move objects that are reachable from finalizers, from the unreachable set
522
 * into finalizers set.
523
 */
524
static void
525
move_finalizer_reachable(PyGC_Head *finalizers)
526
{
527 528 529 530 531 532 533 534 535
    traverseproc traverse;
    PyGC_Head *gc = finalizers->gc.gc_next;
    for (; gc != finalizers; gc = gc->gc.gc_next) {
        /* Note that the finalizers list may grow during this. */
        traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
        (void) traverse(FROM_GC(gc),
                        (visitproc)visit_move,
                        (void *)finalizers);
    }
536 537
}

538 539 540 541 542 543 544 545 546 547
/* Clear all weakrefs to unreachable objects, and if such a weakref has a
 * callback, invoke it if necessary.  Note that it's possible for such
 * weakrefs to be outside the unreachable set -- indeed, those are precisely
 * the weakrefs whose callbacks must be invoked.  See gc_weakref.txt for
 * overview & some details.  Some weakrefs with callbacks may be reclaimed
 * directly by this routine; the number reclaimed is the return value.  Other
 * weakrefs with callbacks may be moved into the `old` generation.  Objects
 * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
 * unreachable are left at GC_TENTATIVELY_UNREACHABLE.  When this returns,
 * no object in `unreachable` is weakly referenced anymore.
548
 */
549 550
static int
handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
551
{
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    PyGC_Head *gc;
    PyObject *op;               /* generally FROM_GC(gc) */
    PyWeakReference *wr;        /* generally a cast of op */
    PyGC_Head wrcb_to_call;     /* weakrefs with callbacks to call */
    PyGC_Head *next;
    int num_freed = 0;

    gc_list_init(&wrcb_to_call);

    /* Clear all weakrefs to the objects in unreachable.  If such a weakref
     * also has a callback, move it into `wrcb_to_call` if the callback
     * needs to be invoked.  Note that we cannot invoke any callbacks until
     * all weakrefs to unreachable objects are cleared, lest the callback
     * resurrect an unreachable object via a still-active weakref.  We
     * make another pass over wrcb_to_call, invoking callbacks, after this
     * pass completes.
     */
    for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
        PyWeakReference **wrlist;

        op = FROM_GC(gc);
        assert(IS_TENTATIVELY_UNREACHABLE(op));
        next = gc->gc.gc_next;

        if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
            continue;

        /* It supports weakrefs.  Does it have any? */
        wrlist = (PyWeakReference **)
                                PyObject_GET_WEAKREFS_LISTPTR(op);

        /* `op` may have some weakrefs.  March over the list, clear
         * all the weakrefs, and move the weakrefs with callbacks
         * that must be called into wrcb_to_call.
         */
        for (wr = *wrlist; wr != NULL; wr = *wrlist) {
            PyGC_Head *wrasgc;                  /* AS_GC(wr) */

            /* _PyWeakref_ClearRef clears the weakref but leaves
             * the callback pointer intact.  Obscure:  it also
             * changes *wrlist.
             */
            assert(wr->wr_object == op);
            _PyWeakref_ClearRef(wr);
            assert(wr->wr_object == Py_None);
            if (wr->wr_callback == NULL)
                continue;                       /* no callback */

    /* Headache time.  `op` is going away, and is weakly referenced by
     * `wr`, which has a callback.  Should the callback be invoked?  If wr
     * is also trash, no:
     *
     * 1. There's no need to call it.  The object and the weakref are
     *    both going away, so it's legitimate to pretend the weakref is
     *    going away first.  The user has to ensure a weakref outlives its
     *    referent if they want a guarantee that the wr callback will get
     *    invoked.
     *
     * 2. It may be catastrophic to call it.  If the callback is also in
     *    cyclic trash (CT), then although the CT is unreachable from
     *    outside the current generation, CT may be reachable from the
     *    callback.  Then the callback could resurrect insane objects.
     *
     * Since the callback is never needed and may be unsafe in this case,
     * wr is simply left in the unreachable set.  Note that because we
     * already called _PyWeakref_ClearRef(wr), its callback will never
     * trigger.
     *
     * OTOH, if wr isn't part of CT, we should invoke the callback:  the
     * weakref outlived the trash.  Note that since wr isn't CT in this
     * case, its callback can't be CT either -- wr acted as an external
     * root to this generation, and therefore its callback did too.  So
     * nothing in CT is reachable from the callback either, so it's hard
     * to imagine how calling it later could create a problem for us.  wr
     * is moved to wrcb_to_call in this case.
     */
            if (IS_TENTATIVELY_UNREACHABLE(wr))
                continue;
            assert(IS_REACHABLE(wr));

            /* Create a new reference so that wr can't go away
             * before we can process it again.
             */
            Py_INCREF(wr);

            /* Move wr to wrcb_to_call, for the next pass. */
            wrasgc = AS_GC(wr);
            assert(wrasgc != next); /* wrasgc is reachable, but
                                       next isn't, so they can't
                                       be the same */
            gc_list_move(wrasgc, &wrcb_to_call);
        }
    }

    /* Invoke the callbacks we decided to honor.  It's safe to invoke them
     * because they can't reference unreachable objects.
     */
    while (! gc_list_is_empty(&wrcb_to_call)) {
        PyObject *temp;
        PyObject *callback;

        gc = wrcb_to_call.gc.gc_next;
        op = FROM_GC(gc);
        assert(IS_REACHABLE(op));
        assert(PyWeakref_Check(op));
        wr = (PyWeakReference *)op;
        callback = wr->wr_callback;
        assert(callback != NULL);

        /* copy-paste of weakrefobject.c's handle_callback() */
        temp = PyObject_CallFunctionObjArgs(callback, wr, NULL);
        if (temp == NULL)
            PyErr_WriteUnraisable(callback);
        else
            Py_DECREF(temp);

        /* Give up the reference we created in the first pass.  When
         * op's refcount hits 0 (which it may or may not do right now),
         * op's tp_dealloc will decref op->wr_callback too.  Note
         * that the refcount probably will hit 0 now, and because this
         * weakref was reachable to begin with, gc didn't already
         * add it to its count of freed objects.  Example:  a reachable
         * weak value dict maps some key to this reachable weakref.
         * The callback removes this key->weakref mapping from the
         * dict, leaving no other references to the weakref (excepting
         * ours).
         */
        Py_DECREF(op);
        if (wrcb_to_call.gc.gc_next == gc) {
            /* object is still alive -- move it */
            gc_list_move(gc, old);
        }
        else
            ++num_freed;
    }

    return num_freed;
689 690
}

691
static void
692
debug_instance(char *msg, PyInstanceObject *inst)
693
{
694 695 696 697 698 699 700 701 702
    char *cname;
    /* simple version of instance_repr */
    PyObject *classname = inst->in_class->cl_name;
    if (classname != NULL && PyString_Check(classname))
        cname = PyString_AsString(classname);
    else
        cname = "?";
    PySys_WriteStderr("gc: %.100s <%.100s instance at %p>\n",
                      msg, cname, inst);
703 704 705
}

static void
706
debug_cycle(char *msg, PyObject *op)
707
{
708 709 710 711 712 713 714
    if ((debug & DEBUG_INSTANCES) && PyInstance_Check(op)) {
        debug_instance(msg, (PyInstanceObject *)op);
    }
    else if (debug & DEBUG_OBJECTS) {
        PySys_WriteStderr("gc: %.100s <%.100s %p>\n",
                          msg, Py_TYPE(op)->tp_name, op);
    }
715 716
}

717 718
/* Handle uncollectable garbage (cycles with finalizers, and stuff reachable
 * only from such cycles).
719 720 721 722
 * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
 * garbage list (a Python list), else only the objects in finalizers with
 * __del__ methods are appended to garbage.  All objects in finalizers are
 * merged into the old list regardless.
723 724
 * Returns 0 if all OK, <0 on error (out of memory to grow the garbage list).
 * The finalizers list is made empty on a successful return.
725
 */
726
static int
727
handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old)
728
{
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
    PyGC_Head *gc = finalizers->gc.gc_next;

    if (garbage == NULL) {
        garbage = PyList_New(0);
        if (garbage == NULL)
            Py_FatalError("gc couldn't create gc.garbage list");
    }
    for (; gc != finalizers; gc = gc->gc.gc_next) {
        PyObject *op = FROM_GC(gc);

        if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) {
            if (PyList_Append(garbage, op) < 0)
                return -1;
        }
    }

    gc_list_merge(finalizers, old);
    return 0;
747 748
}

749
/* Break reference cycles by clearing the containers involved.  This is
750
 * tricky business as the lists can be changing and we don't know which
751 752
 * objects may be freed.  It is possible I screwed something up here.
 */
753
static void
Jeremy Hylton's avatar
Jeremy Hylton committed
754
delete_garbage(PyGC_Head *collectable, PyGC_Head *old)
755
{
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    inquiry clear;

    while (!gc_list_is_empty(collectable)) {
        PyGC_Head *gc = collectable->gc.gc_next;
        PyObject *op = FROM_GC(gc);

        assert(IS_TENTATIVELY_UNREACHABLE(op));
        if (debug & DEBUG_SAVEALL) {
            PyList_Append(garbage, op);
        }
        else {
            if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
                Py_INCREF(op);
                clear(op);
                Py_DECREF(op);
            }
        }
        if (collectable->gc.gc_next == gc) {
            /* object is still alive, move it, it may die later */
            gc_list_move(gc, old);
            gc->gc.gc_refs = GC_REACHABLE;
        }
    }
779 780
}

781 782 783 784 785 786 787 788
/* Clear all free lists
 * All free lists are cleared during the collection of the highest generation.
 * Allocated items in the free list may keep a pymalloc arena occupied.
 * Clearing the free lists may give back memory to the OS earlier.
 */
static void
clear_freelists(void)
{
789 790 791 792
    (void)PyMethod_ClearFreeList();
    (void)PyFrame_ClearFreeList();
    (void)PyCFunction_ClearFreeList();
    (void)PyTuple_ClearFreeList();
793
#ifdef Py_USING_UNICODE
794
    (void)PyUnicode_ClearFreeList();
795
#endif
796 797
    (void)PyInt_ClearFreeList();
    (void)PyFloat_ClearFreeList();
798 799
}

800 801 802
static double
get_time(void)
{
803 804 805 806 807 808 809 810 811 812 813 814 815
    double result = 0;
    if (tmod != NULL) {
        PyObject *f = PyObject_CallMethod(tmod, "time", NULL);
        if (f == NULL) {
            PyErr_Clear();
        }
        else {
            if (PyFloat_Check(f))
                result = PyFloat_AsDouble(f);
            Py_DECREF(f);
        }
    }
    return result;
816 817
}

818 819
/* This is the main function.  Read this to understand how the
 * collection process works. */
820
static Py_ssize_t
821
collect(int generation)
822
{
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
    int i;
    Py_ssize_t m = 0; /* # objects collected */
    Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
    PyGC_Head *young; /* the generation we are examining */
    PyGC_Head *old; /* next older generation */
    PyGC_Head unreachable; /* non-problematic unreachable trash */
    PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */
    PyGC_Head *gc;
    double t1 = 0.0;

    if (delstr == NULL) {
        delstr = PyString_InternFromString("__del__");
        if (delstr == NULL)
            Py_FatalError("gc couldn't allocate \"__del__\"");
    }

    if (debug & DEBUG_STATS) {
        PySys_WriteStderr("gc: collecting generation %d...\n",
                          generation);
        PySys_WriteStderr("gc: objects in each generation:");
        for (i = 0; i < NUM_GENERATIONS; i++)
            PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d",
                              gc_list_size(GEN_HEAD(i)));
        t1 = get_time();
        PySys_WriteStderr("\n");
    }

    /* update collection and allocation counters */
    if (generation+1 < NUM_GENERATIONS)
        generations[generation+1].count += 1;
    for (i = 0; i <= generation; i++)
        generations[i].count = 0;

    /* merge younger generations with one we are currently collecting */
    for (i = 0; i < generation; i++) {
        gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation));
    }

    /* handy references */
    young = GEN_HEAD(generation);
    if (generation < NUM_GENERATIONS-1)
        old = GEN_HEAD(generation+1);
    else
        old = young;

    /* Using ob_refcnt and gc_refs, calculate which objects in the
     * container set are reachable from outside the set (i.e., have a
     * refcount greater than 0 when all the references within the
     * set are taken into account).
     */
    update_refs(young);
    subtract_refs(young);

    /* Leave everything reachable from outside young in young, and move
     * everything else (in young) to unreachable.
     * NOTE:  This used to move the reachable objects into a reachable
     * set instead.  But most things usually turn out to be reachable,
     * so it's more efficient to move the unreachable things.
     */
    gc_list_init(&unreachable);
    move_unreachable(young, &unreachable);

    /* Move reachable objects to next generation. */
    if (young != old) {
        if (generation == NUM_GENERATIONS - 2) {
            long_lived_pending += gc_list_size(young);
        }
        gc_list_merge(young, old);
    }
    else {
        long_lived_pending = 0;
        long_lived_total = gc_list_size(young);
    }

    /* All objects in unreachable are trash, but objects reachable from
     * finalizers can't safely be deleted.  Python programmers should take
     * care not to create such things.  For Python, finalizers means
     * instance objects with __del__ methods.  Weakrefs with callbacks
     * can also call arbitrary Python code but they will be dealt with by
     * handle_weakrefs().
     */
    gc_list_init(&finalizers);
    move_finalizers(&unreachable, &finalizers);
    /* finalizers contains the unreachable objects with a finalizer;
     * unreachable objects reachable *from* those are also uncollectable,
     * and we move those into the finalizers list too.
     */
    move_finalizer_reachable(&finalizers);

    /* Collect statistics on collectable objects found and print
     * debugging information.
     */
    for (gc = unreachable.gc.gc_next; gc != &unreachable;
                    gc = gc->gc.gc_next) {
        m++;
        if (debug & DEBUG_COLLECTABLE) {
            debug_cycle("collectable", FROM_GC(gc));
        }
    }

    /* Clear weakrefs and invoke callbacks as necessary. */
    m += handle_weakrefs(&unreachable, old);

    /* Call tp_clear on objects in the unreachable set.  This will cause
     * the reference cycles to be broken.  It may also cause some objects
     * in finalizers to be freed.
     */
    delete_garbage(&unreachable, old);

    /* Collect statistics on uncollectable objects found and print
     * debugging information. */
    for (gc = finalizers.gc.gc_next;
         gc != &finalizers;
         gc = gc->gc.gc_next) {
        n++;
        if (debug & DEBUG_UNCOLLECTABLE)
            debug_cycle("uncollectable", FROM_GC(gc));
    }
    if (debug & DEBUG_STATS) {
        double t2 = get_time();
        if (m == 0 && n == 0)
            PySys_WriteStderr("gc: done");
        else
            PySys_WriteStderr(
                "gc: done, "
                "%" PY_FORMAT_SIZE_T "d unreachable, "
                "%" PY_FORMAT_SIZE_T "d uncollectable",
                n+m, n);
        if (t1 && t2) {
            PySys_WriteStderr(", %.4fs elapsed", t2-t1);
        }
        PySys_WriteStderr(".\n");
    }

    /* Append instances in the uncollectable set to a Python
     * reachable list of garbage.  The programmer has to deal with
     * this if they insist on creating this type of structure.
     */
    (void)handle_finalizers(&finalizers, old);

    /* Clear free list only during the collection of the highest
     * generation */
    if (generation == NUM_GENERATIONS-1) {
        clear_freelists();
    }

    if (PyErr_Occurred()) {
        if (gc_str == NULL)
            gc_str = PyString_FromString("garbage collection");
        PyErr_WriteUnraisable(gc_str);
        Py_FatalError("unexpected exception during garbage collection");
    }
    return n+m;
976 977
}

978
static Py_ssize_t
979 980
collect_generations(void)
{
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    int i;
    Py_ssize_t n = 0;

    /* Find the oldest generation (highest numbered) where the count
     * exceeds the threshold.  Objects in the that generation and
     * generations younger than it will be collected. */
    for (i = NUM_GENERATIONS-1; i >= 0; i--) {
        if (generations[i].count > generations[i].threshold) {
            /* Avoid quadratic performance degradation in number
               of tracked objects. See comments at the beginning
               of this file, and issue #4074.
            */
            if (i == NUM_GENERATIONS - 1
                && long_lived_pending < long_lived_total / 4)
                continue;
            n = collect(i);
            break;
        }
    }
    return n;
1001 1002
}

1003
PyDoc_STRVAR(gc_enable__doc__,
1004 1005
"enable() -> None\n"
"\n"
1006
"Enable automatic garbage collection.\n");
1007 1008

static PyObject *
1009
gc_enable(PyObject *self, PyObject *noargs)
1010
{
1011 1012 1013
    enabled = 1;
    Py_INCREF(Py_None);
    return Py_None;
1014 1015
}

1016
PyDoc_STRVAR(gc_disable__doc__,
1017 1018
"disable() -> None\n"
"\n"
1019
"Disable automatic garbage collection.\n");
1020 1021

static PyObject *
1022
gc_disable(PyObject *self, PyObject *noargs)
1023
{
1024 1025 1026
    enabled = 0;
    Py_INCREF(Py_None);
    return Py_None;
1027 1028
}

1029
PyDoc_STRVAR(gc_isenabled__doc__,
1030 1031
"isenabled() -> status\n"
"\n"
1032
"Returns true if automatic garbage collection is enabled.\n");
1033 1034

static PyObject *
1035
gc_isenabled(PyObject *self, PyObject *noargs)
1036
{
1037
    return PyBool_FromLong((long)enabled);
1038
}
1039

1040
PyDoc_STRVAR(gc_collect__doc__,
1041
"collect([generation]) -> n\n"
1042
"\n"
1043 1044 1045 1046
"With no arguments, run a full collection.  The optional argument\n"
"may be an integer specifying which generation to collect.  A ValueError\n"
"is raised if the generation number is invalid.\n\n"
"The number of unreachable objects is returned.\n");
1047 1048

static PyObject *
1049
gc_collect(PyObject *self, PyObject *args, PyObject *kws)
1050
{
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    static char *keywords[] = {"generation", NULL};
    int genarg = NUM_GENERATIONS - 1;
    Py_ssize_t n;

    if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg))
        return NULL;

    else if (genarg < 0 || genarg >= NUM_GENERATIONS) {
        PyErr_SetString(PyExc_ValueError, "invalid generation");
        return NULL;
    }

    if (collecting)
        n = 0; /* already collecting, don't do anything */
    else {
        collecting = 1;
        n = collect(genarg);
        collecting = 0;
    }

    return PyInt_FromSsize_t(n);
1072 1073
}

1074
PyDoc_STRVAR(gc_set_debug__doc__,
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
"set_debug(flags) -> None\n"
"\n"
"Set the garbage collection debugging flags. Debugging information is\n"
"written to sys.stderr.\n"
"\n"
"flags is an integer and can have the following bits turned on:\n"
"\n"
"  DEBUG_STATS - Print statistics during collection.\n"
"  DEBUG_COLLECTABLE - Print collectable objects found.\n"
"  DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects found.\n"
"  DEBUG_INSTANCES - Print instance objects.\n"
"  DEBUG_OBJECTS - Print objects other than instances.\n"
1087
"  DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.\n"
1088
"  DEBUG_LEAK - Debug leaking programs (everything but STATS).\n");
1089 1090

static PyObject *
1091
gc_set_debug(PyObject *self, PyObject *args)
1092
{
1093 1094
    if (!PyArg_ParseTuple(args, "i:set_debug", &debug))
        return NULL;
1095

1096 1097
    Py_INCREF(Py_None);
    return Py_None;
1098 1099
}

1100
PyDoc_STRVAR(gc_get_debug__doc__,
1101 1102
"get_debug() -> flags\n"
"\n"
1103
"Get the garbage collection debugging flags.\n");
1104 1105

static PyObject *
1106
gc_get_debug(PyObject *self, PyObject *noargs)
1107
{
1108
    return Py_BuildValue("i", debug);
1109 1110
}

1111
PyDoc_STRVAR(gc_set_thresh__doc__,
1112
"set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
1113 1114
"\n"
"Sets the collection thresholds.  Setting threshold0 to zero disables\n"
1115
"collection.\n");
1116 1117

static PyObject *
1118
gc_set_thresh(PyObject *self, PyObject *args)
1119
{
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    int i;
    if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
                          &generations[0].threshold,
                          &generations[1].threshold,
                          &generations[2].threshold))
        return NULL;
    for (i = 2; i < NUM_GENERATIONS; i++) {
        /* generations higher than 2 get the same threshold */
        generations[i].threshold = generations[2].threshold;
    }

    Py_INCREF(Py_None);
    return Py_None;
1133 1134
}

1135
PyDoc_STRVAR(gc_get_thresh__doc__,
1136 1137
"get_threshold() -> (threshold0, threshold1, threshold2)\n"
"\n"
1138
"Return the current collection thresholds\n");
1139 1140

static PyObject *
1141
gc_get_thresh(PyObject *self, PyObject *noargs)
1142
{
1143 1144 1145 1146
    return Py_BuildValue("(iii)",
                         generations[0].threshold,
                         generations[1].threshold,
                         generations[2].threshold);
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156
PyDoc_STRVAR(gc_get_count__doc__,
"get_count() -> (count0, count1, count2)\n"
"\n"
"Return the current collection counts\n");

static PyObject *
gc_get_count(PyObject *self, PyObject *noargs)
{
1157 1158 1159 1160
    return Py_BuildValue("(iii)",
                         generations[0].count,
                         generations[1].count,
                         generations[2].count);
1161 1162
}

1163
static int
1164
referrersvisit(PyObject* obj, PyObject *objs)
1165
{
1166 1167 1168 1169 1170
    Py_ssize_t i;
    for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
        if (PyTuple_GET_ITEM(objs, i) == obj)
            return 1;
    return 0;
1171 1172
}

1173
static int
1174
gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
1175
{
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    PyGC_Head *gc;
    PyObject *obj;
    traverseproc traverse;
    for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
        obj = FROM_GC(gc);
        traverse = Py_TYPE(obj)->tp_traverse;
        if (obj == objs || obj == resultlist)
            continue;
        if (traverse(obj, (visitproc)referrersvisit, objs)) {
            if (PyList_Append(resultlist, obj) < 0)
                return 0; /* error */
        }
    }
    return 1; /* no error */
1190 1191
}

1192
PyDoc_STRVAR(gc_get_referrers__doc__,
1193
"get_referrers(*objs) -> list\n\
1194
Return the list of objects that directly refer to any of objs.");
1195

1196
static PyObject *
1197
gc_get_referrers(PyObject *self, PyObject *args)
1198
{
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
    int i;
    PyObject *result = PyList_New(0);
    if (!result) return NULL;

    for (i = 0; i < NUM_GENERATIONS; i++) {
        if (!(gc_referrers_for(args, GEN_HEAD(i), result))) {
            Py_DECREF(result);
            return NULL;
        }
    }
    return result;
1210
}
1211

1212
/* Append obj to list; return true if error (out of memory), false if OK. */
1213
static int
1214
referentsvisit(PyObject *obj, PyObject *list)
1215
{
1216
    return PyList_Append(list, obj) < 0;
1217 1218
}

1219 1220
PyDoc_STRVAR(gc_get_referents__doc__,
"get_referents(*objs) -> list\n\
1221
Return the list of objects that are directly referred to by objs.");
1222 1223

static PyObject *
1224
gc_get_referents(PyObject *self, PyObject *args)
1225
{
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    Py_ssize_t i;
    PyObject *result = PyList_New(0);

    if (result == NULL)
        return NULL;

    for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
        traverseproc traverse;
        PyObject *obj = PyTuple_GET_ITEM(args, i);

        if (! PyObject_IS_GC(obj))
            continue;
        traverse = Py_TYPE(obj)->tp_traverse;
        if (! traverse)
            continue;
        if (traverse(obj, (visitproc)referentsvisit, result)) {
            Py_DECREF(result);
            return NULL;
        }
    }
    return result;
1247 1248
}

1249
PyDoc_STRVAR(gc_get_objects__doc__,
1250 1251 1252
"get_objects() -> [...]\n"
"\n"
"Return a list of objects tracked by the collector (excluding the list\n"
1253
"returned).\n");
1254 1255

static PyObject *
1256
gc_get_objects(PyObject *self, PyObject *noargs)
1257
{
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    int i;
    PyObject* result;

    result = PyList_New(0);
    if (result == NULL)
        return NULL;
    for (i = 0; i < NUM_GENERATIONS; i++) {
        if (append_objects(result, GEN_HEAD(i))) {
            Py_DECREF(result);
            return NULL;
        }
    }
    return result;
1271 1272
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
PyDoc_STRVAR(gc_is_tracked__doc__,
"is_tracked(obj) -> bool\n"
"\n"
"Returns true if the object is tracked by the garbage collector.\n"
"Simple atomic objects will return false.\n"
);

static PyObject *
gc_is_tracked(PyObject *self, PyObject *obj)
{
1283 1284 1285 1286 1287 1288 1289 1290
    PyObject *result;

    if (PyObject_IS_GC(obj) && IS_TRACKED(obj))
        result = Py_True;
    else
        result = Py_False;
    Py_INCREF(result);
    return result;
1291 1292
}

1293

1294
PyDoc_STRVAR(gc__doc__,
1295 1296
"This module provides access to the garbage collector for reference cycles.\n"
"\n"
1297 1298 1299
"enable() -- Enable automatic garbage collection.\n"
"disable() -- Disable automatic garbage collection.\n"
"isenabled() -- Returns true if automatic collection is enabled.\n"
1300
"collect() -- Do a full collection right now.\n"
1301
"get_count() -- Return the current collection counts.\n"
1302 1303 1304 1305
"set_debug() -- Set debugging flags.\n"
"get_debug() -- Get debugging flags.\n"
"set_threshold() -- Set the collection thresholds.\n"
"get_threshold() -- Return the current the collection thresholds.\n"
1306
"get_objects() -- Return a list of all objects tracked by the collector.\n"
1307
"is_tracked() -- Returns true if a given object is tracked.\n"
1308
"get_referrers() -- Return the list of objects that refer to an object.\n"
1309
"get_referents() -- Return the list of objects that an object refers to.\n");
1310 1311

static PyMethodDef GcMethods[] = {
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    {"enable",             gc_enable,     METH_NOARGS,  gc_enable__doc__},
    {"disable",            gc_disable,    METH_NOARGS,  gc_disable__doc__},
    {"isenabled",          gc_isenabled,  METH_NOARGS,  gc_isenabled__doc__},
    {"set_debug",          gc_set_debug,  METH_VARARGS, gc_set_debug__doc__},
    {"get_debug",          gc_get_debug,  METH_NOARGS,  gc_get_debug__doc__},
    {"get_count",          gc_get_count,  METH_NOARGS,  gc_get_count__doc__},
    {"set_threshold",  gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__},
    {"get_threshold",  gc_get_thresh, METH_NOARGS,  gc_get_thresh__doc__},
    {"collect",            (PyCFunction)gc_collect,
        METH_VARARGS | METH_KEYWORDS,           gc_collect__doc__},
    {"get_objects",    gc_get_objects,METH_NOARGS,  gc_get_objects__doc__},
    {"is_tracked",     gc_is_tracked, METH_O,       gc_is_tracked__doc__},
    {"get_referrers",  gc_get_referrers, METH_VARARGS,
        gc_get_referrers__doc__},
    {"get_referents",  gc_get_referents, METH_VARARGS,
        gc_get_referents__doc__},
    {NULL,      NULL}           /* Sentinel */
1329 1330
};

1331
PyMODINIT_FUNC
1332 1333
initgc(void)
{
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    PyObject *m;

    m = Py_InitModule4("gc",
                          GcMethods,
                          gc__doc__,
                          NULL,
                          PYTHON_API_VERSION);
    if (m == NULL)
        return;

    if (garbage == NULL) {
        garbage = PyList_New(0);
        if (garbage == NULL)
            return;
    }
    Py_INCREF(garbage);
    if (PyModule_AddObject(m, "garbage", garbage) < 0)
        return;

    /* Importing can't be done in collect() because collect()
     * can be called via PyGC_Collect() in Py_Finalize().
     * This wouldn't be a problem, except that <initialized> is
     * reset to 0 before calling collect which trips up
     * the import and triggers an assertion.
     */
    if (tmod == NULL) {
        tmod = PyImport_ImportModuleNoBlock("time");
        if (tmod == NULL)
            PyErr_Clear();
    }
1364

1365
#define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return
1366 1367 1368 1369 1370 1371 1372
    ADD_INT(DEBUG_STATS);
    ADD_INT(DEBUG_COLLECTABLE);
    ADD_INT(DEBUG_UNCOLLECTABLE);
    ADD_INT(DEBUG_INSTANCES);
    ADD_INT(DEBUG_OBJECTS);
    ADD_INT(DEBUG_SAVEALL);
    ADD_INT(DEBUG_LEAK);
1373
#undef ADD_INT
1374 1375
}

1376
/* API to invoke gc.collect() from C */
1377
Py_ssize_t
1378 1379
PyGC_Collect(void)
{
1380
    Py_ssize_t n;
1381

1382 1383 1384 1385 1386 1387 1388
    if (collecting)
        n = 0; /* already collecting, don't do anything */
    else {
        collecting = 1;
        n = collect(NUM_GENERATIONS - 1);
        collecting = 0;
    }
1389

1390
    return n;
1391 1392
}

1393
/* for debugging */
1394 1395
void
_PyGC_Dump(PyGC_Head *g)
1396
{
1397
    _PyObject_Dump(FROM_GC(g));
1398 1399 1400 1401 1402
}

/* extension modules might be compiled with GC support so these
   functions must always be available */

1403 1404 1405 1406 1407
#undef PyObject_GC_Track
#undef PyObject_GC_UnTrack
#undef PyObject_GC_Del
#undef _PyObject_GC_Malloc

1408
void
1409
PyObject_GC_Track(void *op)
1410
{
1411
    _PyObject_GC_TRACK(op);
1412 1413
}

1414
/* for binary compatibility with 2.2 */
1415
void
1416 1417 1418 1419 1420 1421 1422
_PyObject_GC_Track(PyObject *op)
{
    PyObject_GC_Track(op);
}

void
PyObject_GC_UnTrack(void *op)
1423
{
1424 1425 1426 1427 1428
    /* Obscure:  the Py_TRASHCAN mechanism requires that we be able to
     * call PyObject_GC_UnTrack twice on an object.
     */
    if (IS_TRACKED(op))
        _PyObject_GC_UNTRACK(op);
1429 1430
}

1431 1432 1433 1434 1435 1436 1437
/* for binary compatibility with 2.2 */
void
_PyObject_GC_UnTrack(PyObject *op)
{
    PyObject_GC_UnTrack(op);
}

1438
PyObject *
1439
_PyObject_GC_Malloc(size_t basicsize)
1440
{
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    PyObject *op;
    PyGC_Head *g;
    if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
        return PyErr_NoMemory();
    g = (PyGC_Head *)PyObject_MALLOC(
        sizeof(PyGC_Head) + basicsize);
    if (g == NULL)
        return PyErr_NoMemory();
    g->gc.gc_refs = GC_UNTRACKED;
    generations[0].count++; /* number of allocated GC objects */
    if (generations[0].count > generations[0].threshold &&
        enabled &&
        generations[0].threshold &&
        !collecting &&
        !PyErr_Occurred()) {
        collecting = 1;
        collect_generations();
        collecting = 0;
    }
    op = FROM_GC(g);
    return op;
1462 1463 1464 1465 1466
}

PyObject *
_PyObject_GC_New(PyTypeObject *tp)
{
1467 1468 1469 1470
    PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
    if (op != NULL)
        op = PyObject_INIT(op, tp);
    return op;
1471 1472 1473
}

PyVarObject *
Martin v. Löwis's avatar
Martin v. Löwis committed
1474
_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
1475
{
1476 1477 1478 1479 1480
    const size_t size = _PyObject_VAR_SIZE(tp, nitems);
    PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size);
    if (op != NULL)
        op = PyObject_INIT_VAR(op, tp, nitems);
    return op;
1481 1482 1483
}

PyVarObject *
1484
_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
1485
{
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
    PyGC_Head *g = AS_GC(op);
    if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
        return (PyVarObject *)PyErr_NoMemory();
    g = (PyGC_Head *)PyObject_REALLOC(g,  sizeof(PyGC_Head) + basicsize);
    if (g == NULL)
        return (PyVarObject *)PyErr_NoMemory();
    op = (PyVarObject *) FROM_GC(g);
    Py_SIZE(op) = nitems;
    return op;
1496 1497 1498
}

void
1499
PyObject_GC_Del(void *op)
1500
{
1501 1502 1503 1504 1505 1506 1507
    PyGC_Head *g = AS_GC(op);
    if (IS_TRACKED(op))
        gc_list_remove(g);
    if (generations[0].count > 0) {
        generations[0].count--;
    }
    PyObject_FREE(g);
1508 1509
}

1510 1511 1512 1513 1514 1515 1516
/* for binary compatibility with 2.2 */
#undef _PyObject_GC_Del
void
_PyObject_GC_Del(PyObject *op)
{
    PyObject_GC_Del(op);
}