obmalloc.c 68.4 KB
Newer Older
1 2 3 4
#include "Python.h"

#ifdef WITH_PYMALLOC

5 6 7 8 9
#ifdef HAVE_MMAP
 #include <sys/mman.h>
 #ifdef MAP_ANONYMOUS
  #define ARENAS_USE_MMAP
 #endif
10 11
#endif

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#ifdef WITH_VALGRIND
#include <valgrind/valgrind.h>

/* If we're using GCC, use __builtin_expect() to reduce overhead of
   the valgrind checks */
#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
#  define UNLIKELY(value) __builtin_expect((value), 0)
#else
#  define UNLIKELY(value) (value)
#endif

/* -1 indicates that we haven't checked that we're running on valgrind yet. */
static int running_on_valgrind = -1;
#endif

27 28 29 30 31 32 33 34 35 36
/* An object allocator for Python.

   Here is an introduction to the layers of the Python memory architecture,
   showing where the object allocator is actually used (layer +2), It is
   called for every object allocation and deallocation (PyObject_New/Del),
   unless the object-specific allocators implement a proprietary allocation
   scheme (ex.: ints use a simple free list). This is also the place where
   the cyclic garbage collector operates selectively on container objects.


37
    Object-specific allocators
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    _____   ______   ______       ________
   [ int ] [ dict ] [ list ] ... [ string ]       Python core         |
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
    _______________________________       |                           |
   [   Python's object allocator   ]      |                           |
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
    ______________________________________________________________    |
   [          Python's raw memory allocator (PyMem_ API)          ]   |
+1 | <----- Python memory (under PyMem manager's control) ------> |   |
    __________________________________________________________________
   [    Underlying general-purpose allocator (ex: C library malloc)   ]
 0 | <------ Virtual memory allocated for the python process -------> |

   =========================================================================
    _______________________________________________________________________
   [                OS-specific Virtual Memory Manager (VMM)               ]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
    __________________________________   __________________________________
   [                                  ] [                                  ]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |

*/
/*==========================================================================*/

/* A fast, special-purpose memory allocator for small blocks, to be used
   on top of a general-purpose malloc -- heavily based on previous art. */

/* Vladimir Marangozov -- August 2000 */

/*
 * "Memory management is where the rubber meets the road -- if we do the wrong
 * thing at any level, the results will not be good. And if we don't make the
 * levels work well together, we are in serious trouble." (1)
 *
 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
 *    "Dynamic Storage Allocation: A Survey and Critical Review",
 *    in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
 */

77
/* #undef WITH_MEMORY_LIMITS */         /* disable mem limit checks  */
78 79 80 81 82 83 84

/*==========================================================================*/

/*
 * Allocation strategy abstract:
 *
 * For small requests, the allocator sub-allocates <Big> blocks of memory.
85 86
 * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
 * system's allocator.
Tim Peters's avatar
Tim Peters committed
87
 *
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
 * Small requests are grouped in size classes spaced 8 bytes apart, due
 * to the required valid alignment of the returned address. Requests of
 * a particular size are serviced from memory pools of 4K (one VMM page).
 * Pools are fragmented on demand and contain free lists of blocks of one
 * particular size class. In other words, there is a fixed-size allocator
 * for each size class. Free pools are shared by the different allocators
 * thus minimizing the space reserved for a particular size class.
 *
 * This allocation strategy is a variant of what is known as "simple
 * segregated storage based on array of free lists". The main drawback of
 * simple segregated storage is that we might end up with lot of reserved
 * memory for the different free lists, which degenerate in time. To avoid
 * this, we partition each free list in pools and we share dynamically the
 * reserved space between all free lists. This technique is quite efficient
 * for memory intensive programs which allocate mainly small-sized blocks.
 *
 * For small requests we have the following table:
 *
106
 * Request in bytes     Size of allocated block      Size class idx
107 108
 * ----------------------------------------------------------------
 *        1-8                     8                       0
109 110 111 112 113 114 115 116 117
 *        9-16                   16                       1
 *       17-24                   24                       2
 *       25-32                   32                       3
 *       33-40                   40                       4
 *       41-48                   48                       5
 *       49-56                   56                       6
 *       57-64                   64                       7
 *       65-72                   72                       8
 *        ...                   ...                     ...
118 119
 *      497-504                 504                      62
 *      505-512                 512                      63
Tim Peters's avatar
Tim Peters committed
120
 *
121 122
 *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
 *      allocator.
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
 */

/*==========================================================================*/

/*
 * -- Main tunable settings section --
 */

/*
 * Alignment of addresses returned to the user. 8-bytes alignment works
 * on most current architectures (with 32-bit or 64-bit address busses).
 * The alignment value is also used for grouping small requests in size
 * classes spaced ALIGNMENT bytes apart.
 *
 * You shouldn't change this unless you know what you are doing.
 */
139 140
#define ALIGNMENT               8               /* must be 2^N */
#define ALIGNMENT_SHIFT         3
141

142 143 144
/* Return the number of bytes in size class I, as a uint. */
#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)

145 146 147 148 149
/*
 * Max size threshold below which malloc requests are considered to be
 * small enough in order to use preallocated memory pools. You can tune
 * this value according to your application behaviour and memory needs.
 *
150 151 152
 * Note: a size threshold of 512 guarantees that newly created dictionaries
 * will be allocated from preallocated memory pools on 64-bit.
 *
153
 * The following invariants must hold:
154
 *      1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
155
 *      2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
156 157 158 159
 *
 * Although not required, for better performance and space efficiency,
 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
 */
160
#define SMALL_REQUEST_THRESHOLD 512
161
#define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
162 163 164 165 166 167

/*
 * The system's VMM page size can be obtained on most unices with a
 * getpagesize() call or deduced from various header files. To make
 * things simpler, we assume that it is 4K, which is OK for most systems.
 * It is probably better if this is the native page size, but it doesn't
168 169 170
 * have to be.  In theory, if SYSTEM_PAGE_SIZE is larger than the native page
 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
 * violation fault.  4K is apparently OK for all the platforms that python
171
 * currently targets.
172
 */
173 174
#define SYSTEM_PAGE_SIZE        (4 * 1024)
#define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)
175 176 177 178 179 180

/*
 * Maximum amount of memory managed by the allocator for small requests.
 */
#ifdef WITH_MEMORY_LIMITS
#ifndef SMALL_MEMORY_LIMIT
181
#define SMALL_MEMORY_LIMIT      (64 * 1024 * 1024)      /* 64 MB -- more? */
182 183 184 185 186 187
#endif
#endif

/*
 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
 * on a page boundary. This is a reserved virtual address space for the
188 189 190 191 192 193
 * current process (obtained through a malloc()/mmap() call). In no way this
 * means that the memory arenas will be used entirely. A malloc(<Big>) is
 * usually an address range reservation for <Big> bytes, unless all pages within
 * this space are referenced subsequently. So malloc'ing big blocks and not
 * using them does not mean "wasting memory". It's an addressable range
 * wastage...
194
 *
195 196
 * Arenas are allocated with mmap() on systems supporting anonymous memory
 * mappings to reduce heap fragmentation.
197
 */
198
#define ARENA_SIZE              (256 << 10)     /* 256KB */
199 200

#ifdef WITH_MEMORY_LIMITS
201
#define MAX_ARENAS              (SMALL_MEMORY_LIMIT / ARENA_SIZE)
202 203 204 205
#endif

/*
 * Size of the pools used for small blocks. Should be a power of 2,
206
 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
207
 */
208 209
#define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
#define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

/*
 * -- End of tunable settings section --
 */

/*==========================================================================*/

/*
 * Locking
 *
 * To reduce lock contention, it would probably be better to refine the
 * crude function locking with per size class locking. I'm not positive
 * however, whether it's worth switching to such locking policy because
 * of the performance penalty it might introduce.
 *
 * The following macros describe the simplest (should also be the fastest)
 * lock object on a particular platform and the init/fini/lock/unlock
 * operations on it. The locks defined here are not expected to be recursive
 * because it is assumed that they will always be called in the order:
 * INIT, [LOCK, UNLOCK]*, FINI.
 */

/*
 * Python's threads are serialized, so object malloc locking is disabled.
 */
235 236 237 238 239
#define SIMPLELOCK_DECL(lock)   /* simple lock declaration              */
#define SIMPLELOCK_INIT(lock)   /* allocate (if needed) and initialize  */
#define SIMPLELOCK_FINI(lock)   /* free/destroy an existing lock        */
#define SIMPLELOCK_LOCK(lock)   /* acquire released lock */
#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
240 241 242 243 244 245

/*
 * Basic types
 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
 */
#undef  uchar
246
#define uchar   unsigned char   /* assuming == 8 bits  */
247 248

#undef  uint
249
#define uint    unsigned int    /* assuming >= 16 bits */
250 251

#undef  ulong
252
#define ulong   unsigned long   /* assuming >= 32 bits */
253

Tim Peters's avatar
Tim Peters committed
254
#undef uptr
255
#define uptr    Py_uintptr_t
Tim Peters's avatar
Tim Peters committed
256

257 258 259
/* When you say memory, my mind reasons in terms of (pointers to) blocks */
typedef uchar block;

260
/* Pool for small blocks. */
261
struct pool_header {
262
    union { block *_padding;
Stefan Krah's avatar
Stefan Krah committed
263
            uint count; } ref;          /* number of allocated blocks    */
264 265 266 267 268 269 270
    block *freeblock;                   /* pool's free list head         */
    struct pool_header *nextpool;       /* next pool of this size class  */
    struct pool_header *prevpool;       /* previous pool       ""        */
    uint arenaindex;                    /* index into arenas of base adr */
    uint szidx;                         /* block size class index        */
    uint nextoffset;                    /* bytes to virgin block         */
    uint maxnextoffset;                 /* largest valid nextoffset      */
271 272 273 274
};

typedef struct pool_header *poolp;

275 276
/* Record keeping for arenas. */
struct arena_object {
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    /* The address of the arena, as returned by malloc.  Note that 0
     * will never be returned by a successful malloc, and is used
     * here to mark an arena_object that doesn't correspond to an
     * allocated arena.
     */
    uptr address;

    /* Pool-aligned pointer to the next pool to be carved off. */
    block* pool_address;

    /* The number of available pools in the arena:  free pools + never-
     * allocated pools.
     */
    uint nfreepools;

    /* The total number of pools in the arena, whether or not available. */
    uint ntotalpools;

    /* Singly-linked list of available pools. */
    struct pool_header* freepools;

    /* Whenever this arena_object is not associated with an allocated
     * arena, the nextarena member is used to link all unassociated
     * arena_objects in the singly-linked `unused_arena_objects` list.
     * The prevarena member is unused in this case.
     *
     * When this arena_object is associated with an allocated arena
     * with at least one available pool, both members are used in the
     * doubly-linked `usable_arenas` list, which is maintained in
     * increasing order of `nfreepools` values.
     *
     * Else this arena_object is associated with an allocated arena
     * all of whose pools are in use.  `nextarena` and `prevarena`
     * are both meaningless in this case.
     */
    struct arena_object* nextarena;
    struct arena_object* prevarena;
314 315
};

316
#define POOL_OVERHEAD   _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)
317

318
#define DUMMY_SIZE_IDX          0xffff  /* size class of newly cached pools */
319

Tim Peters's avatar
Tim Peters committed
320
/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
321
#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))
322

323 324
/* Return total number of blocks in pool of size index I, as a uint. */
#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
Tim Peters's avatar
Tim Peters committed
325

326 327 328 329 330
/*==========================================================================*/

/*
 * This malloc lock
 */
331
SIMPLELOCK_DECL(_malloc_lock)
332 333 334 335
#define LOCK()          SIMPLELOCK_LOCK(_malloc_lock)
#define UNLOCK()        SIMPLELOCK_UNLOCK(_malloc_lock)
#define LOCK_INIT()     SIMPLELOCK_INIT(_malloc_lock)
#define LOCK_FINI()     SIMPLELOCK_FINI(_malloc_lock)
336 337

/*
338 339 340 341 342 343 344
 * Pool table -- headed, circular, doubly-linked lists of partially used pools.

This is involved.  For an index i, usedpools[i+i] is the header for a list of
all partially used pools holding small blocks with "size class idx" i. So
usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
16, and so on:  index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.

345 346 347
Pools are carved off an arena's highwater mark (an arena_object's pool_address
member) as needed.  Once carved off, a pool is in one of three states forever
after:
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

used == partially used, neither empty nor full
    At least one block in the pool is currently allocated, and at least one
    block in the pool is not currently allocated (note this implies a pool
    has room for at least two blocks).
    This is a pool's initial state, as a pool is created only when malloc
    needs space.
    The pool holds blocks of a fixed size, and is in the circular list headed
    at usedpools[i] (see above).  It's linked to the other used pools of the
    same size class via the pool_header's nextpool and prevpool members.
    If all but one block is currently allocated, a malloc can cause a
    transition to the full state.  If all but one block is not currently
    allocated, a free can cause a transition to the empty state.

full == all the pool's blocks are currently allocated
    On transition to full, a pool is unlinked from its usedpools[] list.
    It's not linked to from anything then anymore, and its nextpool and
    prevpool members are meaningless until it transitions back to used.
    A free of a block in a full pool puts the pool back in the used state.
    Then it's linked in at the front of the appropriate usedpools[] list, so
    that the next allocation for its size class will reuse the freed block.

empty == all the pool's blocks are currently available for allocation
    On transition to empty, a pool is unlinked from its usedpools[] list,
372
    and linked to the front of its arena_object's singly-linked freepools list,
373 374 375 376
    via its nextpool member.  The prevpool member has no meaning in this case.
    Empty pools have no inherent size class:  the next time a malloc finds
    an empty list in usedpools[], it takes the first pool off of freepools.
    If the size class needed happens to be the same as the size class the pool
377
    last had, some pool initialization can be skipped.
378 379 380 381 382 383 384 385


Block Management

Blocks within pools are again carved out as needed.  pool->freeblock points to
the start of a singly-linked list of free blocks within the pool.  When a
block is freed, it's inserted at the front of its pool's freeblock list.  Note
that the available blocks in a pool are *not* linked all together when a pool
386 387 388 389 390 391 392
is initialized.  Instead only "the first two" (lowest addresses) blocks are
set up, returning the first such block, and setting pool->freeblock to a
one-block list holding the second such block.  This is consistent with that
pymalloc strives at all levels (arena, pool, and block) never to touch a piece
of memory until it's actually needed.

So long as a pool is in the used state, we're certain there *is* a block
393 394 395 396 397 398 399 400
available for allocating, and pool->freeblock is not NULL.  If pool->freeblock
points to the end of the free list before we've carved the entire pool into
blocks, that means we simply haven't yet gotten to one of the higher-address
blocks.  The offset from the pool_header to the start of "the next" virgin
block is stored in the pool_header nextoffset member, and the largest value
of nextoffset that makes sense is stored in the maxnextoffset member when a
pool is initialized.  All the blocks in a pool have been passed out at least
once when and only when nextoffset > maxnextoffset.
401

402 403 404 405 406 407 408 409 410 411 412 413 414

Major obscurity:  While the usedpools vector is declared to have poolp
entries, it doesn't really.  It really contains two pointers per (conceptual)
poolp entry, the nextpool and prevpool members of a pool_header.  The
excruciating initialization code below fools C so that

    usedpool[i+i]

"acts like" a genuine poolp, but only so long as you only reference its
nextpool and prevpool members.  The "- 2*sizeof(block *)" gibberish is
compensating for that a pool_header's nextpool and prevpool members
immediately follow a pool_header's first two members:

415
    union { block *_padding;
Stefan Krah's avatar
Stefan Krah committed
416
            uint count; } ref;
417
    block *freeblock;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

each of which consume sizeof(block *) bytes.  So what usedpools[i+i] really
contains is a fudged-up pointer p such that *if* C believes it's a poolp
pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
circular list is empty).

It's unclear why the usedpools setup is so convoluted.  It could be to
minimize the amount of cache required to hold this heavily-referenced table
(which only *needs* the two interpool pointer members of a pool_header). OTOH,
referencing code has to remember to "double the index" and doing so isn't
free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
on that C doesn't insert any padding anywhere in a pool_header at or before
the prevpool member.
**************************************************************************** */

433 434
#define PTA(x)  ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
#define PT(x)   PTA(x), PTA(x)
435 436

static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
437
    PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
438
#if NB_SMALL_SIZE_CLASSES > 8
439
    , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
440
#if NB_SMALL_SIZE_CLASSES > 16
441
    , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
442
#if NB_SMALL_SIZE_CLASSES > 24
443
    , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
444
#if NB_SMALL_SIZE_CLASSES > 32
445
    , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
446
#if NB_SMALL_SIZE_CLASSES > 40
447
    , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
448
#if NB_SMALL_SIZE_CLASSES > 48
449
    , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
450
#if NB_SMALL_SIZE_CLASSES > 56
451
    , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
452 453 454
#if NB_SMALL_SIZE_CLASSES > 64
#error "NB_SMALL_SIZE_CLASSES should be less than 64"
#endif /* NB_SMALL_SIZE_CLASSES > 64 */
455 456 457 458 459 460 461 462 463
#endif /* NB_SMALL_SIZE_CLASSES > 56 */
#endif /* NB_SMALL_SIZE_CLASSES > 48 */
#endif /* NB_SMALL_SIZE_CLASSES > 40 */
#endif /* NB_SMALL_SIZE_CLASSES > 32 */
#endif /* NB_SMALL_SIZE_CLASSES > 24 */
#endif /* NB_SMALL_SIZE_CLASSES > 16 */
#endif /* NB_SMALL_SIZE_CLASSES >  8 */
};

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*==========================================================================
Arena management.

`arenas` is a vector of arena_objects.  It contains maxarenas entries, some of
which may not be currently used (== they're arena_objects that aren't
currently associated with an allocated arena).  Note that arenas proper are
separately malloc'ed.

Prior to Python 2.5, arenas were never free()'ed.  Starting with Python 2.5,
we do try to free() arenas, and use some mild heuristic strategies to increase
the likelihood that arenas eventually can be freed.

unused_arena_objects

    This is a singly-linked list of the arena_objects that are currently not
    being used (no arena is associated with them).  Objects are taken off the
    head of the list in new_arena(), and are pushed on the head of the list in
    PyObject_Free() when the arena is empty.  Key invariant:  an arena_object
    is on this list if and only if its .address member is 0.

usable_arenas

    This is a doubly-linked list of the arena_objects associated with arenas
    that have pools available.  These pools are either waiting to be reused,
    or have not been used before.  The list is sorted to have the most-
    allocated arenas first (ascending order based on the nfreepools member).
    This means that the next allocation will come from a heavily used arena,
    which gives the nearly empty arenas a chance to be returned to the system.
    In my unscientific tests this dramatically improved the number of arenas
    that could be freed.

Note that an arena_object associated with an arena all of whose pools are
currently in use isn't on either list.
*/

/* Array of objects used to track chunks of memory (arenas). */
static struct arena_object* arenas = NULL;
/* Number of slots currently allocated in the `arenas` vector. */
static uint maxarenas = 0;

/* The head of the singly-linked, NULL-terminated list of available
 * arena_objects.
506
 */
507
static struct arena_object* unused_arena_objects = NULL;
508

509 510 511 512
/* The head of the doubly-linked, NULL-terminated at each end, list of
 * arena_objects associated with arenas that have pools available.
 */
static struct arena_object* usable_arenas = NULL;
Tim Peters's avatar
Tim Peters committed
513

514 515 516
/* How many arena_objects do we initially allocate?
 * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
 * `arenas` vector.
517
 */
518
#define INITIAL_ARENA_OBJECTS 16
519

520
/* Number of arenas allocated that haven't been free()'d. */
521
static size_t narenas_currently_allocated = 0;
Tim Peters's avatar
Tim Peters committed
522

523
/* Total number of times malloc() called to allocate an arena. */
524
static size_t ntimes_arena_allocated = 0;
525
/* High water mark (max value ever seen) for narenas_currently_allocated. */
526
static size_t narenas_highwater = 0;
Tim Peters's avatar
Tim Peters committed
527

528 529 530 531
/* Allocate a new arena.  If we run out of memory, return NULL.  Else
 * allocate a new arena, and return the address of an arena_object
 * describing the new arena.  It's expected that the caller will set
 * `usable_arenas` to the return value.
Tim Peters's avatar
Tim Peters committed
532
 */
533
static struct arena_object*
Tim Peters's avatar
Tim Peters committed
534 535
new_arena(void)
{
536 537
    struct arena_object* arenaobj;
    uint excess;        /* number of bytes above pool alignment */
538 539
    void *address;
    int err;
Tim Peters's avatar
Tim Peters committed
540

541
#ifdef PYMALLOC_DEBUG
542
    if (Py_GETENV("PYTHONMALLOCSTATS"))
543
        _PyObject_DebugMallocStats(stderr);
544
#endif
545 546 547 548 549 550 551 552 553 554 555
    if (unused_arena_objects == NULL) {
        uint i;
        uint numarenas;
        size_t nbytes;

        /* Double the number of arena objects on each allocation.
         * Note that it's possible for `numarenas` to overflow.
         */
        numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
        if (numarenas <= maxarenas)
            return NULL;                /* overflow */
556
#if SIZEOF_SIZE_T <= SIZEOF_INT
557 558
        if (numarenas > PY_SIZE_MAX / sizeof(*arenas))
            return NULL;                /* overflow */
559
#endif
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
        nbytes = numarenas * sizeof(*arenas);
        arenaobj = (struct arena_object *)realloc(arenas, nbytes);
        if (arenaobj == NULL)
            return NULL;
        arenas = arenaobj;

        /* We might need to fix pointers that were copied.  However,
         * new_arena only gets called when all the pages in the
         * previous arenas are full.  Thus, there are *no* pointers
         * into the old array. Thus, we don't have to worry about
         * invalid pointers.  Just to be sure, some asserts:
         */
        assert(usable_arenas == NULL);
        assert(unused_arena_objects == NULL);

        /* Put the new arenas on the unused_arena_objects list. */
        for (i = maxarenas; i < numarenas; ++i) {
            arenas[i].address = 0;              /* mark as unassociated */
            arenas[i].nextarena = i < numarenas - 1 ?
                                   &arenas[i+1] : NULL;
        }

        /* Update globals. */
        unused_arena_objects = &arenas[maxarenas];
        maxarenas = numarenas;
    }

    /* Take the next available arena object off the head of the list. */
    assert(unused_arena_objects != NULL);
    arenaobj = unused_arena_objects;
    unused_arena_objects = arenaobj->nextarena;
    assert(arenaobj->address == 0);
592
#ifdef ARENAS_USE_MMAP
593
    address = mmap(NULL, ARENA_SIZE, PROT_READ|PROT_WRITE,
594
                                   MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
595
    err = (address == MAP_FAILED);
596
#else
597 598
    address = malloc(ARENA_SIZE);
    err = (address == 0);
599
#endif
600
    if (err) {
601 602 603 604 605 606 607
        /* The allocation failed: return NULL after putting the
         * arenaobj back.
         */
        arenaobj->nextarena = unused_arena_objects;
        unused_arena_objects = arenaobj;
        return NULL;
    }
608
    arenaobj->address = (uptr)address;
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

    ++narenas_currently_allocated;
    ++ntimes_arena_allocated;
    if (narenas_currently_allocated > narenas_highwater)
        narenas_highwater = narenas_currently_allocated;
    arenaobj->freepools = NULL;
    /* pool_address <- first pool-aligned address in the arena
       nfreepools <- number of whole pools that fit after alignment */
    arenaobj->pool_address = (block*)arenaobj->address;
    arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
    assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
    excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
    if (excess != 0) {
        --arenaobj->nfreepools;
        arenaobj->pool_address += POOL_SIZE - excess;
    }
    arenaobj->ntotalpools = arenaobj->nfreepools;

    return arenaobj;
Tim Peters's avatar
Tim Peters committed
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642
/*
Py_ADDRESS_IN_RANGE(P, POOL)

Return true if and only if P is an address that was allocated by pymalloc.
POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
(the caller is asked to compute this because the macro expands POOL more than
once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
called on every alloc/realloc/free, micro-efficiency is important here).

Tricky:  Let B be the arena base address associated with the pool, B =
arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if

643
    B <= P < B + ARENA_SIZE
644 645 646

Subtracting B throughout, this is true iff

647
    0 <= P-B < ARENA_SIZE
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

By using unsigned arithmetic, the "0 <=" half of the test can be skipped.

Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc
before the first arena has been allocated.  `arenas` is still NULL in that
case.  We're relying on that maxarenas is also 0 in that case, so that
(POOL)->arenaindex < maxarenas  must be false, saving us from trying to index
into a NULL arenas.

Details:  given P and POOL, the arena_object corresponding to P is AO =
arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild
stores, etc), POOL is the correct address of P's pool, AO.address is the
correct base address of the pool's arena, and P must be within ARENA_SIZE of
AO.address.  In addition, AO.address is not 0 (no arena can start at address 0
(NULL)).  Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
controls P.

Now suppose obmalloc does not control P (e.g., P was obtained via a direct
call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything
in this case -- it may even be uninitialized trash.  If the trash arenaindex
is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
control P.

Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an
allocated arena, obmalloc controls all the memory in slice AO.address :
AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc,
so P doesn't lie in that slice, so the macro correctly reports that P is not
controlled by obmalloc.

Finally, if P is not controlled by obmalloc and AO corresponds to an unused
arena_object (one not currently associated with an allocated arena),
AO.address is 0, and the second test in the macro reduces to:

681
    P < ARENA_SIZE
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part
of the test still passes, and the third clause (AO.address != 0) is necessary
to get the correct result:  AO.address is 0 in this case, so the macro
correctly reports that P is not controlled by obmalloc (despite that P lies in
slice AO.address : AO.address + ARENA_SIZE).

Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before
2.5, arenas were never free()'ed, and an arenaindex < maxarena always
corresponded to a currently-allocated arena, so the "P is not controlled by
obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
was impossible.

Note that the logic is excruciating, and reading up possibly uninitialized
memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
creates problems for some memory debuggers.  The overwhelming advantage is
that this test determines whether an arbitrary address is controlled by
obmalloc in a small constant time, independent of the number of arenas
obmalloc controls.  Since this test is needed at every entry point, it's
extremely desirable that it be this fast.
703 704 705 706 707 708 709 710

Since Py_ADDRESS_IN_RANGE may be reading from memory which was not allocated
by Python, it is important that (POOL)->arenaindex is read only once, as
another thread may be concurrently modifying the value without holding the
GIL.  To accomplish this, the arenaindex_temp variable is used to store
(POOL)->arenaindex for the duration of the Py_ADDRESS_IN_RANGE macro's
execution.  The caller of the macro is responsible for declaring this
variable.
711
*/
712
#define Py_ADDRESS_IN_RANGE(P, POOL)                    \
713 714 715
    ((arenaindex_temp = (POOL)->arenaindex) < maxarenas &&              \
     (uptr)(P) - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && \
     arenas[arenaindex_temp].address != 0)
716

717 718 719 720

/* This is only useful when running memory debuggers such as
 * Purify or Valgrind.  Uncomment to use.
 *
721
#define Py_USING_MEMORY_DEBUGGER
722
 */
723 724 725 726 727 728 729 730 731 732 733 734 735 736

#ifdef Py_USING_MEMORY_DEBUGGER

/* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
 * This leads to thousands of spurious warnings when using
 * Purify or Valgrind.  By making a function, we can easily
 * suppress the uninitialized memory reads in this one function.
 * So we won't ignore real errors elsewhere.
 *
 * Disable the macro and use a function.
 */

#undef Py_ADDRESS_IN_RANGE

737
#if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \
Stefan Krah's avatar
Stefan Krah committed
738
                          (__GNUC__ >= 4))
739 740 741 742 743 744 745 746
#define Py_NO_INLINE __attribute__((__noinline__))
#else
#define Py_NO_INLINE
#endif

/* Don't make static, to try to ensure this isn't inlined. */
int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
#undef Py_NO_INLINE
747
#endif
748

749 750
/*==========================================================================*/

751 752 753
/* malloc.  Note that nbytes==0 tries to return a non-NULL pointer, distinct
 * from all other currently live pointers.  This may not be possible.
 */
754 755 756 757 758 759 760 761 762

/*
 * The basic blocks are ordered by decreasing execution frequency,
 * which minimizes the number of jumps in the most common cases,
 * improves branching prediction and instruction scheduling (small
 * block allocations typically result in a couple of instructions).
 * Unless the optimizer reorders everything, being too smart...
 */

763
#undef PyObject_Malloc
764
void *
765
PyObject_Malloc(size_t nbytes)
766
{
767 768 769 770
    block *bp;
    poolp pool;
    poolp next;
    uint size;
771

772
#ifdef WITH_VALGRIND
773 774 775 776
    if (UNLIKELY(running_on_valgrind == -1))
        running_on_valgrind = RUNNING_ON_VALGRIND;
    if (UNLIKELY(running_on_valgrind))
        goto redirect;
777 778
#endif

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    /*
     * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
     * Most python internals blindly use a signed Py_ssize_t to track
     * things without checking for overflows or negatives.
     * As size_t is unsigned, checking for nbytes < 0 is not required.
     */
    if (nbytes > PY_SSIZE_T_MAX)
        return NULL;

    /*
     * This implicitly redirects malloc(0).
     */
    if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
        LOCK();
        /*
         * Most frequent paths first
         */
        size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
        pool = usedpools[size + size];
        if (pool != pool->nextpool) {
            /*
             * There is a used pool for this size class.
             * Pick up the head block of its free list.
             */
            ++pool->ref.count;
            bp = pool->freeblock;
            assert(bp != NULL);
            if ((pool->freeblock = *(block **)bp) != NULL) {
                UNLOCK();
                return (void *)bp;
            }
            /*
             * Reached the end of the free list, try to extend it.
             */
            if (pool->nextoffset <= pool->maxnextoffset) {
                /* There is room for another block. */
                pool->freeblock = (block*)pool +
                                  pool->nextoffset;
                pool->nextoffset += INDEX2SIZE(size);
                *(block **)(pool->freeblock) = NULL;
                UNLOCK();
                return (void *)bp;
            }
            /* Pool is full, unlink from used pools. */
            next = pool->nextpool;
            pool = pool->prevpool;
            next->prevpool = pool;
            pool->nextpool = next;
            UNLOCK();
            return (void *)bp;
        }

        /* There isn't a pool of the right size class immediately
         * available:  use a free pool.
         */
        if (usable_arenas == NULL) {
            /* No arena has a free pool:  allocate a new arena. */
836
#ifdef WITH_MEMORY_LIMITS
837 838 839 840
            if (narenas_currently_allocated >= MAX_ARENAS) {
                UNLOCK();
                goto redirect;
            }
841
#endif
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
            usable_arenas = new_arena();
            if (usable_arenas == NULL) {
                UNLOCK();
                goto redirect;
            }
            usable_arenas->nextarena =
                usable_arenas->prevarena = NULL;
        }
        assert(usable_arenas->address != 0);

        /* Try to get a cached free pool. */
        pool = usable_arenas->freepools;
        if (pool != NULL) {
            /* Unlink from cached pools. */
            usable_arenas->freepools = pool->nextpool;

            /* This arena already had the smallest nfreepools
             * value, so decreasing nfreepools doesn't change
             * that, and we don't need to rearrange the
             * usable_arenas list.  However, if the arena has
             * become wholly allocated, we need to remove its
             * arena_object from usable_arenas.
             */
            --usable_arenas->nfreepools;
            if (usable_arenas->nfreepools == 0) {
                /* Wholly allocated:  remove. */
                assert(usable_arenas->freepools == NULL);
                assert(usable_arenas->nextarena == NULL ||
                       usable_arenas->nextarena->prevarena ==
                       usable_arenas);

                usable_arenas = usable_arenas->nextarena;
                if (usable_arenas != NULL) {
                    usable_arenas->prevarena = NULL;
                    assert(usable_arenas->address != 0);
                }
            }
            else {
                /* nfreepools > 0:  it must be that freepools
                 * isn't NULL, or that we haven't yet carved
                 * off all the arena's pools for the first
                 * time.
                 */
                assert(usable_arenas->freepools != NULL ||
                       usable_arenas->pool_address <=
                       (block*)usable_arenas->address +
                           ARENA_SIZE - POOL_SIZE);
            }
        init_pool:
            /* Frontlink to used pools. */
            next = usedpools[size + size]; /* == prev */
            pool->nextpool = next;
            pool->prevpool = next;
            next->nextpool = pool;
            next->prevpool = pool;
            pool->ref.count = 1;
            if (pool->szidx == size) {
                /* Luckily, this pool last contained blocks
                 * of the same size class, so its header
                 * and free list are already initialized.
                 */
                bp = pool->freeblock;
                pool->freeblock = *(block **)bp;
                UNLOCK();
                return (void *)bp;
            }
            /*
             * Initialize the pool header, set up the free list to
             * contain just the second block, and return the first
             * block.
             */
            pool->szidx = size;
            size = INDEX2SIZE(size);
            bp = (block *)pool + POOL_OVERHEAD;
            pool->nextoffset = POOL_OVERHEAD + (size << 1);
            pool->maxnextoffset = POOL_SIZE - size;
            pool->freeblock = bp + size;
            *(block **)(pool->freeblock) = NULL;
            UNLOCK();
            return (void *)bp;
        }

        /* Carve off a new pool. */
        assert(usable_arenas->nfreepools > 0);
        assert(usable_arenas->freepools == NULL);
        pool = (poolp)usable_arenas->pool_address;
        assert((block*)pool <= (block*)usable_arenas->address +
                               ARENA_SIZE - POOL_SIZE);
        pool->arenaindex = usable_arenas - arenas;
        assert(&arenas[pool->arenaindex] == usable_arenas);
        pool->szidx = DUMMY_SIZE_IDX;
        usable_arenas->pool_address += POOL_SIZE;
        --usable_arenas->nfreepools;

        if (usable_arenas->nfreepools == 0) {
            assert(usable_arenas->nextarena == NULL ||
                   usable_arenas->nextarena->prevarena ==
                   usable_arenas);
            /* Unlink the arena:  it is completely allocated. */
            usable_arenas = usable_arenas->nextarena;
            if (usable_arenas != NULL) {
                usable_arenas->prevarena = NULL;
                assert(usable_arenas->address != 0);
            }
        }

        goto init_pool;
    }

    /* The small block allocator ends here. */
952

Tim Peters's avatar
Tim Peters committed
953
redirect:
954 955 956 957 958 959 960 961
    /* Redirect the original request to the underlying (libc) allocator.
     * We jump here on bigger requests, on error in the code above (as a
     * last chance to serve the request) or when the max memory limit
     * has been reached.
     */
    if (nbytes == 0)
        nbytes = 1;
    return (void *)malloc(nbytes);
962 963 964 965
}

/* free */

966
#undef PyObject_Free
967
void
968
PyObject_Free(void *p)
969
{
970 971 972 973
    poolp pool;
    block *lastfree;
    poolp next, prev;
    uint size;
974 975 976
#ifndef Py_USING_MEMORY_DEBUGGER
    uint arenaindex_temp;
#endif
977

978 979
    if (p == NULL)      /* free(NULL) has no effect */
        return;
980

981
#ifdef WITH_VALGRIND
982 983
    if (UNLIKELY(running_on_valgrind > 0))
        goto redirect;
984 985
#endif

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    pool = POOL_ADDR(p);
    if (Py_ADDRESS_IN_RANGE(p, pool)) {
        /* We allocated this address. */
        LOCK();
        /* Link p to the start of the pool's freeblock list.  Since
         * the pool had at least the p block outstanding, the pool
         * wasn't empty (so it's already in a usedpools[] list, or
         * was full and is in no list -- it's not in the freeblocks
         * list in any case).
         */
        assert(pool->ref.count > 0);            /* else it was empty */
        *(block **)p = lastfree = pool->freeblock;
        pool->freeblock = (block *)p;
        if (lastfree) {
            struct arena_object* ao;
            uint nf;  /* ao->nfreepools */

            /* freeblock wasn't NULL, so the pool wasn't full,
             * and the pool is in a usedpools[] list.
             */
            if (--pool->ref.count != 0) {
                /* pool isn't empty:  leave it in usedpools */
                UNLOCK();
                return;
            }
            /* Pool is now empty:  unlink from usedpools, and
             * link to the front of freepools.  This ensures that
             * previously freed pools will be allocated later
             * (being not referenced, they are perhaps paged out).
             */
            next = pool->nextpool;
            prev = pool->prevpool;
            next->prevpool = prev;
            prev->nextpool = next;

            /* Link the pool to freepools.  This is a singly-linked
             * list, and pool->prevpool isn't used there.
             */
            ao = &arenas[pool->arenaindex];
            pool->nextpool = ao->freepools;
            ao->freepools = pool;
            nf = ++ao->nfreepools;

            /* All the rest is arena management.  We just freed
             * a pool, and there are 4 cases for arena mgmt:
             * 1. If all the pools are free, return the arena to
             *    the system free().
             * 2. If this is the only free pool in the arena,
             *    add the arena back to the `usable_arenas` list.
             * 3. If the "next" arena has a smaller count of free
             *    pools, we have to "slide this arena right" to
             *    restore that usable_arenas is sorted in order of
             *    nfreepools.
             * 4. Else there's nothing more to do.
             */
            if (nf == ao->ntotalpools) {
                /* Case 1.  First unlink ao from usable_arenas.
                 */
                assert(ao->prevarena == NULL ||
                       ao->prevarena->address != 0);
                assert(ao ->nextarena == NULL ||
                       ao->nextarena->address != 0);

                /* Fix the pointer in the prevarena, or the
                 * usable_arenas pointer.
                 */
                if (ao->prevarena == NULL) {
                    usable_arenas = ao->nextarena;
                    assert(usable_arenas == NULL ||
                           usable_arenas->address != 0);
                }
                else {
                    assert(ao->prevarena->nextarena == ao);
                    ao->prevarena->nextarena =
                        ao->nextarena;
                }
                /* Fix the pointer in the nextarena. */
                if (ao->nextarena != NULL) {
                    assert(ao->nextarena->prevarena == ao);
                    ao->nextarena->prevarena =
                        ao->prevarena;
                }
                /* Record that this arena_object slot is
                 * available to be reused.
                 */
                ao->nextarena = unused_arena_objects;
                unused_arena_objects = ao;

                /* Free the entire arena. */
1075 1076 1077
#ifdef ARENAS_USE_MMAP
                munmap((void *)ao->address, ARENA_SIZE);
#else
1078
                free((void *)ao->address);
1079
#endif
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
                ao->address = 0;                        /* mark unassociated */
                --narenas_currently_allocated;

                UNLOCK();
                return;
            }
            if (nf == 1) {
                /* Case 2.  Put ao at the head of
                 * usable_arenas.  Note that because
                 * ao->nfreepools was 0 before, ao isn't
                 * currently on the usable_arenas list.
                 */
                ao->nextarena = usable_arenas;
                ao->prevarena = NULL;
                if (usable_arenas)
                    usable_arenas->prevarena = ao;
                usable_arenas = ao;
                assert(usable_arenas->address != 0);

                UNLOCK();
                return;
            }
            /* If this arena is now out of order, we need to keep
             * the list sorted.  The list is kept sorted so that
             * the "most full" arenas are used first, which allows
             * the nearly empty arenas to be completely freed.  In
             * a few un-scientific tests, it seems like this
             * approach allowed a lot more memory to be freed.
             */
            if (ao->nextarena == NULL ||
                         nf <= ao->nextarena->nfreepools) {
                /* Case 4.  Nothing to do. */
                UNLOCK();
                return;
            }
            /* Case 3:  We have to move the arena towards the end
             * of the list, because it has more free pools than
             * the arena to its right.
             * First unlink ao from usable_arenas.
             */
            if (ao->prevarena != NULL) {
                /* ao isn't at the head of the list */
                assert(ao->prevarena->nextarena == ao);
                ao->prevarena->nextarena = ao->nextarena;
            }
            else {
                /* ao is at the head of the list */
                assert(usable_arenas == ao);
                usable_arenas = ao->nextarena;
            }
            ao->nextarena->prevarena = ao->prevarena;

            /* Locate the new insertion point by iterating over
             * the list, using our nextarena pointer.
             */
            while (ao->nextarena != NULL &&
                            nf > ao->nextarena->nfreepools) {
                ao->prevarena = ao->nextarena;
                ao->nextarena = ao->nextarena->nextarena;
            }

            /* Insert ao at this point. */
            assert(ao->nextarena == NULL ||
                ao->prevarena == ao->nextarena->prevarena);
            assert(ao->prevarena->nextarena == ao->nextarena);

            ao->prevarena->nextarena = ao;
            if (ao->nextarena != NULL)
                ao->nextarena->prevarena = ao;

            /* Verify that the swaps worked. */
            assert(ao->nextarena == NULL ||
                      nf <= ao->nextarena->nfreepools);
            assert(ao->prevarena == NULL ||
                      nf > ao->prevarena->nfreepools);
            assert(ao->nextarena == NULL ||
                ao->nextarena->prevarena == ao);
            assert((usable_arenas == ao &&
                ao->prevarena == NULL) ||
                ao->prevarena->nextarena == ao);

            UNLOCK();
            return;
        }
        /* Pool was full, so doesn't currently live in any list:
         * link it to the front of the appropriate usedpools[] list.
         * This mimics LRU pool usage for new allocations and
         * targets optimal filling when several pools contain
         * blocks of the same size class.
         */
        --pool->ref.count;
        assert(pool->ref.count > 0);            /* else the pool is empty */
        size = pool->szidx;
        next = usedpools[size + size];
        prev = next->prevpool;
        /* insert pool before next:   prev <-> pool <-> next */
        pool->nextpool = next;
        pool->prevpool = prev;
        next->prevpool = pool;
        prev->nextpool = pool;
        UNLOCK();
        return;
    }
Tim Peters's avatar
Tim Peters committed
1183

1184 1185 1186
#ifdef WITH_VALGRIND
redirect:
#endif
1187 1188
    /* We didn't allocate this address. */
    free(p);
1189 1190
}

1191 1192 1193 1194
/* realloc.  If p is NULL, this acts like malloc(nbytes).  Else if nbytes==0,
 * then as the Python docs promise, we do not treat this like free(p), and
 * return a non-NULL result.
 */
1195

1196
#undef PyObject_Realloc
1197
void *
1198
PyObject_Realloc(void *p, size_t nbytes)
1199
{
1200 1201 1202
    void *bp;
    poolp pool;
    size_t size;
1203 1204 1205
#ifndef Py_USING_MEMORY_DEBUGGER
    uint arenaindex_temp;
#endif
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

    if (p == NULL)
        return PyObject_Malloc(nbytes);

    /*
     * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
     * Most python internals blindly use a signed Py_ssize_t to track
     * things without checking for overflows or negatives.
     * As size_t is unsigned, checking for nbytes < 0 is not required.
     */
    if (nbytes > PY_SSIZE_T_MAX)
        return NULL;
1218

1219
#ifdef WITH_VALGRIND
1220 1221 1222
    /* Treat running_on_valgrind == -1 the same as 0 */
    if (UNLIKELY(running_on_valgrind > 0))
        goto redirect;
1223 1224
#endif

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    pool = POOL_ADDR(p);
    if (Py_ADDRESS_IN_RANGE(p, pool)) {
        /* We're in charge of this block */
        size = INDEX2SIZE(pool->szidx);
        if (nbytes <= size) {
            /* The block is staying the same or shrinking.  If
             * it's shrinking, there's a tradeoff:  it costs
             * cycles to copy the block to a smaller size class,
             * but it wastes memory not to copy it.  The
             * compromise here is to copy on shrink only if at
             * least 25% of size can be shaved off.
             */
            if (4 * nbytes > 3 * size) {
                /* It's the same,
                 * or shrinking and new/old > 3/4.
                 */
                return p;
            }
            size = nbytes;
        }
        bp = PyObject_Malloc(nbytes);
        if (bp != NULL) {
            memcpy(bp, p, size);
            PyObject_Free(p);
        }
        return bp;
    }
1252 1253 1254
#ifdef WITH_VALGRIND
 redirect:
#endif
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    /* We're not managing this block.  If nbytes <=
     * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
     * block.  However, if we do, we need to copy the valid data from
     * the C-managed block to one of our blocks, and there's no portable
     * way to know how much of the memory space starting at p is valid.
     * As bug 1185883 pointed out the hard way, it's possible that the
     * C-managed block is "at the end" of allocated VM space, so that
     * a memory fault can occur if we try to copy nbytes bytes starting
     * at p.  Instead we punt:  let C continue to manage this block.
     */
    if (nbytes)
        return realloc(p, nbytes);
    /* C doesn't define the result of realloc(p, 0) (it may or may not
     * return NULL then), but Python's docs promise that nbytes==0 never
     * returns NULL.  We don't pass 0 to realloc(), to avoid that endcase
     * to begin with.  Even then, we can't be sure that realloc() won't
     * return NULL.
     */
    bp = realloc(p, 1);
    return bp ? bp : p;
1275 1276
}

1277
#else   /* ! WITH_PYMALLOC */
1278 1279

/*==========================================================================*/
1280 1281
/* pymalloc not enabled:  Redirect the entry points to malloc.  These will
 * only be used by extensions that are compiled with pymalloc enabled. */
1282

Tim Peters's avatar
Tim Peters committed
1283
void *
1284
PyObject_Malloc(size_t n)
1285
{
1286
    return PyMem_MALLOC(n);
1287 1288
}

Tim Peters's avatar
Tim Peters committed
1289
void *
1290
PyObject_Realloc(void *p, size_t n)
1291
{
1292
    return PyMem_REALLOC(p, n);
1293 1294 1295
}

void
1296
PyObject_Free(void *p)
1297
{
1298
    PyMem_FREE(p);
1299 1300 1301
}
#endif /* WITH_PYMALLOC */

1302 1303
#ifdef PYMALLOC_DEBUG
/*==========================================================================*/
1304 1305 1306
/* A x-platform debugging allocator.  This doesn't manage memory directly,
 * it wraps a real allocator, adding extra debugging info to the memory blocks.
 */
1307

1308 1309 1310 1311 1312 1313 1314 1315
/* Special bytes broadcast into debug memory blocks at appropriate times.
 * Strings of these are unlikely to be valid addresses, floats, ints or
 * 7-bit ASCII.
 */
#undef CLEANBYTE
#undef DEADBYTE
#undef FORBIDDENBYTE
#define CLEANBYTE      0xCB    /* clean (newly allocated) memory */
1316
#define DEADBYTE       0xDB    /* dead (newly freed) memory */
1317
#define FORBIDDENBYTE  0xFB    /* untouchable bytes at each end of a block */
1318

1319 1320 1321 1322
/* We tag each block with an API ID in order to tag API violations */
#define _PYMALLOC_MEM_ID 'm'   /* the PyMem_Malloc() API */
#define _PYMALLOC_OBJ_ID 'o'   /* The PyObject_Malloc() API */

1323
static size_t serialno = 0;     /* incremented on each debug {m,re}alloc */
1324

1325
/* serialno is always incremented via calling this routine.  The point is
1326 1327
 * to supply a single place to set a breakpoint.
 */
1328
static void
1329
bumpserialno(void)
1330
{
1331
    ++serialno;
1332 1333
}

1334
#define SST SIZEOF_SIZE_T
1335

1336 1337 1338
/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
static size_t
read_size_t(const void *p)
1339
{
1340 1341 1342
    const uchar *q = (const uchar *)p;
    size_t result = *q++;
    int i;
1343

1344 1345 1346
    for (i = SST; --i > 0; ++q)
        result = (result << 8) | *q;
    return result;
1347 1348
}

1349 1350 1351
/* Write n as a big-endian size_t, MSB at address p, LSB at
 * p + sizeof(size_t) - 1.
 */
1352
static void
1353
write_size_t(void *p, size_t n)
1354
{
1355 1356
    uchar *q = (uchar *)p + SST - 1;
    int i;
1357

1358 1359 1360 1361
    for (i = SST; --i >= 0; --q) {
        *q = (uchar)(n & 0xff);
        n >>= 8;
    }
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371
#ifdef Py_DEBUG
/* Is target in the list?  The list is traversed via the nextpool pointers.
 * The list may be NULL-terminated, or circular.  Return 1 if target is in
 * list, else 0.
 */
static int
pool_is_in_list(const poolp target, poolp list)
{
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    poolp origlist = list;
    assert(target != NULL);
    if (list == NULL)
        return 0;
    do {
        if (target == list)
            return 1;
        list = list->nextpool;
    } while (list != NULL && list != origlist);
    return 0;
1382 1383 1384 1385 1386
}

#else
#define pool_is_in_list(X, Y) 1

1387
#endif  /* Py_DEBUG */
1388

1389 1390
/* Let S = sizeof(size_t).  The debug malloc asks for 4*S extra bytes and
   fills them with useful stuff, here calling the underlying malloc's result p:
1391

1392 1393 1394 1395
p[0: S]
    Number of bytes originally asked for.  This is a size_t, big-endian (easier
    to read in a memory dump).
p[S: 2*S]
1396
    Copies of FORBIDDENBYTE.  Used to catch under- writes and reads.
1397
p[2*S: 2*S+n]
1398
    The requested memory, filled with copies of CLEANBYTE.
1399
    Used to catch reference to uninitialized memory.
1400
    &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc
1401
    handled the request itself.
1402
p[2*S+n: 2*S+n+S]
1403
    Copies of FORBIDDENBYTE.  Used to catch over- writes and reads.
1404
p[2*S+n+S: 2*S+n+2*S]
1405 1406
    A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
    and _PyObject_DebugRealloc.
1407
    This is a big-endian size_t.
1408 1409 1410 1411 1412
    If "bad memory" is detected later, the serial number gives an
    excellent way to set a breakpoint on the next run, to capture the
    instant at which this block was passed out.
*/

1413 1414 1415 1416
/* debug replacements for the PyMem_* memory API */
void *
_PyMem_DebugMalloc(size_t nbytes)
{
1417
    return _PyObject_DebugMallocApi(_PYMALLOC_MEM_ID, nbytes);
1418 1419 1420 1421
}
void *
_PyMem_DebugRealloc(void *p, size_t nbytes)
{
1422
    return _PyObject_DebugReallocApi(_PYMALLOC_MEM_ID, p, nbytes);
1423 1424 1425 1426
}
void
_PyMem_DebugFree(void *p)
{
1427
    _PyObject_DebugFreeApi(_PYMALLOC_MEM_ID, p);
1428 1429 1430
}

/* debug replacements for the PyObject_* memory API */
1431
void *
1432
_PyObject_DebugMalloc(size_t nbytes)
1433
{
1434
    return _PyObject_DebugMallocApi(_PYMALLOC_OBJ_ID, nbytes);
1435 1436 1437 1438
}
void *
_PyObject_DebugRealloc(void *p, size_t nbytes)
{
1439
    return _PyObject_DebugReallocApi(_PYMALLOC_OBJ_ID, p, nbytes);
1440 1441 1442 1443
}
void
_PyObject_DebugFree(void *p)
{
1444
    _PyObject_DebugFreeApi(_PYMALLOC_OBJ_ID, p);
1445 1446
}
void
1447
_PyObject_DebugCheckAddress(const void *p)
1448
{
1449
    _PyObject_DebugCheckAddressApi(_PYMALLOC_OBJ_ID, p);
1450 1451 1452 1453 1454 1455
}


/* generic debug memory api, with an "id" to identify the API in use */
void *
_PyObject_DebugMallocApi(char id, size_t nbytes)
1456
{
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    uchar *p;           /* base address of malloc'ed block */
    uchar *tail;        /* p + 2*SST + nbytes == pointer to tail pad bytes */
    size_t total;       /* nbytes + 4*SST */

    bumpserialno();
    total = nbytes + 4*SST;
    if (total < nbytes)
        /* overflow:  can't represent total as a size_t */
        return NULL;

    p = (uchar *)PyObject_Malloc(total);
    if (p == NULL)
        return NULL;

    /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
    write_size_t(p, nbytes);
    p[SST] = (uchar)id;
    memset(p + SST + 1 , FORBIDDENBYTE, SST-1);

    if (nbytes > 0)
        memset(p + 2*SST, CLEANBYTE, nbytes);

    /* at tail, write pad (SST bytes) and serialno (SST bytes) */
    tail = p + 2*SST + nbytes;
    memset(tail, FORBIDDENBYTE, SST);
    write_size_t(tail + SST, serialno);

    return p + 2*SST;
1485 1486
}

1487
/* The debug free first checks the 2*SST bytes on each end for sanity (in
1488
   particular, that the FORBIDDENBYTEs with the api ID are still intact).
1489
   Then fills the original bytes with DEADBYTE.
1490 1491 1492
   Then calls the underlying free.
*/
void
1493
_PyObject_DebugFreeApi(char api, void *p)
1494
{
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    uchar *q = (uchar *)p - 2*SST;  /* address returned from malloc */
    size_t nbytes;

    if (p == NULL)
        return;
    _PyObject_DebugCheckAddressApi(api, p);
    nbytes = read_size_t(q);
    nbytes += 4*SST;
    if (nbytes > 0)
        memset(q, DEADBYTE, nbytes);
    PyObject_Free(q);
1506 1507 1508
}

void *
1509
_PyObject_DebugReallocApi(char api, void *p, size_t nbytes)
1510
{
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    uchar *q = (uchar *)p;
    uchar *tail;
    size_t total;       /* nbytes + 4*SST */
    size_t original_nbytes;
    int i;

    if (p == NULL)
        return _PyObject_DebugMallocApi(api, nbytes);

    _PyObject_DebugCheckAddressApi(api, p);
    bumpserialno();
    original_nbytes = read_size_t(q - 2*SST);
    total = nbytes + 4*SST;
    if (total < nbytes)
        /* overflow:  can't represent total as a size_t */
        return NULL;

    if (nbytes < original_nbytes) {
        /* shrinking:  mark old extra memory dead */
        memset(q + nbytes, DEADBYTE, original_nbytes - nbytes + 2*SST);
    }

    /* Resize and add decorations. We may get a new pointer here, in which
     * case we didn't get the chance to mark the old memory with DEADBYTE,
     * but we live with that.
     */
    q = (uchar *)PyObject_Realloc(q - 2*SST, total);
    if (q == NULL)
        return NULL;

    write_size_t(q, nbytes);
    assert(q[SST] == (uchar)api);
    for (i = 1; i < SST; ++i)
        assert(q[SST + i] == FORBIDDENBYTE);
    q += 2*SST;
    tail = q + nbytes;
    memset(tail, FORBIDDENBYTE, SST);
    write_size_t(tail + SST, serialno);

    if (nbytes > original_nbytes) {
        /* growing:  mark new extra memory clean */
        memset(q + original_nbytes, CLEANBYTE,
Stefan Krah's avatar
Stefan Krah committed
1553
               nbytes - original_nbytes);
1554 1555 1556
    }

    return q;
1557 1558
}

1559
/* Check the forbidden bytes on both ends of the memory allocated for p.
1560
 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
1561
 * and call Py_FatalError to kill the program.
1562
 * The API id, is also checked.
1563 1564
 */
 void
1565
_PyObject_DebugCheckAddressApi(char api, const void *p)
1566
{
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    const uchar *q = (const uchar *)p;
    char msgbuf[64];
    char *msg;
    size_t nbytes;
    const uchar *tail;
    int i;
    char id;

    if (p == NULL) {
        msg = "didn't expect a NULL pointer";
        goto error;
    }

    /* Check the API id */
    id = (char)q[-SST];
    if (id != api) {
        msg = msgbuf;
        snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
        msgbuf[sizeof(msgbuf)-1] = 0;
        goto error;
    }

    /* Check the stuff at the start of p first:  if there's underwrite
     * corruption, the number-of-bytes field may be nuts, and checking
     * the tail could lead to a segfault then.
     */
    for (i = SST-1; i >= 1; --i) {
        if (*(q-i) != FORBIDDENBYTE) {
            msg = "bad leading pad byte";
            goto error;
        }
    }

    nbytes = read_size_t(q - 2*SST);
    tail = q + nbytes;
    for (i = 0; i < SST; ++i) {
        if (tail[i] != FORBIDDENBYTE) {
            msg = "bad trailing pad byte";
            goto error;
        }
    }

    return;
1610 1611

error:
1612 1613
    _PyObject_DebugDumpAddress(p);
    Py_FatalError(msg);
1614 1615
}

1616
/* Display info to stderr about the memory block at p. */
1617
void
1618
_PyObject_DebugDumpAddress(const void *p)
1619
{
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    const uchar *q = (const uchar *)p;
    const uchar *tail;
    size_t nbytes, serial;
    int i;
    int ok;
    char id;

    fprintf(stderr, "Debug memory block at address p=%p:", p);
    if (p == NULL) {
        fprintf(stderr, "\n");
        return;
    }
    id = (char)q[-SST];
    fprintf(stderr, " API '%c'\n", id);

    nbytes = read_size_t(q - 2*SST);
    fprintf(stderr, "    %" PY_FORMAT_SIZE_T "u bytes originally "
                    "requested\n", nbytes);

    /* In case this is nuts, check the leading pad bytes first. */
    fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1);
    ok = 1;
    for (i = 1; i <= SST-1; ++i) {
        if (*(q-i) != FORBIDDENBYTE) {
            ok = 0;
            break;
        }
    }
    if (ok)
        fputs("FORBIDDENBYTE, as expected.\n", stderr);
    else {
        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
            FORBIDDENBYTE);
        for (i = SST-1; i >= 1; --i) {
            const uchar byte = *(q-i);
            fprintf(stderr, "        at p-%d: 0x%02x", i, byte);
            if (byte != FORBIDDENBYTE)
                fputs(" *** OUCH", stderr);
            fputc('\n', stderr);
        }

        fputs("    Because memory is corrupted at the start, the "
              "count of bytes requested\n"
              "       may be bogus, and checking the trailing pad "
              "bytes may segfault.\n", stderr);
    }

    tail = q + nbytes;
    fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, tail);
    ok = 1;
    for (i = 0; i < SST; ++i) {
        if (tail[i] != FORBIDDENBYTE) {
            ok = 0;
            break;
        }
    }
    if (ok)
        fputs("FORBIDDENBYTE, as expected.\n", stderr);
    else {
        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
Stefan Krah's avatar
Stefan Krah committed
1680
                FORBIDDENBYTE);
1681 1682 1683
        for (i = 0; i < SST; ++i) {
            const uchar byte = tail[i];
            fprintf(stderr, "        at tail+%d: 0x%02x",
Stefan Krah's avatar
Stefan Krah committed
1684
                    i, byte);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
            if (byte != FORBIDDENBYTE)
                fputs(" *** OUCH", stderr);
            fputc('\n', stderr);
        }
    }

    serial = read_size_t(tail + SST);
    fprintf(stderr, "    The block was made by call #%" PY_FORMAT_SIZE_T
                    "u to debug malloc/realloc.\n", serial);

    if (nbytes > 0) {
        i = 0;
        fputs("    Data at p:", stderr);
        /* print up to 8 bytes at the start */
        while (q < tail && i < 8) {
            fprintf(stderr, " %02x", *q);
            ++i;
            ++q;
        }
        /* and up to 8 at the end */
        if (q < tail) {
            if (tail - q > 8) {
                fputs(" ...", stderr);
                q = tail - 8;
            }
            while (q < tail) {
                fprintf(stderr, " %02x", *q);
                ++q;
            }
        }
        fputc('\n', stderr);
    }
1717 1718
}

1719 1720
#endif  /* PYMALLOC_DEBUG */

1721
static size_t
1722
printone(FILE *out, const char* msg, size_t value)
1723
{
1724 1725 1726 1727
    int i, k;
    char buf[100];
    size_t origvalue = value;

1728
    fputs(msg, out);
1729
    for (i = (int)strlen(msg); i < 35; ++i)
1730 1731
        fputc(' ', out);
    fputc('=', out);
1732 1733 1734 1735 1736 1737 1738 1739

    /* Write the value with commas. */
    i = 22;
    buf[i--] = '\0';
    buf[i--] = '\n';
    k = 3;
    do {
        size_t nextvalue = value / 10;
1740
        unsigned int digit = (unsigned int)(value - nextvalue * 10);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
        value = nextvalue;
        buf[i--] = (char)(digit + '0');
        --k;
        if (k == 0 && value && i >= 0) {
            k = 3;
            buf[i--] = ',';
        }
    } while (value && i >= 0);

    while (i >= 0)
        buf[i--] = ' ';
1752
    fputs(buf, out);
1753 1754

    return origvalue;
1755 1756
}

1757 1758 1759 1760 1761 1762 1763
void
_PyDebugAllocatorStats(FILE *out,
                       const char *block_name, int num_blocks, size_t sizeof_block)
{
    char buf1[128];
    char buf2[128];
    PyOS_snprintf(buf1, sizeof(buf1),
1764
                  "%d %ss * %" PY_FORMAT_SIZE_T "d bytes each",
1765 1766 1767 1768 1769 1770 1771 1772 1773
                  num_blocks, block_name, sizeof_block);
    PyOS_snprintf(buf2, sizeof(buf2),
                  "%48s ", buf1);
    (void)printone(out, buf2, num_blocks * sizeof_block);
}

#ifdef WITH_PYMALLOC

/* Print summary info to "out" about the state of pymalloc's structures.
1774 1775 1776
 * In Py_DEBUG mode, also perform some expensive internal consistency
 * checks.
 */
1777
void
1778
_PyObject_DebugMallocStats(FILE *out)
1779
{
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    uint i;
    const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
    /* # of pools, allocated blocks, and free blocks per class index */
    size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    /* total # of allocated bytes in used and full pools */
    size_t allocated_bytes = 0;
    /* total # of available bytes in used pools */
    size_t available_bytes = 0;
    /* # of free pools + pools not yet carved out of current arena */
    uint numfreepools = 0;
    /* # of bytes for arena alignment padding */
    size_t arena_alignment = 0;
    /* # of bytes in used and full pools used for pool_headers */
    size_t pool_header_bytes = 0;
    /* # of bytes in used and full pools wasted due to quantization,
     * i.e. the necessarily leftover space at the ends of used and
     * full pools.
     */
    size_t quantization = 0;
    /* # of arenas actually allocated. */
    size_t narenas = 0;
    /* running total -- should equal narenas * ARENA_SIZE */
    size_t total;
    char buf[128];

1807
    fprintf(out, "Small block threshold = %d, in %u size classes.\n",
Stefan Krah's avatar
Stefan Krah committed
1808
            SMALL_REQUEST_THRESHOLD, numclasses);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

    for (i = 0; i < numclasses; ++i)
        numpools[i] = numblocks[i] = numfreeblocks[i] = 0;

    /* Because full pools aren't linked to from anything, it's easiest
     * to march over all the arenas.  If we're lucky, most of the memory
     * will be living in full pools -- would be a shame to miss them.
     */
    for (i = 0; i < maxarenas; ++i) {
        uint j;
        uptr base = arenas[i].address;

        /* Skip arenas which are not allocated. */
        if (arenas[i].address == (uptr)NULL)
            continue;
        narenas += 1;

        numfreepools += arenas[i].nfreepools;

        /* round up to pool alignment */
        if (base & (uptr)POOL_SIZE_MASK) {
            arena_alignment += POOL_SIZE;
            base &= ~(uptr)POOL_SIZE_MASK;
            base += POOL_SIZE;
        }

        /* visit every pool in the arena */
        assert(base <= (uptr) arenas[i].pool_address);
        for (j = 0;
                    base < (uptr) arenas[i].pool_address;
                    ++j, base += POOL_SIZE) {
            poolp p = (poolp)base;
            const uint sz = p->szidx;
            uint freeblocks;

            if (p->ref.count == 0) {
                /* currently unused */
                assert(pool_is_in_list(p, arenas[i].freepools));
                continue;
            }
            ++numpools[sz];
            numblocks[sz] += p->ref.count;
            freeblocks = NUMBLOCKS(sz) - p->ref.count;
            numfreeblocks[sz] += freeblocks;
1853
#ifdef Py_DEBUG
1854 1855
            if (freeblocks > 0)
                assert(pool_is_in_list(p, usedpools[sz + sz]));
1856
#endif
1857 1858 1859 1860
        }
    }
    assert(narenas == narenas_currently_allocated);

1861
    fputc('\n', out);
1862 1863
    fputs("class   size   num pools   blocks in use  avail blocks\n"
          "-----   ----   ---------   -------------  ------------\n",
1864
          out);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

    for (i = 0; i < numclasses; ++i) {
        size_t p = numpools[i];
        size_t b = numblocks[i];
        size_t f = numfreeblocks[i];
        uint size = INDEX2SIZE(i);
        if (p == 0) {
            assert(b == 0 && f == 0);
            continue;
        }
1875
        fprintf(out, "%5u %6u "
1876 1877 1878
                        "%11" PY_FORMAT_SIZE_T "u "
                        "%15" PY_FORMAT_SIZE_T "u "
                        "%13" PY_FORMAT_SIZE_T "u\n",
Stefan Krah's avatar
Stefan Krah committed
1879
                i, size, p, b, f);
1880 1881 1882 1883 1884
        allocated_bytes += b * size;
        available_bytes += f * size;
        pool_header_bytes += p * POOL_OVERHEAD;
        quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
    }
1885 1886 1887 1888 1889 1890 1891 1892
    fputc('\n', out);
#ifdef PYMALLOC_DEBUG
    (void)printone(out, "# times object malloc called", serialno);
#endif
    (void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
    (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
    (void)printone(out, "# arenas highwater mark", narenas_highwater);
    (void)printone(out, "# arenas allocated current", narenas);
1893 1894 1895 1896

    PyOS_snprintf(buf, sizeof(buf),
        "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
        narenas, ARENA_SIZE);
1897
    (void)printone(out, buf, narenas * ARENA_SIZE);
1898

1899
    fputc('\n', out);
1900

1901 1902
    total = printone(out, "# bytes in allocated blocks", allocated_bytes);
    total += printone(out, "# bytes in available blocks", available_bytes);
1903 1904 1905

    PyOS_snprintf(buf, sizeof(buf),
        "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
1906
    total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
1907

1908 1909 1910 1911
    total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
    total += printone(out, "# bytes lost to quantization", quantization);
    total += printone(out, "# bytes lost to arena alignment", arena_alignment);
    (void)printone(out, "Total", total);
1912 1913
}

1914
#endif /* #ifdef WITH_PYMALLOC */
1915 1916

#ifdef Py_USING_MEMORY_DEBUGGER
1917 1918 1919
/* Make this function last so gcc won't inline it since the definition is
 * after the reference.
 */
1920 1921 1922
int
Py_ADDRESS_IN_RANGE(void *P, poolp pool)
{
1923 1924 1925 1926 1927
    uint arenaindex_temp = pool->arenaindex;

    return arenaindex_temp < maxarenas &&
           (uptr)P - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE &&
           arenas[arenaindex_temp].address != 0;
1928 1929
}
#endif