glossary.rst 21 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
.. _glossary:

********
Glossary
********

.. if you add new entries, keep the alphabetical sorting!

.. glossary::

   ``>>>``
      The typical Python prompt of the interactive shell.  Often seen for code
      examples that can be tried right away in the interpreter.
    
   ``...``
      The typical Python prompt of the interactive shell when entering code for
      an indented code block.
18 19 20 21 22 23 24 25 26 27 28

   argument
      A value passed to a function or method, assigned to a name local to
      the body.  A function or method may have both positional arguments and
      keyword arguments in its definition.  Positional and keyword arguments
      may be variable-length: ``*`` accepts or passes (if in the function
      definition or call) several positional arguments in a list, while ``**``
      does the same for keyword arguments in a dictionary.

      Any expression may be used within the argument list, and the evaluated
      value is passed to the local variable.
29 30 31 32 33
    
   BDFL
      Benevolent Dictator For Life, a.k.a. `Guido van Rossum
      <http://www.python.org/~guido/>`_, Python's creator.
    
34 35 36 37 38 39 40
   bytecode
      Python source code is compiled into bytecode, the internal representation
      of a Python program in the interpreter.  The bytecode is also cached in
      ``.pyc`` and ``.pyo`` files so that executing the same file is faster the
      second time (recompilation from source to bytecode can be avoided).  This
      "intermediate language" is said to run on a "virtual machine" that calls
      the subroutines corresponding to each bytecode.
41 42
    
   classic class
Georg Brandl's avatar
Georg Brandl committed
43 44
      One of the two flavors of classes in earlier Python versions.  Since
      Python 3.0, there are no classic classes anymore.
45 46 47 48 49 50 51 52 53 54 55 56 57
    
   complex number
      An extension of the familiar real number system in which all numbers are
      expressed as a sum of a real part and an imaginary part.  Imaginary
      numbers are real multiples of the imaginary unit (the square root of
      ``-1``), often written ``i`` in mathematics or ``j`` in
      engineering. Python has builtin support for complex numbers, which are
      written with this latter notation; the imaginary part is written with a
      ``j`` suffix, e.g., ``3+1j``.  To get access to complex equivalents of the
      :mod:`math` module, use :mod:`cmath`.  Use of complex numbers is a fairly
      advanced mathematical feature.  If you're not aware of a need for them,
      it's almost certain you can safely ignore them.
    
58
   context manager
59
      An objects that controls the environment seen in a :keyword:`with`
60 61 62
      statement by defining :meth:`__enter__` and :meth:`__exit__` methods.
      See :pep:`343`.

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
   decorator
      A function returning another function, usually applied as a function
      transformation using the ``@wrapper`` syntax.  Common examples for
      decorators are :func:`classmethod` and :func:`staticmethod`.

      The decorator syntax is merely syntactic sugar, the following two
      function definitions are semantically equivalent::

         def f(...):
             ...
         f = staticmethod(f)

         @staticmethod
         def f(...):
             ...

79 80
      The same concept exists for classes, but is less commonly used there.

81
   descriptor
Georg Brandl's avatar
Georg Brandl committed
82 83
      An object that defines the methods :meth:`__get__`, :meth:`__set__`, or
      :meth:`__delete__`.  When a class attribute is a descriptor, its special
84 85 86 87 88 89 90 91 92
      binding behavior is triggered upon attribute lookup.  Normally, using
      *a.b* to get, set or delete an attribute looks up the object named *b* in
      the class dictionary for *a*, but if *b* is a descriptor, the respective
      descriptor method gets called.  Understanding descriptors is a key to a
      deep understanding of Python because they are the basis for many features
      including functions, methods, properties, class methods, static methods,
      and reference to super classes.

      For more information about descriptors' methods, see :ref:`descriptors`.
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    
   dictionary
      An associative array, where arbitrary keys are mapped to values.  The use
      of :class:`dict` much resembles that for :class:`list`, but the keys can
      be any object with a :meth:`__hash__` function, not just integers starting
      from zero.  Called a hash in Perl.
    
   duck-typing
      Pythonic programming style that determines an object's type by inspection
      of its method or attribute signature rather than by explicit relationship
      to some type object ("If it looks like a duck and quacks like a duck, it
      must be a duck.")  By emphasizing interfaces rather than specific types,
      well-designed code improves its flexibility by allowing polymorphic
      substitution.  Duck-typing avoids tests using :func:`type` or
      :func:`isinstance`. Instead, it typically employs :func:`hasattr` tests or
      :term:`EAFP` programming.
    
   EAFP
      Easier to ask for forgiveness than permission.  This common Python coding
      style assumes the existence of valid keys or attributes and catches
      exceptions if the assumption proves false.  This clean and fast style is
      characterized by the presence of many :keyword:`try` and :keyword:`except`
      statements.  The technique contrasts with the :term:`LBYL` style that is
      common in many other languages such as C.

118 119 120 121 122 123
   expression
      A piece of syntax which can be evaluated to some value.  In other words,
      an expression is an accumulation of expression elements like literals, names,
      attribute access, operators or function calls that all return a value.
      In contrast to other languages, not all language constructs are expressions,
      but there are also :term:`statement`\s that cannot be used as expressions,
124
      such as :keyword:`while` or :keyword:`if`.  Assignments are also not
125 126
      expressions.

127 128 129
   extension module
      A module written in C, using Python's C API to interact with the core and
      with user code.
130 131 132 133 134 135

   function
      A series of statements which returns some value to a caller. It can also
      be passed zero or more arguments which may be used in the execution of
      the body. See also :term:`argument` and :term:`method`.

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
   __future__
      A pseudo module which programmers can use to enable new language features
      which are not compatible with the current interpreter.  For example, the
      expression ``11/4`` currently evaluates to ``2``. If the module in which
      it is executed had enabled *true division* by executing::
    
         from __future__ import division
    
      the expression ``11/4`` would evaluate to ``2.75``.  By importing the
      :mod:`__future__` module and evaluating its variables, you can see when a
      new feature was first added to the language and when it will become the
      default::
    
         >>> import __future__
         >>> __future__.division
         _Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

   garbage collection
      The process of freeing memory when it is not used anymore.  Python
      performs garbage collection via reference counting and a cyclic garbage
      collector that is able to detect and break reference cycles.
    
   generator
      A function that returns an iterator.  It looks like a normal function
      except that values are returned to the caller using a :keyword:`yield`
      statement instead of a :keyword:`return` statement.  Generator functions
      often contain one or more :keyword:`for` or :keyword:`while` loops that
      :keyword:`yield` elements back to the caller.  The function execution is
      stopped at the :keyword:`yield` keyword (returning the result) and is
      resumed there when the next element is requested by calling the
      :meth:`next` method of the returned iterator.
    
      .. index:: single: generator expression
    
   generator expression
      An expression that returns a generator.  It looks like a normal expression
      followed by a :keyword:`for` expression defining a loop variable, range,
      and an optional :keyword:`if` expression.  The combined expression
      generates values for an enclosing function::
    
         >>> sum(i*i for i in range(10))         # sum of squares 0, 1, 4, ... 81
         285
    
   GIL
      See :term:`global interpreter lock`.
    
   global interpreter lock
      The lock used by Python threads to assure that only one thread can be run
      at a time.  This simplifies Python by assuring that no two processes can
      access the same memory at the same time.  Locking the entire interpreter
      makes it easier for the interpreter to be multi-threaded, at the expense
      of some parallelism on multi-processor machines.  Efforts have been made
      in the past to create a "free-threaded" interpreter (one which locks
      shared data at a much finer granularity), but performance suffered in the
      common single-processor case.
191 192 193 194 195 196 197 198 199 200 201 202 203 204

   hashable
      An object is *hashable* if it has a hash value that never changes during
      its lifetime (it needs a :meth:`__hash__` method), and can be compared to
      other objects (it needs an :meth:`__eq__` or :meth:`__cmp__` method).
      Hashable objects that compare equal must have the same hash value.

      Hashability makes an object usable as a dictionary key and a set member,
      because these data structures use the hash value internally.

      All of Python's immutable built-in objects are hashable, while all mutable
      containers (such as lists or dictionaries) are not.  Objects that are
      instances of user-defined classes are hashable by default; they all
      compare unequal, and their hash value is their :func:`id`.
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    
   IDLE
      An Integrated Development Environment for Python.  IDLE is a basic editor
      and interpreter environment that ships with the standard distribution of
      Python.  Good for beginners, it also serves as clear example code for
      those wanting to implement a moderately sophisticated, multi-platform GUI
      application.
    
   immutable
      An object with fixed value.  Immutable objects are numbers, strings or
      tuples (and more).  Such an object cannot be altered.  A new object has to
      be created if a different value has to be stored.  They play an important
      role in places where a constant hash value is needed, for example as a key
      in a dictionary.
    
   integer division
      Mathematical division discarding any remainder.  For example, the
      expression ``11/4`` currently evaluates to ``2`` in contrast to the
223 224 225 226 227 228 229 230
      ``2.75`` returned by float division.  Also called *floor division*.  When
      dividing two integers the outcome will always be another integer (having
      the floor function applied to it). However, if the operands types are
      different, one of them will be converted to the other's type.  For
      example, an integer divided by a float will result in a float value,
      possibly with a decimal fraction.  Integer division can be forced by using
      the ``//`` operator instead of the ``/`` operator.  See also
      :term:`__future__`.
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    
   interactive
      Python has an interactive interpreter which means that you can try out
      things and immediately see their results.  Just launch ``python`` with no
      arguments (possibly by selecting it from your computer's main menu). It is
      a very powerful way to test out new ideas or inspect modules and packages
      (remember ``help(x)``).
    
   interpreted
      Python is an interpreted language, as opposed to a compiled one.  This
      means that the source files can be run directly without first creating an
      executable which is then run.  Interpreted languages typically have a
      shorter development/debug cycle than compiled ones, though their programs
      generally also run more slowly.  See also :term:`interactive`.
    
   iterable
      A container object capable of returning its members one at a
      time. Examples of iterables include all sequence types (such as
      :class:`list`, :class:`str`, and :class:`tuple`) and some non-sequence
      types like :class:`dict` and :class:`file` and objects of any classes you
      define with an :meth:`__iter__` or :meth:`__getitem__` method.  Iterables
      can be used in a :keyword:`for` loop and in many other places where a
      sequence is needed (:func:`zip`, :func:`map`, ...).  When an iterable
      object is passed as an argument to the builtin function :func:`iter`, it
      returns an iterator for the object.  This iterator is good for one pass
      over the set of values.  When using iterables, it is usually not necessary
      to call :func:`iter` or deal with iterator objects yourself.  The ``for``
      statement does that automatically for you, creating a temporary unnamed
      variable to hold the iterator for the duration of the loop.  See also
      :term:`iterator`, :term:`sequence`, and :term:`generator`.
    
   iterator
      An object representing a stream of data.  Repeated calls to the iterator's
      :meth:`next` method return successive items in the stream.  When no more
      data is available a :exc:`StopIteration` exception is raised instead.  At
      this point, the iterator object is exhausted and any further calls to its
      :meth:`next` method just raise :exc:`StopIteration` again.  Iterators are
      required to have an :meth:`__iter__` method that returns the iterator
      object itself so every iterator is also iterable and may be used in most
      places where other iterables are accepted.  One notable exception is code
      that attempts multiple iteration passes.  A container object (such as a
      :class:`list`) produces a fresh new iterator each time you pass it to the
      :func:`iter` function or use it in a :keyword:`for` loop.  Attempting this
      with an iterator will just return the same exhausted iterator object used
      in the previous iteration pass, making it appear like an empty container.
    
277 278
      More information can be found in :ref:`typeiter`.

279 280 281 282 283 284 285 286 287 288 289
   keyword argument
      Arguments which are preceded with a ``variable_name=`` in the call.
      The variable name designates the local name in the function to which the
      value is assigned.  ``**`` is used to accept or pass a dictionary of
      keyword arguments.  See :term:`argument`.

   lambda
      An anonymous inline function consisting of a single :term:`expression`
      which is evaluated when the function is called.  The syntax to create
      a lambda function is ``lambda [arguments]: expression``

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
   LBYL
      Look before you leap.  This coding style explicitly tests for
      pre-conditions before making calls or lookups.  This style contrasts with
      the :term:`EAFP` approach and is characterized by the presence of many
      :keyword:`if` statements.
    
   list comprehension
      A compact way to process all or a subset of elements in a sequence and
      return a list with the results.  ``result = ["0x%02x" % x for x in
      range(256) if x % 2 == 0]`` generates a list of strings containing hex
      numbers (0x..) that are even and in the range from 0 to 255. The
      :keyword:`if` clause is optional.  If omitted, all elements in
      ``range(256)`` are processed.
    
   mapping
      A container object (such as :class:`dict`) that supports arbitrary key
      lookups using the special method :meth:`__getitem__`.
    
   metaclass
      The class of a class.  Class definitions create a class name, a class
      dictionary, and a list of base classes.  The metaclass is responsible for
      taking those three arguments and creating the class.  Most object oriented
      programming languages provide a default implementation.  What makes Python
      special is that it is possible to create custom metaclasses.  Most users
      never need this tool, but when the need arises, metaclasses can provide
      powerful, elegant solutions.  They have been used for logging attribute
      access, adding thread-safety, tracking object creation, implementing
      singletons, and many other tasks.
318 319

      More information can be found in :ref:`metaclasses`.
320 321 322 323 324 325

   method
      A function that is defined inside a class body.  If called as an attribute
      of an instance of that class, the method will get the instance object as
      its first :term:`argument` (which is usually called ``self``).
      See :term:`function` and :term:`nested scope`.
326 327 328 329 330 331 332 333 334 335
    
   mutable
      Mutable objects can change their value but keep their :func:`id`.  See
      also :term:`immutable`.
    
   namespace
      The place where a variable is stored.  Namespaces are implemented as
      dictionaries.  There are the local, global and builtin namespaces as well
      as nested namespaces in objects (in methods).  Namespaces support
      modularity by preventing naming conflicts.  For instance, the functions
336
      :func:`builtins.open` and :func:`os.open` are distinguished by their
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
      namespaces.  Namespaces also aid readability and maintainability by making
      it clear which module implements a function.  For instance, writing
      :func:`random.seed` or :func:`itertools.izip` makes it clear that those
      functions are implemented by the :mod:`random` and :mod:`itertools`
      modules respectively.
    
   nested scope
      The ability to refer to a variable in an enclosing definition.  For
      instance, a function defined inside another function can refer to
      variables in the outer function.  Note that nested scopes work only for
      reference and not for assignment which will always write to the innermost
      scope.  In contrast, local variables both read and write in the innermost
      scope.  Likewise, global variables read and write to the global namespace.
    
   new-style class
Georg Brandl's avatar
Georg Brandl committed
352 353 354 355
      Old name for the flavor of classes now used for all class objects.  In
      earlier Python versions, only new-style classes could use Python's newer,
      versatile features like :attr:`__slots__`, descriptors, properties,
      :meth:`__getattribute__`, class methods, and static methods.
356 357

      More information can be found in :ref:`newstyle`.
358
    
359 360 361 362 363 364 365
   positional argument
      The arguments assigned to local names inside a function or method,
      determined by the order in which they were given in the call.  ``*`` is
      used to either accept multiple positional arguments (when in the
      definition), or pass several arguments as a list to a function.  See
      :term:`argument`.

366
   Python 3000
367
      Nickname for the Python 3.x release line (coined long ago when the
368 369
      release of version 3 was something in the distant future.)

370 371 372 373 374 375 376 377
   Pythonic
      An idea or piece of code which closely follows the most common idioms of
      the Python language, rather than implementing code using concepts common
      in other languages.  For example, a common idiom in Python is the :keyword:`for`
      loop structure; other languages don't have this easy keyword, so people
      use a numerical counter instead::
     
          for i in range(len(food)):
378
              print(food[i])
379 380 381 382

      As opposed to the cleaner, Pythonic method::

         for piece in food:
383
             print(piece)
384

385 386 387 388 389 390 391
   reference count
      The number of places where a certain object is referenced to.  When the
      reference count drops to zero, an object is deallocated.  While reference
      counting is invisible on the Python code level, it is used on the
      implementation level to keep track of allocated memory.
    
   __slots__
Georg Brandl's avatar
Georg Brandl committed
392 393 394 395 396
      A declaration inside a class that saves memory by pre-declaring space for
      instance attributes and eliminating instance dictionaries.  Though
      popular, the technique is somewhat tricky to get right and is best
      reserved for rare cases where there are large numbers of instances in a
      memory-critical application.
397 398 399 400 401 402 403 404 405 406
    
   sequence
      An :term:`iterable` which supports efficient element access using integer
      indices via the :meth:`__getitem__` and :meth:`__len__` special methods.
      Some built-in sequence types are :class:`list`, :class:`str`,
      :class:`tuple`, and :class:`unicode`. Note that :class:`dict` also
      supports :meth:`__getitem__` and :meth:`__len__`, but is considered a
      mapping rather than a sequence because the lookups use arbitrary
      :term:`immutable` keys rather than integers.

407
   slice
Georg Brandl's avatar
Georg Brandl committed
408
      An object usually containing a portion of a :term:`sequence`.  A slice is
409 410
      created using the subscript notation, ``[]`` with colons between numbers
      when several are given, such as in ``variable_name[1:3:5]``.  The bracket
411
      (subscript) notation uses :class:`slice` objects internally.
412 413 414 415

   statement
      A statement is part of a suite (a "block" of code).  A statement is either
      an :term:`expression` or a one of several constructs with a keyword, such
416
      as :keyword:`if`, :keyword:`while` or :keyword:`for`.
417

418 419 420 421 422 423 424 425 426
   type
      The type of a Python object determines what kind of object it is; every
      object has a type.  An object's type is accessible as its
      :attr:`__class__` attribute or can be retrieved with ``type(obj)``.
    
   Zen of Python
      Listing of Python design principles and philosophies that are helpful in
      understanding and using the language.  The listing can be found by typing
      "``import this``" at the interactive prompt.