objimpl.h 13 KB
Newer Older
Tim Peters's avatar
Tim Peters committed
1 2 3
/* The PyObject_ memory family:  high-level object memory interfaces.
   See pymem.h for the low-level PyMem_ family.
*/
4

5 6
#ifndef Py_OBJIMPL_H
#define Py_OBJIMPL_H
7 8 9

#include "pymem.h"

10 11 12 13
#ifdef __cplusplus
extern "C" {
#endif

Tim Peters's avatar
Tim Peters committed
14 15 16 17 18 19 20 21 22 23 24 25
/* BEWARE:

   Each interface exports both functions and macros.  Extension modules should
   use the functions, to ensure binary compatibility across Python versions.
   Because the Python implementation is free to change internal details, and
   the macros may (or may not) expose details for speed, if you do use the
   macros you must recompile your extensions with each Python release.

   Never mix calls to PyObject_ memory functions with calls to the platform
   malloc/realloc/ calloc/free, or with calls to PyMem_.
*/

Guido van Rossum's avatar
Guido van Rossum committed
26
/*
27
Functions and macros for modules that implement new object types.
Tim Peters's avatar
Tim Peters committed
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

 - PyObject_New(type, typeobj) allocates memory for a new object of the given
   type, and initializes part of it.  'type' must be the C structure type used
   to represent the object, and 'typeobj' the address of the corresponding
   type object.  Reference count and type pointer are filled in; the rest of
   the bytes of the object are *undefined*!  The resulting expression type is
   'type *'.  The size of the object is determined by the tp_basicsize field
   of the type object.

 - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
   object with room for n items.  In addition to the refcount and type pointer
   fields, this also fills in the ob_size field.

 - PyObject_Del(op) releases the memory allocated for an object.  It does not
   run a destructor -- it only frees the memory.  PyObject_Free is identical.

 - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
   allocate memory.  Instead of a 'type' parameter, they take a pointer to a
   new object (allocated by an arbitrary allocator), and initialize its object
   header fields.

Note that objects created with PyObject_{New, NewVar} are allocated using the
specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
enabled.  In addition, a special debugging allocator is used if PYMALLOC_DEBUG
is also #defined.

In case a specific form of memory management is needed (for example, if you
must use the platform malloc heap(s), or shared memory, or C++ local storage or
operator new), you must first allocate the object with your custom allocator,
then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
specific fields:  reference count, type pointer, possibly others.  You should
be aware that Python no control over these objects because they don't
cooperate with the Python memory manager.  Such objects may not be eligible
for automatic garbage collection and you have to make sure that they are
released accordingly whenever their destructor gets called (cf. the specific
63 64
form of memory management you're using).

Tim Peters's avatar
Tim Peters committed
65 66 67
Unless you have specific memory management requirements, use
PyObject_{New, NewVar, Del}.
*/
68 69 70 71 72 73

/*
 * Raw object memory interface
 * ===========================
 */

74 75 76 77
/* Functions to call the same malloc/realloc/free as used by Python's
   object allocator.  If WITH_PYMALLOC is enabled, these may differ from
   the platform malloc/realloc/free.  The Python object allocator is
   designed for fast, cache-conscious allocation of many "small" objects,
Tim Peters's avatar
Tim Peters committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
   and with low hidden memory overhead.

   PyObject_Malloc(0) returns a unique non-NULL pointer if possible.

   PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
   PyObject_Realloc(p != NULL, 0) does not return  NULL, or free the memory
   at p.

   Returned pointers must be checked for NULL explicitly; no action is
   performed on failure other than to return NULL (no warning it printed, no
   exception is set, etc).

   For allocating objects, use PyObject_{New, NewVar} instead whenever
   possible.  The PyObject_{Malloc, Realloc, Free} family is exposed
   so that you can exploit Python's small-block allocator for non-object
   uses.  If you must use these routines to allocate object memory, make sure
   the object gets initialized via PyObject_{Init, InitVar} after obtaining
   the raw memory.
*/
97 98 99
PyAPI_FUNC(void *) PyObject_Malloc(size_t);
PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
PyAPI_FUNC(void) PyObject_Free(void *);
100

101

102
/* Macros */
103
#ifdef WITH_PYMALLOC
104
#ifdef PYMALLOC_DEBUG   /* WITH_PYMALLOC && PYMALLOC_DEBUG */
105 106 107 108 109 110
PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
111 112 113 114 115 116 117 118 119 120 121
#define PyObject_MALLOC         _PyObject_DebugMalloc
#define PyObject_Malloc         _PyObject_DebugMalloc
#define PyObject_REALLOC        _PyObject_DebugRealloc
#define PyObject_Realloc        _PyObject_DebugRealloc
#define PyObject_FREE           _PyObject_DebugFree
#define PyObject_Free           _PyObject_DebugFree

#else   /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
#define PyObject_MALLOC         PyObject_Malloc
#define PyObject_REALLOC        PyObject_Realloc
#define PyObject_FREE           PyObject_Free
122 123
#endif

124 125 126 127
#else   /* ! WITH_PYMALLOC */
#define PyObject_MALLOC         PyMem_MALLOC
#define PyObject_REALLOC        PyMem_REALLOC
#define PyObject_FREE           PyMem_FREE
Tim Peters's avatar
Tim Peters committed
128

129
#endif  /* WITH_PYMALLOC */
130

131 132
#define PyObject_Del            PyObject_Free
#define PyObject_DEL            PyObject_FREE
133

134 135 136 137 138 139
/*
 * Generic object allocator interface
 * ==================================
 */

/* Functions */
140 141
PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
Martin v. Löwis's avatar
Martin v. Löwis committed
142
                                                 PyTypeObject *, Py_ssize_t);
143
PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
Martin v. Löwis's avatar
Martin v. Löwis committed
144
PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
145 146

#define PyObject_New(type, typeobj) \
147
                ( (type *) _PyObject_New(typeobj) )
148
#define PyObject_NewVar(type, typeobj, n) \
149
                ( (type *) _PyObject_NewVar((typeobj), (n)) )
150

Andrew M. Kuchling's avatar
Andrew M. Kuchling committed
151
/* Macros trading binary compatibility for speed. See also pymem.h.
152 153
   Note that these macros expect non-NULL object pointers.*/
#define PyObject_INIT(op, typeobj) \
154
    ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
155
#define PyObject_INIT_VAR(op, typeobj, size) \
156
    ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
157 158

#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
159

160 161 162 163 164 165 166 167 168
/* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
   vrbl-size object with nitems items, exclusive of gc overhead (if any).  The
   value is rounded up to the closest multiple of sizeof(void *), in order to
   ensure that pointer fields at the end of the object are correctly aligned
   for the platform (this is of special importance for subclasses of, e.g.,
   str or long, so that pointers can be stored after the embedded data).

   Note that there's no memory wastage in doing this, as malloc has to
   return (at worst) pointer-aligned memory anyway.
169
*/
170 171 172 173
#if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
#   error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
#endif

174 175 176 177 178 179 180
#define _PyObject_VAR_SIZE(typeobj, nitems)     \
    (size_t)                                    \
    ( ( (typeobj)->tp_basicsize +               \
        (nitems)*(typeobj)->tp_itemsize +       \
        (SIZEOF_VOID_P - 1)                     \
      ) & ~(SIZEOF_VOID_P - 1)                  \
    )
181 182 183

#define PyObject_NEW(type, typeobj) \
( (type *) PyObject_Init( \
184
    (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
185

186 187 188 189
#define PyObject_NEW_VAR(type, typeobj, n) \
( (type *) PyObject_InitVar( \
      (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
      (typeobj), (n)) )
190 191 192 193 194 195

/* This example code implements an object constructor with a custom
   allocator, where PyObject_New is inlined, and shows the important
   distinction between two steps (at least):
       1) the actual allocation of the object storage;
       2) the initialization of the Python specific fields
196
      in this storage with PyObject_{Init, InitVar}.
197 198 199 200 201

   PyObject *
   YourObject_New(...)
   {
       PyObject *op;
Guido van Rossum's avatar
Guido van Rossum committed
202

203 204
       op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
       if (op == NULL)
205
       return PyErr_NoMemory();
206

Tim Peters's avatar
Tim Peters committed
207
       PyObject_Init(op, &YourTypeStruct);
Guido van Rossum's avatar
Guido van Rossum committed
208

209 210 211 212
       op->ob_field = value;
       ...
       return op;
   }
Guido van Rossum's avatar
Guido van Rossum committed
213

214 215
   Note that in C++, the use of the new operator usually implies that
   the 1st step is performed automatically for you, so in a C++ class
Tim Peters's avatar
Tim Peters committed
216 217
   constructor you would start directly with PyObject_Init/InitVar
*/
Guido van Rossum's avatar
Guido van Rossum committed
218

219 220 221 222
/*
 * Garbage Collection Support
 * ==========================
 */
223

224
/* C equivalent of gc.collect(). */
225
PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
226

227 228
/* Test if a type has a GC head */
#define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
229

230
/* Test if an object has a GC head */
231
#define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
232
    (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
233

234
PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
235
#define PyObject_GC_Resize(type, op, n) \
236
                ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
237

238 239
/* for source compatibility with 2.2 */
#define _PyObject_GC_Del PyObject_GC_Del
240

Tim Peters's avatar
Tim Peters committed
241
/* GC information is stored BEFORE the object structure. */
242
typedef union _gc_head {
243 244 245 246 247 248
    struct {
        union _gc_head *gc_next;
        union _gc_head *gc_prev;
        Py_ssize_t gc_refs;
    } gc;
    long double dummy;  /* force worst-case alignment */
249 250
} PyGC_Head;

251
extern PyGC_Head *_PyGC_generation0;
252

253 254
#define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)

255 256 257
#define _PyGC_REFS_UNTRACKED                    (-2)
#define _PyGC_REFS_REACHABLE                    (-3)
#define _PyGC_REFS_TENTATIVELY_UNREACHABLE      (-4)
258

259 260 261
/* Tell the GC to track this object.  NB: While the object is tracked the
 * collector it must be safe to call the ob_traverse method. */
#define _PyObject_GC_TRACK(o) do { \
262 263 264 265 266 267 268 269
    PyGC_Head *g = _Py_AS_GC(o); \
    if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
        Py_FatalError("GC object already tracked"); \
    g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
    g->gc.gc_next = _PyGC_generation0; \
    g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
    g->gc.gc_prev->gc.gc_next = g; \
    _PyGC_generation0->gc.gc_prev = g; \
270 271
    } while (0);

272 273 274 275
/* Tell the GC to stop tracking this object.
 * gc_next doesn't need to be set to NULL, but doing so is a good
 * way to provoke memory errors if calling code is confused.
 */
276
#define _PyObject_GC_UNTRACK(o) do { \
277 278 279 280 281 282
    PyGC_Head *g = _Py_AS_GC(o); \
    assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
    g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
    g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
    g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
    g->gc.gc_next = NULL; \
283 284
    } while (0);

285 286
/* True if the object is currently tracked by the GC. */
#define _PyObject_GC_IS_TRACKED(o) \
287 288
    ((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED)

289 290 291
/* True if the object may be tracked by the GC in the future, or already is.
   This can be useful to implement some optimizations. */
#define _PyObject_GC_MAY_BE_TRACKED(obj) \
292 293
    (PyObject_IS_GC(obj) && \
        (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj)))
294 295


296 297
PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
Martin v. Löwis's avatar
Martin v. Löwis committed
298
PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
299 300 301
PyAPI_FUNC(void) PyObject_GC_Track(void *);
PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
PyAPI_FUNC(void) PyObject_GC_Del(void *);
302 303

#define PyObject_GC_New(type, typeobj) \
304
                ( (type *) _PyObject_GC_New(typeobj) )
305
#define PyObject_GC_NewVar(type, typeobj, n) \
306
                ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
307

308

309 310 311 312 313
/* Utility macro to help write tp_traverse functions.
 * To use this macro, the tp_traverse function must name its arguments
 * "visit" and "arg".  This is intended to keep tp_traverse functions
 * looking as much alike as possible.
 */
314 315 316 317 318 319 320 321
#define Py_VISIT(op)                                                    \
    do {                                                                \
        if (op) {                                                       \
            int vret = visit((PyObject *)(op), arg);                    \
            if (vret)                                                   \
                return vret;                                            \
        }                                                               \
    } while (0)
322

323 324 325 326 327 328 329 330
/* This is here for the sake of backwards compatibility.  Extensions that
 * use the old GC API will still compile but the objects will not be
 * tracked by the GC. */
#define PyGC_HEAD_SIZE 0
#define PyObject_GC_Init(op)
#define PyObject_GC_Fini(op)
#define PyObject_AS_GC(op) (op)
#define PyObject_FROM_GC(op) (op)
331

332

333
/* Test if a type supports weak references */
334
#define PyType_SUPPORTS_WEAKREFS(t) ((t)->tp_weaklistoffset > 0)
335 336

#define PyObject_GET_WEAKREFS_LISTPTR(o) \
337
    ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
338

339 340 341 342
#ifdef __cplusplus
}
#endif
#endif /* !Py_OBJIMPL_H */