pystrtod.c 38.2 KB
Newer Older
1 2 3 4 5
/* -*- Mode: C; c-file-style: "python" -*- */

#include <Python.h>
#include <locale.h>

6 7
/* Case-insensitive string match used for nan and inf detection; t should be
   lower-case.  Returns 1 for a successful match, 0 otherwise. */
8 9 10 11

static int
case_insensitive_match(const char *s, const char *t)
{
12 13 14 15 16
    while(*t && Py_TOLOWER(*s) == *t) {
        s++;
        t++;
    }
    return *t ? 0 : 1;
17 18
}

19 20 21 22 23 24
/* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or
   "infinity", with an optional leading sign of "+" or "-".  On success,
   return the NaN or Infinity as a double and set *endptr to point just beyond
   the successfully parsed portion of the string.  On failure, return -1.0 and
   set *endptr to point to the start of the string. */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#ifndef PY_NO_SHORT_FLOAT_REPR

double
_Py_parse_inf_or_nan(const char *p, char **endptr)
{
    double retval;
    const char *s;
    int negate = 0;

    s = p;
    if (*s == '-') {
        negate = 1;
        s++;
    }
    else if (*s == '+') {
        s++;
    }
    if (case_insensitive_match(s, "inf")) {
        s += 3;
        if (case_insensitive_match(s, "inity"))
            s += 5;
        retval = _Py_dg_infinity(negate);
    }
    else if (case_insensitive_match(s, "nan")) {
        s += 3;
        retval = _Py_dg_stdnan(negate);
    }
    else {
        s = p;
        retval = -1.0;
    }
    *endptr = (char *)s;
    return retval;
}

#else

62 63 64
double
_Py_parse_inf_or_nan(const char *p, char **endptr)
{
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    double retval;
    const char *s;
    int negate = 0;

    s = p;
    if (*s == '-') {
        negate = 1;
        s++;
    }
    else if (*s == '+') {
        s++;
    }
    if (case_insensitive_match(s, "inf")) {
        s += 3;
        if (case_insensitive_match(s, "inity"))
            s += 5;
        retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL;
    }
83
#ifdef Py_NAN
84 85 86 87
    else if (case_insensitive_match(s, "nan")) {
        s += 3;
        retval = negate ? -Py_NAN : Py_NAN;
    }
88
#endif
89 90 91 92 93 94
    else {
        s = p;
        retval = -1.0;
    }
    *endptr = (char *)s;
    return retval;
95 96
}

97 98
#endif

99
/**
100
 * _PyOS_ascii_strtod:
101 102 103
 * @nptr:    the string to convert to a numeric value.
 * @endptr:  if non-%NULL, it returns the character after
 *           the last character used in the conversion.
104
 *
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
 * Converts a string to a #gdouble value.
 * This function behaves like the standard strtod() function
 * does in the C locale. It does this without actually
 * changing the current locale, since that would not be
 * thread-safe.
 *
 * This function is typically used when reading configuration
 * files or other non-user input that should be locale independent.
 * To handle input from the user you should normally use the
 * locale-sensitive system strtod() function.
 *
 * If the correct value would cause overflow, plus or minus %HUGE_VAL
 * is returned (according to the sign of the value), and %ERANGE is
 * stored in %errno. If the correct value would cause underflow,
 * zero is returned and %ERANGE is stored in %errno.
120
 * If memory allocation fails, %ENOMEM is stored in %errno.
121
 *
122 123 124 125 126
 * This function resets %errno before calling strtod() so that
 * you can reliably detect overflow and underflow.
 *
 * Return value: the #gdouble value.
 **/
127 128 129

#ifndef PY_NO_SHORT_FLOAT_REPR

130
static double
131
_PyOS_ascii_strtod(const char *nptr, char **endptr)
132
{
133 134
    double result;
    _Py_SET_53BIT_PRECISION_HEADER;
135

136 137 138 139
    assert(nptr != NULL);
    /* Set errno to zero, so that we can distinguish zero results
       and underflows */
    errno = 0;
140

141 142 143
    _Py_SET_53BIT_PRECISION_START;
    result = _Py_dg_strtod(nptr, endptr);
    _Py_SET_53BIT_PRECISION_END;
144

145 146 147
    if (*endptr == nptr)
        /* string might represent an inf or nan */
        result = _Py_parse_inf_or_nan(nptr, endptr);
148

149
    return result;
150 151 152 153 154 155 156 157 158 159 160 161 162

}

#else

/*
   Use system strtod;  since strtod is locale aware, we may
   have to first fix the decimal separator.

   Note that unlike _Py_dg_strtod, the system strtod may not always give
   correctly rounded results.
*/

163
static double
164
_PyOS_ascii_strtod(const char *nptr, char **endptr)
165
{
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    char *fail_pos;
    double val = -1.0;
    struct lconv *locale_data;
    const char *decimal_point;
    size_t decimal_point_len;
    const char *p, *decimal_point_pos;
    const char *end = NULL; /* Silence gcc */
    const char *digits_pos = NULL;
    int negate = 0;

    assert(nptr != NULL);

    fail_pos = NULL;

    locale_data = localeconv();
    decimal_point = locale_data->decimal_point;
    decimal_point_len = strlen(decimal_point);

    assert(decimal_point_len != 0);

    decimal_point_pos = NULL;

    /* Parse infinities and nans */
    val = _Py_parse_inf_or_nan(nptr, endptr);
    if (*endptr != nptr)
        return val;

    /* Set errno to zero, so that we can distinguish zero results
       and underflows */
    errno = 0;

    /* We process the optional sign manually, then pass the remainder to
       the system strtod.  This ensures that the result of an underflow
       has the correct sign. (bug #1725)  */
    p = nptr;
    /* Process leading sign, if present */
    if (*p == '-') {
        negate = 1;
        p++;
    }
    else if (*p == '+') {
        p++;
    }

    /* Some platform strtods accept hex floats; Python shouldn't (at the
       moment), so we check explicitly for strings starting with '0x'. */
    if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X'))
        goto invalid_string;

    /* Check that what's left begins with a digit or decimal point */
    if (!Py_ISDIGIT(*p) && *p != '.')
        goto invalid_string;

    digits_pos = p;
    if (decimal_point[0] != '.' ||
        decimal_point[1] != 0)
    {
        /* Look for a '.' in the input; if present, it'll need to be
           swapped for the current locale's decimal point before we
           call strtod.  On the other hand, if we find the current
           locale's decimal point then the input is invalid. */
        while (Py_ISDIGIT(*p))
            p++;

        if (*p == '.')
        {
            decimal_point_pos = p++;

            /* locate end of number */
            while (Py_ISDIGIT(*p))
                p++;

            if (*p == 'e' || *p == 'E')
                p++;
            if (*p == '+' || *p == '-')
                p++;
            while (Py_ISDIGIT(*p))
                p++;
            end = p;
        }
        else if (strncmp(p, decimal_point, decimal_point_len) == 0)
            /* Python bug #1417699 */
            goto invalid_string;
        /* For the other cases, we need not convert the decimal
           point */
    }

    if (decimal_point_pos) {
        char *copy, *c;
        /* Create a copy of the input, with the '.' converted to the
           locale-specific decimal point */
        copy = (char *)PyMem_MALLOC(end - digits_pos +
                                    1 + decimal_point_len);
        if (copy == NULL) {
            *endptr = (char *)nptr;
            errno = ENOMEM;
            return val;
        }

        c = copy;
        memcpy(c, digits_pos, decimal_point_pos - digits_pos);
        c += decimal_point_pos - digits_pos;
        memcpy(c, decimal_point, decimal_point_len);
        c += decimal_point_len;
        memcpy(c, decimal_point_pos + 1,
               end - (decimal_point_pos + 1));
        c += end - (decimal_point_pos + 1);
        *c = 0;

        val = strtod(copy, &fail_pos);

        if (fail_pos)
        {
            if (fail_pos > decimal_point_pos)
                fail_pos = (char *)digits_pos +
                    (fail_pos - copy) -
                    (decimal_point_len - 1);
            else
                fail_pos = (char *)digits_pos +
                    (fail_pos - copy);
        }

        PyMem_FREE(copy);

    }
    else {
        val = strtod(digits_pos, &fail_pos);
    }

    if (fail_pos == digits_pos)
        goto invalid_string;

    if (negate && fail_pos != nptr)
        val = -val;
    *endptr = fail_pos;

    return val;
303 304

  invalid_string:
305 306 307
    *endptr = (char*)nptr;
    errno = EINVAL;
    return -1.0;
308 309
}

310 311
#endif

312 313 314 315
/* PyOS_string_to_double converts a null-terminated byte string s (interpreted
   as a string of ASCII characters) to a float.  The string should not have
   leading or trailing whitespace.  The conversion is independent of the
   current locale.
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

   If endptr is NULL, try to convert the whole string.  Raise ValueError and
   return -1.0 if the string is not a valid representation of a floating-point
   number.

   If endptr is non-NULL, try to convert as much of the string as possible.
   If no initial segment of the string is the valid representation of a
   floating-point number then *endptr is set to point to the beginning of the
   string, -1.0 is returned and again ValueError is raised.

   On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine),
   if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python
   exception is raised.  Otherwise, overflow_exception should point to a
   a Python exception, this exception will be raised, -1.0 will be returned,
   and *endptr will point just past the end of the converted value.

   If any other failure occurs (for example lack of memory), -1.0 is returned
   and the appropriate Python exception will have been set.
*/

double
PyOS_string_to_double(const char *s,
338 339
                      char **endptr,
                      PyObject *overflow_exception)
340
{
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    double x, result=-1.0;
    char *fail_pos;

    errno = 0;
    PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0)
    x = _PyOS_ascii_strtod(s, &fail_pos);
    PyFPE_END_PROTECT(x)

    if (errno == ENOMEM) {
        PyErr_NoMemory();
        fail_pos = (char *)s;
    }
    else if (!endptr && (fail_pos == s || *fail_pos != '\0'))
        PyErr_Format(PyExc_ValueError,
                      "could not convert string to float: "
                      "%.200s", s);
    else if (fail_pos == s)
        PyErr_Format(PyExc_ValueError,
                      "could not convert string to float: "
                      "%.200s", s);
    else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception)
        PyErr_Format(overflow_exception,
                      "value too large to convert to float: "
                      "%.200s", s);
    else
        result = x;

    if (endptr != NULL)
        *endptr = fail_pos;
    return result;
371
}
372

373 374
#ifdef PY_NO_SHORT_FLOAT_REPR

375 376 377 378 379 380
/* Given a string that may have a decimal point in the current
   locale, change it back to a dot.  Since the string cannot get
   longer, no need for a maximum buffer size parameter. */
Py_LOCAL_INLINE(void)
change_decimal_from_locale_to_dot(char* buffer)
{
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    struct lconv *locale_data = localeconv();
    const char *decimal_point = locale_data->decimal_point;

    if (decimal_point[0] != '.' || decimal_point[1] != 0) {
        size_t decimal_point_len = strlen(decimal_point);

        if (*buffer == '+' || *buffer == '-')
            buffer++;
        while (Py_ISDIGIT(*buffer))
            buffer++;
        if (strncmp(buffer, decimal_point, decimal_point_len) == 0) {
            *buffer = '.';
            buffer++;
            if (decimal_point_len > 1) {
                /* buffer needs to get smaller */
                size_t rest_len = strlen(buffer +
                                     (decimal_point_len - 1));
                memmove(buffer,
                    buffer + (decimal_point_len - 1),
                    rest_len);
                buffer[rest_len] = 0;
            }
        }
    }
405 406
}

407

Christian Heimes's avatar
Christian Heimes committed
408 409 410 411 412 413
/* From the C99 standard, section 7.19.6:
The exponent always contains at least two digits, and only as many more digits
as necessary to represent the exponent.
*/
#define MIN_EXPONENT_DIGITS 2

414 415 416
/* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS
   in length. */
Py_LOCAL_INLINE(void)
417
ensure_minimum_exponent_length(char* buffer, size_t buf_size)
418
{
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    char *p = strpbrk(buffer, "eE");
    if (p && (*(p + 1) == '-' || *(p + 1) == '+')) {
        char *start = p + 2;
        int exponent_digit_cnt = 0;
        int leading_zero_cnt = 0;
        int in_leading_zeros = 1;
        int significant_digit_cnt;

        /* Skip over the exponent and the sign. */
        p += 2;

        /* Find the end of the exponent, keeping track of leading
           zeros. */
        while (*p && Py_ISDIGIT(*p)) {
            if (in_leading_zeros && *p == '0')
                ++leading_zero_cnt;
            if (*p != '0')
                in_leading_zeros = 0;
            ++p;
            ++exponent_digit_cnt;
        }

        significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt;
        if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) {
            /* If there are 2 exactly digits, we're done,
               regardless of what they contain */
        }
        else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) {
            int extra_zeros_cnt;

            /* There are more than 2 digits in the exponent.  See
               if we can delete some of the leading zeros */
            if (significant_digit_cnt < MIN_EXPONENT_DIGITS)
                significant_digit_cnt = MIN_EXPONENT_DIGITS;
            extra_zeros_cnt = exponent_digit_cnt -
                significant_digit_cnt;

            /* Delete extra_zeros_cnt worth of characters from the
               front of the exponent */
            assert(extra_zeros_cnt >= 0);

            /* Add one to significant_digit_cnt to copy the
               trailing 0 byte, thus setting the length */
            memmove(start,
                start + extra_zeros_cnt,
                significant_digit_cnt + 1);
        }
        else {
            /* If there are fewer than 2 digits, add zeros
               until there are 2, if there's enough room */
            int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt;
            if (start + zeros + exponent_digit_cnt + 1
                  < buffer + buf_size) {
                memmove(start + zeros, start,
                    exponent_digit_cnt + 1);
                memset(start, '0', zeros);
            }
        }
    }
478 479
}

480 481 482 483
/* Remove trailing zeros after the decimal point from a numeric string; also
   remove the decimal point if all digits following it are zero.  The numeric
   string must end in '\0', and should not have any leading or trailing
   whitespace.  Assumes that the decimal point is '.'. */
484
Py_LOCAL_INLINE(void)
485 486
remove_trailing_zeros(char *buffer)
{
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    char *old_fraction_end, *new_fraction_end, *end, *p;

    p = buffer;
    if (*p == '-' || *p == '+')
        /* Skip leading sign, if present */
        ++p;
    while (Py_ISDIGIT(*p))
        ++p;

    /* if there's no decimal point there's nothing to do */
    if (*p++ != '.')
        return;

    /* scan any digits after the point */
    while (Py_ISDIGIT(*p))
        ++p;
    old_fraction_end = p;

    /* scan up to ending '\0' */
    while (*p != '\0')
        p++;
    /* +1 to make sure that we move the null byte as well */
    end = p+1;

    /* scan back from fraction_end, looking for removable zeros */
    p = old_fraction_end;
    while (*(p-1) == '0')
        --p;
    /* and remove point if we've got that far */
    if (*(p-1) == '.')
        --p;
    new_fraction_end = p;

    memmove(new_fraction_end, old_fraction_end, end-old_fraction_end);
521 522 523 524 525 526 527 528 529 530 531
}

/* Ensure that buffer has a decimal point in it.  The decimal point will not
   be in the current locale, it will always be '.'. Don't add a decimal point
   if an exponent is present.  Also, convert to exponential notation where
   adding a '.0' would produce too many significant digits (see issue 5864).

   Returns a pointer to the fixed buffer, or NULL on failure.
*/
Py_LOCAL_INLINE(char *)
ensure_decimal_point(char* buffer, size_t buf_size, int precision)
532
{
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    int digit_count, insert_count = 0, convert_to_exp = 0;
    char *chars_to_insert, *digits_start;

    /* search for the first non-digit character */
    char *p = buffer;
    if (*p == '-' || *p == '+')
        /* Skip leading sign, if present.  I think this could only
           ever be '-', but it can't hurt to check for both. */
        ++p;
    digits_start = p;
    while (*p && Py_ISDIGIT(*p))
        ++p;
    digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int);

    if (*p == '.') {
        if (Py_ISDIGIT(*(p+1))) {
            /* Nothing to do, we already have a decimal
               point and a digit after it */
        }
        else {
            /* We have a decimal point, but no following
               digit.  Insert a zero after the decimal. */
            /* can't ever get here via PyOS_double_to_string */
            assert(precision == -1);
            ++p;
            chars_to_insert = "0";
            insert_count = 1;
        }
    }
    else if (!(*p == 'e' || *p == 'E')) {
        /* Don't add ".0" if we have an exponent. */
        if (digit_count == precision) {
            /* issue 5864: don't add a trailing .0 in the case
               where the '%g'-formatted result already has as many
               significant digits as were requested.  Switch to
               exponential notation instead. */
            convert_to_exp = 1;
            /* no exponent, no point, and we shouldn't land here
               for infs and nans, so we must be at the end of the
               string. */
            assert(*p == '\0');
        }
        else {
            assert(precision == -1 || digit_count < precision);
            chars_to_insert = ".0";
            insert_count = 2;
        }
    }
    if (insert_count) {
        size_t buf_len = strlen(buffer);
        if (buf_len + insert_count + 1 >= buf_size) {
            /* If there is not enough room in the buffer
               for the additional text, just skip it.  It's
               not worth generating an error over. */
        }
        else {
            memmove(p + insert_count, p,
                buffer + strlen(buffer) - p + 1);
            memcpy(p, chars_to_insert, insert_count);
        }
    }
    if (convert_to_exp) {
        int written;
        size_t buf_avail;
        p = digits_start;
        /* insert decimal point */
        assert(digit_count >= 1);
        memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */
        p[1] = '.';
        p += digit_count+1;
        assert(p <= buf_size+buffer);
        buf_avail = buf_size+buffer-p;
        if (buf_avail == 0)
            return NULL;
        /* Add exponent.  It's okay to use lower case 'e': we only
           arrive here as a result of using the empty format code or
           repr/str builtins and those never want an upper case 'E' */
        written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1);
        if (!(0 <= written &&
              written < Py_SAFE_DOWNCAST(buf_avail, size_t, int)))
            /* output truncated, or something else bad happened */
            return NULL;
        remove_trailing_zeros(buffer);
    }
    return buffer;
618 619
}

Christian Heimes's avatar
Christian Heimes committed
620 621 622
/* see FORMATBUFLEN in unicodeobject.c */
#define FLOAT_FORMATBUFLEN 120

623
/**
624
 * _PyOS_ascii_formatd:
625
 * @buffer: A buffer to place the resulting string in
Christian Heimes's avatar
Christian Heimes committed
626
 * @buf_size: The length of the buffer.
627
 * @format: The printf()-style format to use for the
628
 *          code to use for converting.
629
 * @d: The #gdouble to convert
630
 * @precision: The precision to use when formatting.
631 632 633 634
 *
 * Converts a #gdouble to a string, using the '.' as
 * decimal point. To format the number you pass in
 * a printf()-style format string. Allowed conversion
635
 * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'.
636
 *
Christian Heimes's avatar
Christian Heimes committed
637 638
 * 'Z' is the same as 'g', except it always has a decimal and
 *     at least one digit after the decimal.
Christian Heimes's avatar
Christian Heimes committed
639
 *
640
 * Return value: The pointer to the buffer with the converted string.
641
 * On failure returns NULL but does not set any Python exception.
642
 **/
643
static char *
644 645 646 647 648
_PyOS_ascii_formatd(char       *buffer,
                   size_t      buf_size,
                   const char *format,
                   double      d,
                   int         precision)
649
{
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    char format_char;
    size_t format_len = strlen(format);

    /* Issue 2264: code 'Z' requires copying the format.  'Z' is 'g', but
       also with at least one character past the decimal. */
    char tmp_format[FLOAT_FORMATBUFLEN];

    /* The last character in the format string must be the format char */
    format_char = format[format_len - 1];

    if (format[0] != '%')
        return NULL;

    /* I'm not sure why this test is here.  It's ensuring that the format
       string after the first character doesn't have a single quote, a
       lowercase l, or a percent. This is the reverse of the commented-out
       test about 10 lines ago. */
    if (strpbrk(format + 1, "'l%"))
        return NULL;

    /* Also curious about this function is that it accepts format strings
       like "%xg", which are invalid for floats.  In general, the
       interface to this function is not very good, but changing it is
       difficult because it's a public API. */

    if (!(format_char == 'e' || format_char == 'E' ||
          format_char == 'f' || format_char == 'F' ||
          format_char == 'g' || format_char == 'G' ||
          format_char == 'Z'))
        return NULL;

    /* Map 'Z' format_char to 'g', by copying the format string and
       replacing the final char with a 'g' */
    if (format_char == 'Z') {
        if (format_len + 1 >= sizeof(tmp_format)) {
            /* The format won't fit in our copy.  Error out.  In
               practice, this will never happen and will be
               detected by returning NULL */
            return NULL;
        }
        strcpy(tmp_format, format);
        tmp_format[format_len - 1] = 'g';
        format = tmp_format;
    }


    /* Have PyOS_snprintf do the hard work */
    PyOS_snprintf(buffer, buf_size, format, d);

    /* Do various fixups on the return string */

    /* Get the current locale, and find the decimal point string.
       Convert that string back to a dot. */
    change_decimal_from_locale_to_dot(buffer);

    /* If an exponent exists, ensure that the exponent is at least
       MIN_EXPONENT_DIGITS digits, providing the buffer is large enough
       for the extra zeros.  Also, if there are more than
       MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get
       back to MIN_EXPONENT_DIGITS */
    ensure_minimum_exponent_length(buffer, buf_size);

    /* If format_char is 'Z', make sure we have at least one character
       after the decimal point (and make sure we have a decimal point);
       also switch to exponential notation in some edge cases where the
       extra character would produce more significant digits that we
       really want. */
    if (format_char == 'Z')
        buffer = ensure_decimal_point(buffer, buf_size, precision);

    return buffer;
721 722 723 724 725 726 727 728 729 730
}

/* The fallback code to use if _Py_dg_dtoa is not available. */

PyAPI_FUNC(char *) PyOS_double_to_string(double val,
                                         char format_code,
                                         int precision,
                                         int flags,
                                         int *type)
{
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    char format[32];
    Py_ssize_t bufsize;
    char *buf;
    int t, exp;
    int upper = 0;

    /* Validate format_code, and map upper and lower case */
    switch (format_code) {
    case 'e':          /* exponent */
    case 'f':          /* fixed */
    case 'g':          /* general */
        break;
    case 'E':
        upper = 1;
        format_code = 'e';
        break;
    case 'F':
        upper = 1;
        format_code = 'f';
        break;
    case 'G':
        upper = 1;
        format_code = 'g';
        break;
    case 'r':          /* repr format */
        /* Supplied precision is unused, must be 0. */
        if (precision != 0) {
            PyErr_BadInternalCall();
            return NULL;
        }
        /* The repr() precision (17 significant decimal digits) is the
           minimal number that is guaranteed to have enough precision
           so that if the number is read back in the exact same binary
           value is recreated.  This is true for IEEE floating point
           by design, and also happens to work for all other modern
           hardware. */
        precision = 17;
        format_code = 'g';
        break;
    default:
        PyErr_BadInternalCall();
        return NULL;
    }

    /* Here's a quick-and-dirty calculation to figure out how big a buffer
       we need.  In general, for a finite float we need:

         1 byte for each digit of the decimal significand, and

         1 for a possible sign
         1 for a possible decimal point
         2 for a possible [eE][+-]
         1 for each digit of the exponent;  if we allow 19 digits
           total then we're safe up to exponents of 2**63.
         1 for the trailing nul byte

       This gives a total of 24 + the number of digits in the significand,
       and the number of digits in the significand is:

         for 'g' format: at most precision, except possibly
           when precision == 0, when it's 1.
         for 'e' format: precision+1
         for 'f' format: precision digits after the point, at least 1
           before.  To figure out how many digits appear before the point
           we have to examine the size of the number.  If fabs(val) < 1.0
           then there will be only one digit before the point.  If
           fabs(val) >= 1.0, then there are at most

         1+floor(log10(ceiling(fabs(val))))

           digits before the point (where the 'ceiling' allows for the
           possibility that the rounding rounds the integer part of val
           up).  A safe upper bound for the above quantity is
           1+floor(exp/3), where exp is the unique integer such that 0.5
           <= fabs(val)/2**exp < 1.0.  This exp can be obtained from
           frexp.

       So we allow room for precision+1 digits for all formats, plus an
       extra floor(exp/3) digits for 'f' format.

    */

    if (Py_IS_NAN(val) || Py_IS_INFINITY(val))
        /* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */
        bufsize = 5;
    else {
        bufsize = 25 + precision;
        if (format_code == 'f' && fabs(val) >= 1.0) {
            frexp(val, &exp);
            bufsize += exp/3;
        }
    }

    buf = PyMem_Malloc(bufsize);
    if (buf == NULL) {
        PyErr_NoMemory();
        return NULL;
    }

    /* Handle nan and inf. */
    if (Py_IS_NAN(val)) {
        strcpy(buf, "nan");
        t = Py_DTST_NAN;
    } else if (Py_IS_INFINITY(val)) {
        if (copysign(1., val) == 1.)
            strcpy(buf, "inf");
        else
            strcpy(buf, "-inf");
        t = Py_DTST_INFINITE;
    } else {
        t = Py_DTST_FINITE;
        if (flags & Py_DTSF_ADD_DOT_0)
            format_code = 'Z';

        PyOS_snprintf(format, sizeof(format), "%%%s.%i%c",
                      (flags & Py_DTSF_ALT ? "#" : ""), precision,
                      format_code);
        _PyOS_ascii_formatd(buf, bufsize, format, val, precision);
    }

    /* Add sign when requested.  It's convenient (esp. when formatting
     complex numbers) to include a sign even for inf and nan. */
    if (flags & Py_DTSF_SIGN && buf[0] != '-') {
        size_t len = strlen(buf);
        /* the bufsize calculations above should ensure that we've got
           space to add a sign */
        assert((size_t)bufsize >= len+2);
        memmove(buf+1, buf, len+1);
        buf[0] = '+';
    }
    if (upper) {
        /* Convert to upper case. */
        char *p1;
        for (p1 = buf; *p1; p1++)
            *p1 = Py_TOUPPER(*p1);
    }

    if (type)
        *type = t;
    return buf;
871 872
}

873 874 875 876 877 878 879 880 881 882 883 884
#else

/* _Py_dg_dtoa is available. */

/* I'm using a lookup table here so that I don't have to invent a non-locale
   specific way to convert to uppercase */
#define OFS_INF 0
#define OFS_NAN 1
#define OFS_E 2

/* The lengths of these are known to the code below, so don't change them */
static char *lc_float_strings[] = {
885 886 887
    "inf",
    "nan",
    "e",
888 889
};
static char *uc_float_strings[] = {
890 891 892
    "INF",
    "NAN",
    "E",
893 894 895 896 897 898 899 900
};


/* Convert a double d to a string, and return a PyMem_Malloc'd block of
   memory contain the resulting string.

   Arguments:
     d is the double to be converted
901 902
     format_code is one of 'e', 'f', 'g', 'r'.  'e', 'f' and 'g'
       correspond to '%e', '%f' and '%g';  'r' corresponds to repr.
903
     mode is one of '0', '2' or '3', and is completely determined by
904
       format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0.
905 906 907 908
     precision is the desired precision
     always_add_sign is nonzero if a '+' sign should be included for positive
       numbers
     add_dot_0_if_integer is nonzero if integers in non-exponential form
909
       should have ".0" added.  Only applies to format codes 'r' and 'g'.
910
     use_alt_formatting is nonzero if alternative formatting should be
911 912 913
       used.  Only applies to format codes 'e', 'f' and 'g'.  For code 'g',
       at most one of use_alt_formatting and add_dot_0_if_integer should
       be nonzero.
914 915
     type, if non-NULL, will be set to one of these constants to identify
       the type of the 'd' argument:
916 917 918
     Py_DTST_FINITE
     Py_DTST_INFINITE
     Py_DTST_NAN
919 920 921 922 923 924 925

   Returns a PyMem_Malloc'd block of memory containing the resulting string,
    or NULL on error. If NULL is returned, the Python error has been set.
 */

static char *
format_float_short(double d, char format_code,
926 927 928
                   int mode, Py_ssize_t precision,
                   int always_add_sign, int add_dot_0_if_integer,
                   int use_alt_formatting, char **float_strings, int *type)
929
{
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    char *buf = NULL;
    char *p = NULL;
    Py_ssize_t bufsize = 0;
    char *digits, *digits_end;
    int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0;
    Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end;
    _Py_SET_53BIT_PRECISION_HEADER;

    /* _Py_dg_dtoa returns a digit string (no decimal point or exponent).
       Must be matched by a call to _Py_dg_freedtoa. */
    _Py_SET_53BIT_PRECISION_START;
    digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign,
                         &digits_end);
    _Py_SET_53BIT_PRECISION_END;

    decpt = (Py_ssize_t)decpt_as_int;
    if (digits == NULL) {
        /* The only failure mode is no memory. */
        PyErr_NoMemory();
        goto exit;
    }
    assert(digits_end != NULL && digits_end >= digits);
    digits_len = digits_end - digits;

    if (digits_len && !Py_ISDIGIT(digits[0])) {
        /* Infinities and nans here; adapt Gay's output,
           so convert Infinity to inf and NaN to nan, and
           ignore sign of nan. Then return. */

        /* ignore the actual sign of a nan */
        if (digits[0] == 'n' || digits[0] == 'N')
            sign = 0;

        /* We only need 5 bytes to hold the result "+inf\0" . */
        bufsize = 5; /* Used later in an assert. */
        buf = (char *)PyMem_Malloc(bufsize);
        if (buf == NULL) {
            PyErr_NoMemory();
            goto exit;
        }
        p = buf;

        if (sign == 1) {
            *p++ = '-';
        }
        else if (always_add_sign) {
            *p++ = '+';
        }
        if (digits[0] == 'i' || digits[0] == 'I') {
            strncpy(p, float_strings[OFS_INF], 3);
            p += 3;

            if (type)
                *type = Py_DTST_INFINITE;
        }
        else if (digits[0] == 'n' || digits[0] == 'N') {
            strncpy(p, float_strings[OFS_NAN], 3);
            p += 3;

            if (type)
                *type = Py_DTST_NAN;
        }
        else {
            /* shouldn't get here: Gay's code should always return
               something starting with a digit, an 'I',  or 'N' */
            strncpy(p, "ERR", 3);
996
            /* p += 3; */
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
            assert(0);
        }
        goto exit;
    }

    /* The result must be finite (not inf or nan). */
    if (type)
        *type = Py_DTST_FINITE;


    /* We got digits back, format them.  We may need to pad 'digits'
       either on the left or right (or both) with extra zeros, so in
       general the resulting string has the form

         [<sign>]<zeros><digits><zeros>[<exponent>]

       where either of the <zeros> pieces could be empty, and there's a
       decimal point that could appear either in <digits> or in the
       leading or trailing <zeros>.

       Imagine an infinite 'virtual' string vdigits, consisting of the
       string 'digits' (starting at index 0) padded on both the left and
       right with infinite strings of zeros.  We want to output a slice

         vdigits[vdigits_start : vdigits_end]

       of this virtual string.  Thus if vdigits_start < 0 then we'll end
       up producing some leading zeros; if vdigits_end > digits_len there
       will be trailing zeros in the output.  The next section of code
       determines whether to use an exponent or not, figures out the
       position 'decpt' of the decimal point, and computes 'vdigits_start'
       and 'vdigits_end'. */
    vdigits_end = digits_len;
    switch (format_code) {
    case 'e':
        use_exp = 1;
        vdigits_end = precision;
        break;
    case 'f':
        vdigits_end = decpt + precision;
        break;
    case 'g':
        if (decpt <= -4 || decpt >
            (add_dot_0_if_integer ? precision-1 : precision))
            use_exp = 1;
        if (use_alt_formatting)
            vdigits_end = precision;
        break;
    case 'r':
        /* convert to exponential format at 1e16.  We used to convert
           at 1e17, but that gives odd-looking results for some values
           when a 16-digit 'shortest' repr is padded with bogus zeros.
           For example, repr(2e16+8) would give 20000000000000010.0;
           the true value is 20000000000000008.0. */
        if (decpt <= -4 || decpt > 16)
            use_exp = 1;
        break;
    default:
        PyErr_BadInternalCall();
        goto exit;
    }

    /* if using an exponent, reset decimal point position to 1 and adjust
       exponent accordingly.*/
    if (use_exp) {
        exp = decpt - 1;
        decpt = 1;
    }
    /* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start <
       decpt < vdigits_end if add_dot_0_if_integer and no exponent */
    vdigits_start = decpt <= 0 ? decpt-1 : 0;
    if (!use_exp && add_dot_0_if_integer)
        vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1;
    else
        vdigits_end = vdigits_end > decpt ? vdigits_end : decpt;

    /* double check inequalities */
    assert(vdigits_start <= 0 &&
           0 <= digits_len &&
           digits_len <= vdigits_end);
    /* decimal point should be in (vdigits_start, vdigits_end] */
    assert(vdigits_start < decpt && decpt <= vdigits_end);

    /* Compute an upper bound how much memory we need. This might be a few
       chars too long, but no big deal. */
    bufsize =
        /* sign, decimal point and trailing 0 byte */
        3 +

        /* total digit count (including zero padding on both sides) */
        (vdigits_end - vdigits_start) +

        /* exponent "e+100", max 3 numerical digits */
        (use_exp ? 5 : 0);

    /* Now allocate the memory and initialize p to point to the start of
       it. */
    buf = (char *)PyMem_Malloc(bufsize);
    if (buf == NULL) {
        PyErr_NoMemory();
        goto exit;
    }
    p = buf;

    /* Add a negative sign if negative, and a plus sign if non-negative
       and always_add_sign is true. */
    if (sign == 1)
        *p++ = '-';
    else if (always_add_sign)
        *p++ = '+';

    /* note that exactly one of the three 'if' conditions is true,
       so we include exactly one decimal point */
    /* Zero padding on left of digit string */
    if (decpt <= 0) {
        memset(p, '0', decpt-vdigits_start);
        p += decpt - vdigits_start;
        *p++ = '.';
        memset(p, '0', 0-decpt);
        p += 0-decpt;
    }
    else {
        memset(p, '0', 0-vdigits_start);
        p += 0 - vdigits_start;
    }

    /* Digits, with included decimal point */
    if (0 < decpt && decpt <= digits_len) {
        strncpy(p, digits, decpt-0);
        p += decpt-0;
        *p++ = '.';
        strncpy(p, digits+decpt, digits_len-decpt);
        p += digits_len-decpt;
    }
    else {
        strncpy(p, digits, digits_len);
        p += digits_len;
    }

    /* And zeros on the right */
    if (digits_len < decpt) {
        memset(p, '0', decpt-digits_len);
        p += decpt-digits_len;
        *p++ = '.';
        memset(p, '0', vdigits_end-decpt);
        p += vdigits_end-decpt;
    }
    else {
        memset(p, '0', vdigits_end-digits_len);
        p += vdigits_end-digits_len;
    }

    /* Delete a trailing decimal pt unless using alternative formatting. */
    if (p[-1] == '.' && !use_alt_formatting)
        p--;

    /* Now that we've done zero padding, add an exponent if needed. */
    if (use_exp) {
        *p++ = float_strings[OFS_E][0];
        exp_len = sprintf(p, "%+.02d", exp);
        p += exp_len;
    }
1159
  exit:
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    if (buf) {
        *p = '\0';
        /* It's too late if this fails, as we've already stepped on
           memory that isn't ours. But it's an okay debugging test. */
        assert(p-buf < bufsize);
    }
    if (digits)
        _Py_dg_freedtoa(digits);

    return buf;
1170 1171 1172 1173
}


PyAPI_FUNC(char *) PyOS_double_to_string(double val,
1174 1175 1176 1177
                                         char format_code,
                                         int precision,
                                         int flags,
                                         int *type)
1178
{
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    char **float_strings = lc_float_strings;
    int mode;

    /* Validate format_code, and map upper and lower case. Compute the
       mode and make any adjustments as needed. */
    switch (format_code) {
    /* exponent */
    case 'E':
        float_strings = uc_float_strings;
        format_code = 'e';
        /* Fall through. */
    case 'e':
        mode = 2;
        precision++;
        break;

    /* fixed */
    case 'F':
        float_strings = uc_float_strings;
        format_code = 'f';
        /* Fall through. */
    case 'f':
        mode = 3;
        break;

    /* general */
    case 'G':
        float_strings = uc_float_strings;
        format_code = 'g';
        /* Fall through. */
    case 'g':
        mode = 2;
        /* precision 0 makes no sense for 'g' format; interpret as 1 */
        if (precision == 0)
            precision = 1;
        break;

    /* repr format */
    case 'r':
        mode = 0;
        /* Supplied precision is unused, must be 0. */
        if (precision != 0) {
            PyErr_BadInternalCall();
            return NULL;
        }
        break;

    default:
        PyErr_BadInternalCall();
        return NULL;
    }

    return format_float_short(val, format_code, mode, precision,
                              flags & Py_DTSF_SIGN,
                              flags & Py_DTSF_ADD_DOT_0,
                              flags & Py_DTSF_ALT,
                              float_strings, type);
1236
}
1237
#endif /* ifdef PY_NO_SHORT_FLOAT_REPR */