pytime.c 26.6 KB
Newer Older
1
#include "Python.h"
2 3 4
#ifdef MS_WINDOWS
#include <windows.h>
#endif
5

6 7 8 9
#if defined(__APPLE__)
#include <mach/mach_time.h>   /* mach_absolute_time(), mach_timebase_info() */
#endif

10 11 12 13 14
#define _PyTime_check_mul_overflow(a, b) \
    (assert(b > 0), \
     (_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \
     || _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a))

15
/* To millisecond (10^-3) */
16
#define SEC_TO_MS 1000
17 18

/* To microseconds (10^-6) */
19
#define MS_TO_US 1000
20 21 22
#define SEC_TO_US (SEC_TO_MS * MS_TO_US)

/* To nanoseconds (10^-9) */
23
#define US_TO_NS 1000
24 25
#define MS_TO_NS (MS_TO_US * US_TO_NS)
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)
26

27 28 29 30
/* Conversion from nanoseconds */
#define NS_TO_MS (1000 * 1000)
#define NS_TO_US (1000)

31 32 33 34 35 36 37
static void
error_time_t_overflow(void)
{
    PyErr_SetString(PyExc_OverflowError,
                    "timestamp out of range for platform time_t");
}

38 39 40 41 42 43 44
static void
_PyTime_overflow(void)
{
    PyErr_SetString(PyExc_OverflowError,
                    "timestamp too large to convert to C _PyTime_t");
}

45

46
_PyTime_t
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
_PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div)
{
    _PyTime_t intpart, remaining;
    /* Compute (ticks * mul / div) in two parts to prevent integer overflow:
       compute integer part, and then the remaining part.

       (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div

       The caller must ensure that "(div - 1) * mul" cannot overflow. */
    intpart = ticks / div;
    ticks %= div;
    remaining = ticks * mul;
    remaining /= div;
    return intpart * mul + remaining;
}


64
time_t
65 66
_PyLong_AsTime_t(PyObject *obj)
{
67
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
68
    long long val;
69 70 71
    val = PyLong_AsLongLong(obj);
#else
    long val;
72
    Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
73 74 75
    val = PyLong_AsLong(obj);
#endif
    if (val == -1 && PyErr_Occurred()) {
76
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
77
            error_time_t_overflow();
78
        }
79 80 81 82 83
        return -1;
    }
    return (time_t)val;
}

84 85 86
PyObject *
_PyLong_FromTime_t(time_t t)
{
87
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
88
    return PyLong_FromLongLong((long long)t);
89
#else
90
    Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
91 92 93 94
    return PyLong_FromLong((long)t);
#endif
}

95 96 97
/* Round to nearest with ties going to nearest even integer
   (_PyTime_ROUND_HALF_EVEN) */
static double
98
_PyTime_RoundHalfEven(double x)
99
{
100
    double rounded = round(x);
101
    if (fabs(x-rounded) == 0.5) {
102 103
        /* halfway case: round to even */
        rounded = 2.0*round(x/2.0);
104
    }
105
    return rounded;
106 107
}

108 109 110
static double
_PyTime_Round(double x, _PyTime_round_t round)
{
111 112 113 114
    /* volatile avoids optimization changing how numbers are rounded */
    volatile double d;

    d = x;
115
    if (round == _PyTime_ROUND_HALF_EVEN) {
116
        d = _PyTime_RoundHalfEven(d);
117 118
    }
    else if (round == _PyTime_ROUND_CEILING) {
119
        d = ceil(d);
120
    }
121
    else if (round == _PyTime_ROUND_FLOOR) {
122
        d = floor(d);
123
    }
124 125 126 127
    else {
        assert(round == _PyTime_ROUND_UP);
        d = (d >= 0.0) ? ceil(d) : floor(d);
    }
128
    return d;
129 130
}

131
static int
Victor Stinner's avatar
Victor Stinner committed
132
_PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator,
133
                            long idenominator, _PyTime_round_t round)
134
{
135
    double denominator = (double)idenominator;
136
    double intpart;
137
    /* volatile avoids optimization changing how numbers are rounded */
Victor Stinner's avatar
Victor Stinner committed
138 139 140
    volatile double floatpart;

    floatpart = modf(d, &intpart);
141

Victor Stinner's avatar
Victor Stinner committed
142
    floatpart *= denominator;
143
    floatpart = _PyTime_Round(floatpart, round);
144 145 146
    if (floatpart >= denominator) {
        floatpart -= denominator;
        intpart += 1.0;
Victor Stinner's avatar
Victor Stinner committed
147
    }
148 149 150 151
    else if (floatpart < 0) {
        floatpart += denominator;
        intpart -= 1.0;
    }
152
    assert(0.0 <= floatpart && floatpart < denominator);
153

154
    if (!_Py_InIntegralTypeRange(time_t, intpart)) {
Victor Stinner's avatar
Victor Stinner committed
155 156 157
        error_time_t_overflow();
        return -1;
    }
158 159
    *sec = (time_t)intpart;
    *numerator = (long)floatpart;
160
    assert(0 <= *numerator && *numerator < idenominator);
Victor Stinner's avatar
Victor Stinner committed
161 162
    return 0;
}
163

Victor Stinner's avatar
Victor Stinner committed
164 165
static int
_PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator,
166
                            long denominator, _PyTime_round_t round)
Victor Stinner's avatar
Victor Stinner committed
167
{
168
    assert(denominator >= 1);
169

Victor Stinner's avatar
Victor Stinner committed
170 171
    if (PyFloat_Check(obj)) {
        double d = PyFloat_AsDouble(obj);
172 173 174 175 176
        if (Py_IS_NAN(d)) {
            *numerator = 0;
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
            return -1;
        }
Victor Stinner's avatar
Victor Stinner committed
177 178
        return _PyTime_DoubleToDenominator(d, sec, numerator,
                                           denominator, round);
179 180
    }
    else {
181
        *sec = _PyLong_AsTime_t(obj);
182
        *numerator = 0;
183
        if (*sec == (time_t)-1 && PyErr_Occurred()) {
184
            return -1;
185
        }
186 187 188 189 190
        return 0;
    }
}

int
191
_PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
192 193
{
    if (PyFloat_Check(obj)) {
194
        double intpart;
195
        /* volatile avoids optimization changing how numbers are rounded */
196
        volatile double d;
197 198

        d = PyFloat_AsDouble(obj);
199 200 201 202 203
        if (Py_IS_NAN(d)) {
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
            return -1;
        }

204
        d = _PyTime_Round(d, round);
205 206
        (void)modf(d, &intpart);

207
        if (!_Py_InIntegralTypeRange(time_t, intpart)) {
208 209
            error_time_t_overflow();
            return -1;
210
        }
211
        *sec = (time_t)intpart;
212 213
        return 0;
    }
214 215
    else {
        *sec = _PyLong_AsTime_t(obj);
216
        if (*sec == (time_t)-1 && PyErr_Occurred()) {
217
            return -1;
218
        }
219 220 221
        return 0;
    }
}
222

223
int
224 225
_PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
                         _PyTime_round_t round)
226
{
227
    return _PyTime_ObjectToDenominator(obj, sec, nsec, SEC_TO_NS, round);
228 229 230
}

int
231 232
_PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
                        _PyTime_round_t round)
233
{
234
    return _PyTime_ObjectToDenominator(obj, sec, usec, SEC_TO_US, round);
235 236
}

237 238 239 240 241 242 243
_PyTime_t
_PyTime_FromSeconds(int seconds)
{
    _PyTime_t t;
    /* ensure that integer overflow cannot happen, int type should have 32
       bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30
       bits). */
244 245
    Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS);
    Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS);
246 247

    t = (_PyTime_t)seconds;
248 249 250
    assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS)
           || (t < 0 && t >= _PyTime_MIN / SEC_TO_NS));
    t *= SEC_TO_NS;
251 252 253
    return t;
}

254
_PyTime_t
255 256 257 258 259 260 261 262
_PyTime_FromNanoseconds(_PyTime_t ns)
{
    /* _PyTime_t already uses nanosecond resolution, no conversion needed */
    return ns;
}

int
_PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj)
263
{
264
    long long nsec;
265
    _PyTime_t t;
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

    if (!PyLong_Check(obj)) {
        PyErr_Format(PyExc_TypeError, "expect int, got %s",
                     Py_TYPE(obj)->tp_name);
        return -1;
    }

    Py_BUILD_ASSERT(sizeof(long long) == sizeof(_PyTime_t));
    nsec = PyLong_AsLongLong(obj);
    if (nsec == -1 && PyErr_Occurred()) {
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
            _PyTime_overflow();
        }
        return -1;
    }

    /* _PyTime_t already uses nanosecond resolution, no conversion needed */
    t = (_PyTime_t)nsec;
    *tp = t;
    return 0;
286 287
}

288
#ifdef HAVE_CLOCK_GETTIME
289
static int
290
pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise)
291
{
292
    _PyTime_t t, nsec;
293 294
    int res = 0;

295
    Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t));
296 297 298
    t = (_PyTime_t)ts->tv_sec;

    if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) {
299
        if (raise) {
300
            _PyTime_overflow();
301
        }
302
        res = -1;
303 304 305 306
        t = (t > 0) ? _PyTime_MAX : _PyTime_MIN;
    }
    else {
        t = t * SEC_TO_NS;
307 308
    }

309 310 311 312 313 314 315 316 317 318 319 320 321
    nsec = ts->tv_nsec;
    /* The following test is written for positive only nsec */
    assert(nsec >= 0);
    if (t > _PyTime_MAX - nsec) {
        if (raise) {
            _PyTime_overflow();
        }
        res = -1;
        t = _PyTime_MAX;
    }
    else {
        t += nsec;
    }
322 323

    *tp = t;
324
    return res;
325
}
326 327 328 329 330 331 332 333 334

int
_PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts)
{
    return pytime_fromtimespec(tp, ts, 1);
}
#endif

#if !defined(MS_WINDOWS)
335
static int
336
pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise)
337
{
338
    _PyTime_t t, usec;
339
    int res = 0;
340

341
    Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t));
342 343 344
    t = (_PyTime_t)tv->tv_sec;

    if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) {
345
        if (raise) {
346
            _PyTime_overflow();
347
        }
348
        res = -1;
349 350 351 352
        t = (t > 0) ? _PyTime_MAX : _PyTime_MIN;
    }
    else {
        t = t * SEC_TO_NS;
353 354
    }

355 356 357 358 359 360 361 362 363 364 365 366 367
    usec = (_PyTime_t)tv->tv_usec * US_TO_NS;
    /* The following test is written for positive only usec */
    assert(usec >= 0);
    if (t > _PyTime_MAX - usec) {
        if (raise) {
            _PyTime_overflow();
        }
        res = -1;
        t = _PyTime_MAX;
    }
    else {
        t += usec;
    }
368 369

    *tp = t;
370
    return res;
371
}
372 373 374 375 376 377

int
_PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv)
{
    return pytime_fromtimeval(tp, tv, 1);
}
378 379
#endif

Victor Stinner's avatar
Victor Stinner committed
380
static int
381 382
_PyTime_FromDouble(_PyTime_t *t, double value, _PyTime_round_t round,
                   long unit_to_ns)
Victor Stinner's avatar
Victor Stinner committed
383
{
384
    /* volatile avoids optimization changing how numbers are rounded */
385
    volatile double d;
Victor Stinner's avatar
Victor Stinner committed
386 387 388

    /* convert to a number of nanoseconds */
    d = value;
389 390
    d *= (double)unit_to_ns;
    d = _PyTime_Round(d, round);
Victor Stinner's avatar
Victor Stinner committed
391

392
    if (!_Py_InIntegralTypeRange(_PyTime_t, d)) {
Victor Stinner's avatar
Victor Stinner committed
393 394 395
        _PyTime_overflow();
        return -1;
    }
396
    *t = (_PyTime_t)d;
Victor Stinner's avatar
Victor Stinner committed
397 398 399
    return 0;
}

400 401
static int
_PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round,
402
                   long unit_to_ns)
403 404
{
    if (PyFloat_Check(obj)) {
Victor Stinner's avatar
Victor Stinner committed
405
        double d;
406
        d = PyFloat_AsDouble(obj);
407 408 409 410
        if (Py_IS_NAN(d)) {
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
            return -1;
        }
411
        return _PyTime_FromDouble(t, d, round, unit_to_ns);
412 413
    }
    else {
414 415
        long long sec;
        Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));
416 417

        sec = PyLong_AsLongLong(obj);
418
        if (sec == -1 && PyErr_Occurred()) {
419
            if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
420
                _PyTime_overflow();
421
            }
422 423
            return -1;
        }
424

425
        if (_PyTime_check_mul_overflow(sec, unit_to_ns)) {
426 427 428
            _PyTime_overflow();
            return -1;
        }
429
        *t = sec * unit_to_ns;
430 431 432 433
        return 0;
    }
}

434 435 436 437 438 439 440 441 442 443 444 445
int
_PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
    return _PyTime_FromObject(t, obj, round, SEC_TO_NS);
}

int
_PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
    return _PyTime_FromObject(t, obj, round, MS_TO_NS);
}

446 447 448
double
_PyTime_AsSecondsDouble(_PyTime_t t)
{
449 450 451
    /* volatile avoids optimization changing how numbers are rounded */
    volatile double d;

452 453 454 455 456
    if (t % SEC_TO_NS == 0) {
        _PyTime_t secs;
        /* Divide using integers to avoid rounding issues on the integer part.
           1e-9 cannot be stored exactly in IEEE 64-bit. */
        secs = t / SEC_TO_NS;
457
        d = (double)secs;
458 459
    }
    else {
460 461
        d = (double)t;
        d /= 1e9;
462
    }
463
    return d;
464 465
}

466 467 468
PyObject *
_PyTime_AsNanosecondsObject(_PyTime_t t)
{
469 470
    Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t));
    return PyLong_FromLongLong((long long)t);
471 472
}

473
static _PyTime_t
474 475
_PyTime_Divide(const _PyTime_t t, const _PyTime_t k,
               const _PyTime_round_t round)
476
{
477
    assert(k > 1);
478 479
    if (round == _PyTime_ROUND_HALF_EVEN) {
        _PyTime_t x, r, abs_r;
480 481
        x = t / k;
        r = t % k;
482 483
        abs_r = Py_ABS(r);
        if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) {
484
            if (t >= 0) {
485
                x++;
486 487
            }
            else {
488
                x--;
489
            }
490 491 492 493
        }
        return x;
    }
    else if (round == _PyTime_ROUND_CEILING) {
494
        if (t >= 0) {
495
            return (t + k - 1) / k;
496 497
        }
        else {
498
            return t / k;
499
        }
500
    }
501
    else if (round == _PyTime_ROUND_FLOOR){
502
        if (t >= 0) {
503
            return t / k;
504 505
        }
        else {
506
            return (t - (k - 1)) / k;
507
        }
508
    }
509 510 511 512 513 514 515 516 517
    else {
        assert(round == _PyTime_ROUND_UP);
        if (t >= 0) {
            return (t + k - 1) / k;
        }
        else {
            return (t - (k - 1)) / k;
        }
    }
518 519 520 521 522
}

_PyTime_t
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
{
523
    return _PyTime_Divide(t, NS_TO_MS, round);
524 525
}

526 527 528
_PyTime_t
_PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round)
{
529
    return _PyTime_Divide(t, NS_TO_US, round);
530 531
}

532
static int
533 534
_PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us,
                       _PyTime_round_t round)
535 536
{
    _PyTime_t secs, ns;
537
    int usec;
538
    int res = 0;
539 540 541 542

    secs = t / SEC_TO_NS;
    ns = t % SEC_TO_NS;

543 544 545
    usec = (int)_PyTime_Divide(ns, US_TO_NS, round);
    if (usec < 0) {
        usec += SEC_TO_US;
546
        if (secs != _PyTime_MIN) {
547
            secs -= 1;
548 549
        }
        else {
550
            res = -1;
551
        }
552
    }
553
    else if (usec >= SEC_TO_US) {
554
        usec -= SEC_TO_US;
555
        if (secs != _PyTime_MAX) {
556
            secs += 1;
557 558
        }
        else {
559
            res = -1;
560
        }
561
    }
562 563
    assert(0 <= usec && usec < SEC_TO_US);

564 565 566
    *p_secs = secs;
    *p_us = usec;

567
    return res;
568 569
}

570 571 572 573
static int
_PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv,
                             _PyTime_round_t round, int raise)
{
574
    _PyTime_t secs, secs2;
575 576 577 578 579 580 581 582 583 584 585 586
    int us;
    int res;

    res = _PyTime_AsTimeval_impl(t, &secs, &us, round);

#ifdef MS_WINDOWS
    tv->tv_sec = (long)secs;
#else
    tv->tv_sec = secs;
#endif
    tv->tv_usec = us;

587 588
    secs2 = (_PyTime_t)tv->tv_sec;
    if (res < 0 || secs2 != secs) {
589
        if (raise) {
590
            error_time_t_overflow();
591
        }
592 593 594 595 596
        return -1;
    }
    return 0;
}

597 598 599
int
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
600
    return _PyTime_AsTimevalStruct_impl(t, tv, round, 1);
601 602 603 604 605
}

int
_PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
606
    return _PyTime_AsTimevalStruct_impl(t, tv, round, 0);
607 608
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
int
_PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us,
                        _PyTime_round_t round)
{
    _PyTime_t secs;
    int res;

    res = _PyTime_AsTimeval_impl(t, &secs, us, round);

    *p_secs = secs;

    if (res < 0 || (_PyTime_t)*p_secs != secs) {
        error_time_t_overflow();
        return -1;
    }
    return 0;
}


628
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE)
629 630 631
int
_PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
{
632 633 634
    _PyTime_t secs, nsec;

    secs = t / SEC_TO_NS;
635 636 637
    nsec = t % SEC_TO_NS;
    if (nsec < 0) {
        nsec += SEC_TO_NS;
638
        secs -= 1;
639
    }
640
    ts->tv_sec = (time_t)secs;
641 642 643
    assert(0 <= nsec && nsec < SEC_TO_NS);
    ts->tv_nsec = nsec;

644
    if ((_PyTime_t)ts->tv_sec != secs) {
645
        error_time_t_overflow();
646 647 648 649 650 651
        return -1;
    }
    return 0;
}
#endif

652
static int
653
pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
{
#ifdef MS_WINDOWS
    FILETIME system_time;
    ULARGE_INTEGER large;

    assert(info == NULL || raise);

    GetSystemTimeAsFileTime(&system_time);
    large.u.LowPart = system_time.dwLowDateTime;
    large.u.HighPart = system_time.dwHighDateTime;
    /* 11,644,473,600,000,000,000: number of nanoseconds between
       the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
       days). */
    *tp = large.QuadPart * 100 - 11644473600000000000;
    if (info) {
        DWORD timeAdjustment, timeIncrement;
        BOOL isTimeAdjustmentDisabled, ok;

        info->implementation = "GetSystemTimeAsFileTime()";
        info->monotonic = 0;
        ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
                                     &isTimeAdjustmentDisabled);
        if (!ok) {
            PyErr_SetFromWindowsErr(0);
            return -1;
        }
        info->resolution = timeIncrement * 1e-7;
        info->adjustable = 1;
    }

#else   /* MS_WINDOWS */
    int err;
#ifdef HAVE_CLOCK_GETTIME
    struct timespec ts;
#else
    struct timeval tv;
#endif

    assert(info == NULL || raise);

#ifdef HAVE_CLOCK_GETTIME
    err = clock_gettime(CLOCK_REALTIME, &ts);
    if (err) {
697
        if (raise) {
698
            PyErr_SetFromErrno(PyExc_OSError);
699
        }
700 701
        return -1;
    }
702
    if (pytime_fromtimespec(tp, &ts, raise) < 0) {
703
        return -1;
704
    }
705 706 707 708 709 710

    if (info) {
        struct timespec res;
        info->implementation = "clock_gettime(CLOCK_REALTIME)";
        info->monotonic = 0;
        info->adjustable = 1;
711
        if (clock_getres(CLOCK_REALTIME, &res) == 0) {
712
            info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
713 714
        }
        else {
715
            info->resolution = 1e-9;
716
        }
717 718 719 720 721 722 723 724 725 726
    }
#else   /* HAVE_CLOCK_GETTIME */

     /* test gettimeofday() */
#ifdef GETTIMEOFDAY_NO_TZ
    err = gettimeofday(&tv);
#else
    err = gettimeofday(&tv, (struct timezone *)NULL);
#endif
    if (err) {
727
        if (raise) {
728
            PyErr_SetFromErrno(PyExc_OSError);
729
        }
730 731
        return -1;
    }
732
    if (pytime_fromtimeval(tp, &tv, raise) < 0) {
733
        return -1;
734
    }
735 736 737 738 739 740 741 742 743 744 745 746

    if (info) {
        info->implementation = "gettimeofday()";
        info->resolution = 1e-6;
        info->monotonic = 0;
        info->adjustable = 1;
    }
#endif   /* !HAVE_CLOCK_GETTIME */
#endif   /* !MS_WINDOWS */
    return 0;
}

747 748 749 750
_PyTime_t
_PyTime_GetSystemClock(void)
{
    _PyTime_t t;
751
    if (pygettimeofday(&t, NULL, 0) < 0) {
752
        /* should not happen, _PyTime_Init() checked the clock at startup */
Barry Warsaw's avatar
Barry Warsaw committed
753
        Py_UNREACHABLE();
754 755 756 757
    }
    return t;
}

758 759 760
int
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
{
761
    return pygettimeofday(t, info, 1);
762 763
}

764
static int
765
pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
766 767
{
#if defined(MS_WINDOWS)
768 769
    ULONGLONG ticks;
    _PyTime_t t;
770 771 772

    assert(info == NULL || raise);

773
    ticks = GetTickCount64();
774
    Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t));
775
    t = (_PyTime_t)ticks;
776

777
    if (_PyTime_check_mul_overflow(t, MS_TO_NS)) {
778 779 780 781 782
        if (raise) {
            _PyTime_overflow();
            return -1;
        }
        /* Hello, time traveler! */
Barry Warsaw's avatar
Barry Warsaw committed
783
        Py_UNREACHABLE();
784
    }
785
    *tp = t * MS_TO_NS;
786 787 788 789

    if (info) {
        DWORD timeAdjustment, timeIncrement;
        BOOL isTimeAdjustmentDisabled, ok;
790
        info->implementation = "GetTickCount64()";
791 792 793 794 795 796 797 798 799 800 801 802 803
        info->monotonic = 1;
        ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
                                     &isTimeAdjustmentDisabled);
        if (!ok) {
            PyErr_SetFromWindowsErr(0);
            return -1;
        }
        info->resolution = timeIncrement * 1e-7;
        info->adjustable = 0;
    }

#elif defined(__APPLE__)
    static mach_timebase_info_data_t timebase;
804 805
    static uint64_t t0 = 0;
    uint64_t ticks;
806 807 808 809 810 811

    if (timebase.denom == 0) {
        /* According to the Technical Q&A QA1398, mach_timebase_info() cannot
           fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
        (void)mach_timebase_info(&timebase);

812 813 814 815 816 817 818 819
        /* Sanity check: should never occur in practice */
        if (timebase.numer < 1 || timebase.denom < 1) {
            PyErr_SetString(PyExc_RuntimeError,
                            "invalid mach_timebase_info");
            return -1;
        }

        /* Check that timebase.numer and timebase.denom can be casted to
820
           _PyTime_t. In practice, timebase uses uint32_t, so casting cannot
821 822 823 824
           overflow. At the end, only make sure that the type is uint32_t
           (_PyTime_t is 64-bit long). */
        assert(sizeof(timebase.numer) < sizeof(_PyTime_t));
        assert(sizeof(timebase.denom) < sizeof(_PyTime_t));
825

826 827
        /* Make sure that (ticks * timebase.numer) cannot overflow in
           _PyTime_MulDiv(), with ticks < timebase.denom.
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
           Known time bases:

           * always (1, 1) on Intel
           * (1000000000, 33333335) or (1000000000, 25000000) on PowerPC

           None of these time bases can overflow with 64-bit _PyTime_t, but
           check for overflow, just in case. */
        if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) {
            PyErr_SetString(PyExc_OverflowError,
                            "mach_timebase_info is too large");
            return -1;
        }

        t0 = mach_absolute_time();
    }
844 845 846

    if (info) {
        info->implementation = "mach_absolute_time()";
847
        info->resolution = (double)timebase.numer / (double)timebase.denom * 1e-9;
848 849 850 851
        info->monotonic = 1;
        info->adjustable = 0;
    }

852 853 854 855 856 857 858 859
    ticks = mach_absolute_time();
    /* Use a "time zero" to reduce precision loss when converting time
       to floatting point number, as in time.monotonic(). */
    ticks -= t0;
    *tp = _PyTime_MulDiv(ticks,
                         (_PyTime_t)timebase.numer,
                         (_PyTime_t)timebase.denom);

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
#elif defined(__hpux)
    hrtime_t time;

    time = gethrtime();
    if (time == -1) {
        if (raise) {
            PyErr_SetFromErrno(PyExc_OSError);
        }
        return -1;
    }

    *tp = time;

    if (info) {
        info->implementation = "gethrtime()";
        info->resolution = 1e-9;
        info->monotonic = 1;
        info->adjustable = 0;
    }

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
#else
    struct timespec ts;
#ifdef CLOCK_HIGHRES
    const clockid_t clk_id = CLOCK_HIGHRES;
    const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
#else
    const clockid_t clk_id = CLOCK_MONOTONIC;
    const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
#endif

    assert(info == NULL || raise);

    if (clock_gettime(clk_id, &ts) != 0) {
        if (raise) {
            PyErr_SetFromErrno(PyExc_OSError);
            return -1;
        }
        return -1;
    }

    if (info) {
        struct timespec res;
        info->monotonic = 1;
        info->implementation = implementation;
        info->adjustable = 0;
        if (clock_getres(clk_id, &res) != 0) {
            PyErr_SetFromErrno(PyExc_OSError);
            return -1;
        }
        info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
    }
911
    if (pytime_fromtimespec(tp, &ts, raise) < 0) {
912
        return -1;
913
    }
914 915 916 917 918 919 920 921
#endif
    return 0;
}

_PyTime_t
_PyTime_GetMonotonicClock(void)
{
    _PyTime_t t;
922
    if (pymonotonic(&t, NULL, 0) < 0) {
923 924
        /* should not happen, _PyTime_Init() checked that monotonic clock at
           startup */
Barry Warsaw's avatar
Barry Warsaw committed
925
        Py_UNREACHABLE();
926 927 928 929
    }
    return t;
}

930 931 932
int
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
933
    return pymonotonic(tp, info, 1);
934 935
}

936 937

#ifdef MS_WINDOWS
938
static int
939
win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info)
940
{
941 942
    static LONGLONG frequency = 0;
    static LONGLONG t0 = 0;
943
    LARGE_INTEGER now;
944 945
    LONGLONG ticksll;
    _PyTime_t ticks;
946

947
    if (frequency == 0) {
948
        LARGE_INTEGER freq;
949
        if (!QueryPerformanceFrequency(&freq)) {
950 951 952
            PyErr_SetFromWindowsErr(0);
            return -1;
        }
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
        frequency = freq.QuadPart;

        /* Sanity check: should never occur in practice */
        if (frequency < 1) {
            PyErr_SetString(PyExc_RuntimeError,
                            "invalid QueryPerformanceFrequency");
            return -1;
        }

        /* Check that frequency can be casted to _PyTime_t.

           Make also sure that (ticks * SEC_TO_NS) cannot overflow in
           _PyTime_MulDiv(), with ticks < frequency.

           Known QueryPerformanceFrequency() values:

           * 10,000,000 (10 MHz): 100 ns resolution
           * 3,579,545 Hz (3.6 MHz): 279 ns resolution

           None of these frequencies can overflow with 64-bit _PyTime_t, but
           check for overflow, just in case. */
        if (frequency > _PyTime_MAX
            || frequency > (LONGLONG)_PyTime_MAX / (LONGLONG)SEC_TO_NS) {
            PyErr_SetString(PyExc_OverflowError,
                            "QueryPerformanceFrequency is too large");
            return -1;
        }

        QueryPerformanceCounter(&now);
        t0 = now.QuadPart;
983
    }
984

985 986
    if (info) {
        info->implementation = "QueryPerformanceCounter()";
987
        info->resolution = 1.0 / (double)frequency;
988 989 990 991
        info->monotonic = 1;
        info->adjustable = 0;
    }

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    QueryPerformanceCounter(&now);
    ticksll = now.QuadPart;

    /* Use a "time zero" to reduce precision loss when converting time
       to floatting point number, as in time.perf_counter(). */
    ticksll -= t0;

    /* Make sure that casting LONGLONG to _PyTime_t cannot overflow,
       both types are signed */
    Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks));
    ticks = (_PyTime_t)ticksll;

    *tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency);
1005
    return 0;
1006 1007 1008 1009 1010
}
#endif


int
1011
_PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
1012 1013
{
#ifdef MS_WINDOWS
1014
    return win_perf_counter(t, info);
1015
#else
1016
    return _PyTime_GetMonotonicClockWithInfo(t, info);
1017 1018 1019 1020
#endif
}


1021 1022
_PyTime_t
_PyTime_GetPerfCounter(void)
1023
{
1024 1025
    _PyTime_t t;
    if (_PyTime_GetPerfCounterWithInfo(&t, NULL)) {
1026 1027 1028 1029
        Py_UNREACHABLE();
    }
    return t;
}
1030

1031

1032 1033 1034
int
_PyTime_Init(void)
{
1035 1036 1037
    /* check that time.time(), time.monotonic() and time.perf_counter() clocks
       are working properly to not have to check for exceptions at runtime. If
       a clock works once, it cannot fail in next calls. */
1038 1039
    _PyTime_t t;
    if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0) {
1040
        return -1;
1041 1042 1043 1044
    }
    if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0) {
        return -1;
    }
1045
    if (_PyTime_GetPerfCounterWithInfo(&t, NULL) < 0) {
1046 1047
        return -1;
    }
1048
    return 0;
1049
}
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

int
_PyTime_localtime(time_t t, struct tm *tm)
{
#ifdef MS_WINDOWS
    int error;

    error = localtime_s(tm, &t);
    if (error != 0) {
        errno = error;
        PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    return 0;
#else /* !MS_WINDOWS */
1065

1066
#ifdef _AIX
1067 1068 1069
    /* bpo-34373: AIX does not return NULL if t is too small or too large */
    if (t < -2145916800 /* 1902-01-01 */
       || t > 2145916800 /* 2038-01-01 */) {
1070 1071
        errno = EINVAL;
        PyErr_SetString(PyExc_OverflowError,
1072
                        "localtime argument out of range");
1073 1074 1075
        return -1;
    }
#endif
1076 1077

    errno = 0;
1078
    if (localtime_r(&t, tm) == NULL) {
1079
        if (errno == 0) {
1080
            errno = EINVAL;
1081
        }
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    return 0;
#endif /* MS_WINDOWS */
}

int
_PyTime_gmtime(time_t t, struct tm *tm)
{
#ifdef MS_WINDOWS
    int error;

    error = gmtime_s(tm, &t);
    if (error != 0) {
        errno = error;
        PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    return 0;
#else /* !MS_WINDOWS */
    if (gmtime_r(&t, tm) == NULL) {
#ifdef EINVAL
1105
        if (errno == 0) {
1106
            errno = EINVAL;
1107
        }
1108 1109 1110 1111 1112 1113 1114
#endif
        PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    return 0;
#endif /* MS_WINDOWS */
}