ctypes.rst 79.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

:mod:`ctypes` --- A foreign function library for Python.
========================================================

.. module:: ctypes
   :synopsis: A foreign function library for Python.
.. moduleauthor:: Thomas Heller <theller@python.net>


``ctypes`` is a foreign function library for Python.  It provides C compatible
data types, and allows calling functions in dlls/shared libraries.  It can be
used to wrap these libraries in pure Python.


.. _ctypes-ctypes-tutorial:

ctypes tutorial
---------------

Note: The code samples in this tutorial use ``doctest`` to make sure that they
actually work.  Since some code samples behave differently under Linux, Windows,
or Mac OS X, they contain doctest directives in comments.

Note: Some code sample references the ctypes :class:`c_int` type. This type is
an alias to the :class:`c_long` type on 32-bit systems.  So, you should not be
confused if :class:`c_long` is printed if you would expect :class:`c_int` ---
they are actually the same type.


.. _ctypes-loading-dynamic-link-libraries:

Loading dynamic link libraries
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``ctypes`` exports the *cdll*, and on Windows also *windll* and *oledll* objects
to load dynamic link libraries.

You load libraries by accessing them as attributes of these objects. *cdll*
loads libraries which export functions using the standard ``cdecl`` calling
convention, while *windll* libraries call functions using the ``stdcall``
calling convention. *oledll* also uses the ``stdcall`` calling convention, and
assumes the functions return a Windows :class:`HRESULT` error code. The error
code is used to automatically raise :class:`WindowsError` Python exceptions when
the function call fails.

Here are some examples for Windows. Note that ``msvcrt`` is the MS standard C
library containing most standard C functions, and uses the cdecl calling
convention::

   >>> from ctypes import *
51
   >>> print(windll.kernel32) # doctest: +WINDOWS
52
   <WinDLL 'kernel32', handle ... at ...>
53
   >>> print(cdll.msvcrt) # doctest: +WINDOWS
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
   <CDLL 'msvcrt', handle ... at ...>
   >>> libc = cdll.msvcrt # doctest: +WINDOWS
   >>>

Windows appends the usual '.dll' file suffix automatically.

On Linux, it is required to specify the filename *including* the extension to
load a library, so attribute access does not work. Either the
:meth:`LoadLibrary` method of the dll loaders should be used, or you should load
the library by creating an instance of CDLL by calling the constructor::

   >>> cdll.LoadLibrary("libc.so.6") # doctest: +LINUX
   <CDLL 'libc.so.6', handle ... at ...>
   >>> libc = CDLL("libc.so.6")     # doctest: +LINUX
   >>> libc                         # doctest: +LINUX
   <CDLL 'libc.so.6', handle ... at ...>
   >>>

.. % XXX Add section for Mac OS X.


.. _ctypes-accessing-functions-from-loaded-dlls:

Accessing functions from loaded dlls
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Functions are accessed as attributes of dll objects::

   >>> from ctypes import *
   >>> libc.printf
   <_FuncPtr object at 0x...>
85
   >>> print(windll.kernel32.GetModuleHandleA) # doctest: +WINDOWS
86
   <_FuncPtr object at 0x...>
87
   >>> print(windll.kernel32.MyOwnFunction) # doctest: +WINDOWS
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
     File "ctypes.py", line 239, in __getattr__
       func = _StdcallFuncPtr(name, self)
   AttributeError: function 'MyOwnFunction' not found
   >>>

Note that win32 system dlls like ``kernel32`` and ``user32`` often export ANSI
as well as UNICODE versions of a function. The UNICODE version is exported with
an ``W`` appended to the name, while the ANSI version is exported with an ``A``
appended to the name. The win32 ``GetModuleHandle`` function, which returns a
*module handle* for a given module name, has the following C prototype, and a
macro is used to expose one of them as ``GetModuleHandle`` depending on whether
UNICODE is defined or not::

   /* ANSI version */
   HMODULE GetModuleHandleA(LPCSTR lpModuleName);
   /* UNICODE version */
   HMODULE GetModuleHandleW(LPCWSTR lpModuleName);

*windll* does not try to select one of them by magic, you must access the
version you need by specifying ``GetModuleHandleA`` or ``GetModuleHandleW``
110
explicitly, and then call it with normal strings or unicode strings
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
respectively.

Sometimes, dlls export functions with names which aren't valid Python
identifiers, like ``"??2@YAPAXI@Z"``. In this case you have to use ``getattr``
to retrieve the function::

   >>> getattr(cdll.msvcrt, "??2@YAPAXI@Z") # doctest: +WINDOWS
   <_FuncPtr object at 0x...>
   >>>

On Windows, some dlls export functions not by name but by ordinal. These
functions can be accessed by indexing the dll object with the ordinal number::

   >>> cdll.kernel32[1] # doctest: +WINDOWS
   <_FuncPtr object at 0x...>
   >>> cdll.kernel32[0] # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
     File "ctypes.py", line 310, in __getitem__
       func = _StdcallFuncPtr(name, self)
   AttributeError: function ordinal 0 not found
   >>>


.. _ctypes-calling-functions:

Calling functions
^^^^^^^^^^^^^^^^^

You can call these functions like any other Python callable. This example uses
the ``time()`` function, which returns system time in seconds since the Unix
epoch, and the ``GetModuleHandleA()`` function, which returns a win32 module
handle.

This example calls both functions with a NULL pointer (``None`` should be used
as the NULL pointer)::

148
   >>> print(libc.time(None)) # doctest: +SKIP
149
   1150640792
150
   >>> print(hex(windll.kernel32.GetModuleHandleA(None))) # doctest: +WINDOWS
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
   0x1d000000
   >>>

``ctypes`` tries to protect you from calling functions with the wrong number of
arguments or the wrong calling convention.  Unfortunately this only works on
Windows.  It does this by examining the stack after the function returns, so
although an error is raised the function *has* been called::

   >>> windll.kernel32.GetModuleHandleA() # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: Procedure probably called with not enough arguments (4 bytes missing)
   >>> windll.kernel32.GetModuleHandleA(0, 0) # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: Procedure probably called with too many arguments (4 bytes in excess)
   >>>

The same exception is raised when you call an ``stdcall`` function with the
``cdecl`` calling convention, or vice versa::

   >>> cdll.kernel32.GetModuleHandleA(None) # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: Procedure probably called with not enough arguments (4 bytes missing)
   >>>

   >>> windll.msvcrt.printf("spam") # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: Procedure probably called with too many arguments (4 bytes in excess)
   >>>

To find out the correct calling convention you have to look into the C header
file or the documentation for the function you want to call.

On Windows, ``ctypes`` uses win32 structured exception handling to prevent
crashes from general protection faults when functions are called with invalid
argument values::

   >>> windll.kernel32.GetModuleHandleA(32) # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   WindowsError: exception: access violation reading 0x00000020
   >>>

There are, however, enough ways to crash Python with ``ctypes``, so you should
be careful anyway.

200
``None``, integers, byte strings and unicode strings are the only native
201 202 203
Python objects that can directly be used as parameters in these function calls.
``None`` is passed as a C ``NULL`` pointer, byte strings and unicode strings are
passed as pointer to the memory block that contains their data (``char *`` or
204
``wchar_t *``).  Python integers are passed as the platforms
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
default C ``int`` type, their value is masked to fit into the C type.

Before we move on calling functions with other parameter types, we have to learn
more about ``ctypes`` data types.


.. _ctypes-fundamental-data-types:

Fundamental data types
^^^^^^^^^^^^^^^^^^^^^^

``ctypes`` defines a number of primitive C compatible data types :

   +----------------------+--------------------------------+----------------------------+
   | ctypes type          | C type                         | Python type                |
   +======================+================================+============================+
   | :class:`c_char`      | ``char``                       | 1-character string         |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_wchar`     | ``wchar_t``                    | 1-character unicode string |
   +----------------------+--------------------------------+----------------------------+
225
   | :class:`c_byte`      | ``char``                       | int                        |
226
   +----------------------+--------------------------------+----------------------------+
227
   | :class:`c_ubyte`     | ``unsigned char``              | int                        |
228
   +----------------------+--------------------------------+----------------------------+
229
   | :class:`c_short`     | ``short``                      | int                        |
230
   +----------------------+--------------------------------+----------------------------+
231
   | :class:`c_ushort`    | ``unsigned short``             | int                        |
232
   +----------------------+--------------------------------+----------------------------+
233
   | :class:`c_int`       | ``int``                        | int                        |
234
   +----------------------+--------------------------------+----------------------------+
235
   | :class:`c_uint`      | ``unsigned int``               | int                        |
236
   +----------------------+--------------------------------+----------------------------+
237
   | :class:`c_long`      | ``long``                       | int                        |
238
   +----------------------+--------------------------------+----------------------------+
239
   | :class:`c_ulong`     | ``unsigned long``              | int                        |
240
   +----------------------+--------------------------------+----------------------------+
241
   | :class:`c_longlong`  | ``__int64`` or ``long long``   | int                        |
242
   +----------------------+--------------------------------+----------------------------+
243
   | :class:`c_ulonglong` | ``unsigned __int64`` or        | int                        |
244 245 246 247 248 249
   |                      | ``unsigned long long``         |                            |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_float`     | ``float``                      | float                      |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_double`    | ``double``                     | float                      |
   +----------------------+--------------------------------+----------------------------+
250 251
   | :class:`c_longdouble`| ``long double``                | float                      |
   +----------------------+--------------------------------+----------------------------+
252 253 254 255
   | :class:`c_char_p`    | ``char *`` (NUL terminated)    | string or ``None``         |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_wchar_p`   | ``wchar_t *`` (NUL terminated) | unicode or ``None``        |
   +----------------------+--------------------------------+----------------------------+
256
   | :class:`c_void_p`    | ``void *``                     | int or ``None``            |
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
   +----------------------+--------------------------------+----------------------------+


All these types can be created by calling them with an optional initializer of
the correct type and value::

   >>> c_int()
   c_long(0)
   >>> c_char_p("Hello, World")
   c_char_p('Hello, World')
   >>> c_ushort(-3)
   c_ushort(65533)
   >>>

Since these types are mutable, their value can also be changed afterwards::

   >>> i = c_int(42)
274
   >>> print(i)
275
   c_long(42)
276
   >>> print(i.value)
277 278
   42
   >>> i.value = -99
279
   >>> print(i.value)
280 281 282 283 284 285 286 287 288 289
   -99
   >>>

Assigning a new value to instances of the pointer types :class:`c_char_p`,
:class:`c_wchar_p`, and :class:`c_void_p` changes the *memory location* they
point to, *not the contents* of the memory block (of course not, because Python
strings are immutable)::

   >>> s = "Hello, World"
   >>> c_s = c_char_p(s)
290
   >>> print(c_s)
291 292
   c_char_p('Hello, World')
   >>> c_s.value = "Hi, there"
293
   >>> print(c_s)
294
   c_char_p('Hi, there')
295
   >>> print(s)                 # first string is unchanged
296 297 298 299 300 301 302 303 304 305 306 307
   Hello, World
   >>>

You should be careful, however, not to pass them to functions expecting pointers
to mutable memory. If you need mutable memory blocks, ctypes has a
``create_string_buffer`` function which creates these in various ways.  The
current memory block contents can be accessed (or changed) with the ``raw``
property; if you want to access it as NUL terminated string, use the ``value``
property::

   >>> from ctypes import *
   >>> p = create_string_buffer(3)      # create a 3 byte buffer, initialized to NUL bytes
308
   >>> print(sizeof(p), repr(p.raw))
309 310
   3 '\x00\x00\x00'
   >>> p = create_string_buffer("Hello")      # create a buffer containing a NUL terminated string
311
   >>> print(sizeof(p), repr(p.raw))
312
   6 'Hello\x00'
313
   >>> print(repr(p.value))
314 315
   'Hello'
   >>> p = create_string_buffer("Hello", 10)  # create a 10 byte buffer
316
   >>> print(sizeof(p), repr(p.raw))
317 318
   10 'Hello\x00\x00\x00\x00\x00'
   >>> p.value = "Hi"      
319
   >>> print(sizeof(p), repr(p.raw))
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
   10 'Hi\x00lo\x00\x00\x00\x00\x00'
   >>>

The ``create_string_buffer`` function replaces the ``c_buffer`` function (which
is still available as an alias), as well as the ``c_string`` function from
earlier ctypes releases.  To create a mutable memory block containing unicode
characters of the C type ``wchar_t`` use the ``create_unicode_buffer`` function.


.. _ctypes-calling-functions-continued:

Calling functions, continued
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Note that printf prints to the real standard output channel, *not* to
``sys.stdout``, so these examples will only work at the console prompt, not from
within *IDLE* or *PythonWin*::

   >>> printf = libc.printf
   >>> printf("Hello, %s\n", "World!")
   Hello, World!
   14
   >>> printf("Hello, %S", u"World!")
   Hello, World!
   13
   >>> printf("%d bottles of beer\n", 42)
   42 bottles of beer
   19
   >>> printf("%f bottles of beer\n", 42.5)
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
   >>>

As has been mentioned before, all Python types except integers, strings, and
unicode strings have to be wrapped in their corresponding ``ctypes`` type, so
that they can be converted to the required C data type::

   >>> printf("An int %d, a double %f\n", 1234, c_double(3.14))
   Integer 1234, double 3.1400001049
   31
   >>>


.. _ctypes-calling-functions-with-own-custom-data-types:

Calling functions with your own custom data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

You can also customize ``ctypes`` argument conversion to allow instances of your
own classes be used as function arguments. ``ctypes`` looks for an
:attr:`_as_parameter_` attribute and uses this as the function argument. Of
course, it must be one of integer, string, or unicode::

   >>> class Bottles(object):
   ...     def __init__(self, number):
   ...         self._as_parameter_ = number
   ...
   >>> bottles = Bottles(42)
   >>> printf("%d bottles of beer\n", bottles)
   42 bottles of beer
   19
   >>>

If you don't want to store the instance's data in the :attr:`_as_parameter_`
instance variable, you could define a ``property`` which makes the data
386
available.
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448


.. _ctypes-specifying-required-argument-types:

Specifying the required argument types (function prototypes)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

It is possible to specify the required argument types of functions exported from
DLLs by setting the :attr:`argtypes` attribute.

:attr:`argtypes` must be a sequence of C data types (the ``printf`` function is
probably not a good example here, because it takes a variable number and
different types of parameters depending on the format string, on the other hand
this is quite handy to experiment with this feature)::

   >>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
   >>> printf("String '%s', Int %d, Double %f\n", "Hi", 10, 2.2)
   String 'Hi', Int 10, Double 2.200000
   37
   >>>

Specifying a format protects against incompatible argument types (just as a
prototype for a C function), and tries to convert the arguments to valid types::

   >>> printf("%d %d %d", 1, 2, 3)
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ArgumentError: argument 2: exceptions.TypeError: wrong type
   >>> printf("%s %d %f", "X", 2, 3)
   X 2 3.00000012
   12
   >>>

If you have defined your own classes which you pass to function calls, you have
to implement a :meth:`from_param` class method for them to be able to use them
in the :attr:`argtypes` sequence. The :meth:`from_param` class method receives
the Python object passed to the function call, it should do a typecheck or
whatever is needed to make sure this object is acceptable, and then return the
object itself, it's :attr:`_as_parameter_` attribute, or whatever you want to
pass as the C function argument in this case. Again, the result should be an
integer, string, unicode, a ``ctypes`` instance, or something having the
:attr:`_as_parameter_` attribute.


.. _ctypes-return-types:

Return types
^^^^^^^^^^^^

By default functions are assumed to return the C ``int`` type.  Other return
types can be specified by setting the :attr:`restype` attribute of the function
object.

Here is a more advanced example, it uses the ``strchr`` function, which expects
a string pointer and a char, and returns a pointer to a string::

   >>> strchr = libc.strchr
   >>> strchr("abcdef", ord("d")) # doctest: +SKIP
   8059983
   >>> strchr.restype = c_char_p # c_char_p is a pointer to a string
   >>> strchr("abcdef", ord("d"))
   'def'
449
   >>> print(strchr("abcdef", ord("x")))
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
   None
   >>>

If you want to avoid the ``ord("x")`` calls above, you can set the
:attr:`argtypes` attribute, and the second argument will be converted from a
single character Python string into a C char::

   >>> strchr.restype = c_char_p
   >>> strchr.argtypes = [c_char_p, c_char]
   >>> strchr("abcdef", "d")
   'def'
   >>> strchr("abcdef", "def")
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ArgumentError: argument 2: exceptions.TypeError: one character string expected
465
   >>> print(strchr("abcdef", "x"))
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
   None
   >>> strchr("abcdef", "d")
   'def'
   >>>

You can also use a callable Python object (a function or a class for example) as
the :attr:`restype` attribute, if the foreign function returns an integer.  The
callable will be called with the ``integer`` the C function returns, and the
result of this call will be used as the result of your function call. This is
useful to check for error return values and automatically raise an exception::

   >>> GetModuleHandle = windll.kernel32.GetModuleHandleA # doctest: +WINDOWS
   >>> def ValidHandle(value):
   ...     if value == 0:
   ...         raise WinError()
   ...     return value
   ...
   >>>
   >>> GetModuleHandle.restype = ValidHandle # doctest: +WINDOWS
   >>> GetModuleHandle(None) # doctest: +WINDOWS
   486539264
   >>> GetModuleHandle("something silly") # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
     File "<stdin>", line 3, in ValidHandle
   WindowsError: [Errno 126] The specified module could not be found.
   >>>

``WinError`` is a function which will call Windows ``FormatMessage()`` api to
get the string representation of an error code, and *returns* an exception.
``WinError`` takes an optional error code parameter, if no one is used, it calls
:func:`GetLastError` to retrieve it.

Please note that a much more powerful error checking mechanism is available
through the :attr:`errcheck` attribute; see the reference manual for details.


.. _ctypes-passing-pointers:

Passing pointers (or: passing parameters by reference)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Sometimes a C api function expects a *pointer* to a data type as parameter,
probably to write into the corresponding location, or if the data is too large
to be passed by value. This is also known as *passing parameters by reference*.

``ctypes`` exports the :func:`byref` function which is used to pass parameters
by reference.  The same effect can be achieved with the ``pointer`` function,
although ``pointer`` does a lot more work since it constructs a real pointer
object, so it is faster to use :func:`byref` if you don't need the pointer
object in Python itself::

   >>> i = c_int()
   >>> f = c_float()
   >>> s = create_string_buffer('\000' * 32)
521
   >>> print(i.value, f.value, repr(s.value))
522 523 524 525
   0 0.0 ''
   >>> libc.sscanf("1 3.14 Hello", "%d %f %s",
   ...             byref(i), byref(f), s)
   3
526
   >>> print(i.value, f.value, repr(s.value))
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
   1 3.1400001049 'Hello'
   >>>


.. _ctypes-structures-unions:

Structures and unions
^^^^^^^^^^^^^^^^^^^^^

Structures and unions must derive from the :class:`Structure` and :class:`Union`
base classes which are defined in the ``ctypes`` module. Each subclass must
define a :attr:`_fields_` attribute.  :attr:`_fields_` must be a list of
*2-tuples*, containing a *field name* and a *field type*.

The field type must be a ``ctypes`` type like :class:`c_int`, or any other
derived ``ctypes`` type: structure, union, array, pointer.

Here is a simple example of a POINT structure, which contains two integers named
``x`` and ``y``, and also shows how to initialize a structure in the
constructor::

   >>> from ctypes import *
   >>> class POINT(Structure):
   ...     _fields_ = [("x", c_int),
   ...                 ("y", c_int)]
   ...
   >>> point = POINT(10, 20)
554
   >>> print(point.x, point.y)
555 556
   10 20
   >>> point = POINT(y=5)
557
   >>> print(point.x, point.y)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
   0 5
   >>> POINT(1, 2, 3)
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: too many initializers
   >>>

You can, however, build much more complicated structures. Structures can itself
contain other structures by using a structure as a field type.

Here is a RECT structure which contains two POINTs named ``upperleft`` and
``lowerright``  ::

   >>> class RECT(Structure):
   ...     _fields_ = [("upperleft", POINT),
   ...                 ("lowerright", POINT)]
   ...
   >>> rc = RECT(point)
576
   >>> print(rc.upperleft.x, rc.upperleft.y)
577
   0 5
578
   >>> print(rc.lowerright.x, rc.lowerright.y)
579 580 581 582 583 584 585 586
   0 0
   >>>

Nested structures can also be initialized in the constructor in several ways::

   >>> r = RECT(POINT(1, 2), POINT(3, 4))
   >>> r = RECT((1, 2), (3, 4))

587 588
Field :term:`descriptor`\s can be retrieved from the *class*, they are useful
for debugging because they can provide useful information::
589

590
   >>> print(POINT.x)
591
   <Field type=c_long, ofs=0, size=4>
592
   >>> print(POINT.y)
593 594 595 596 597 598 599 600 601 602
   <Field type=c_long, ofs=4, size=4>
   >>>


.. _ctypes-structureunion-alignment-byte-order:

Structure/union alignment and byte order
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

By default, Structure and Union fields are aligned in the same way the C
603
compiler does it. It is possible to override this behavior be specifying a
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
:attr:`_pack_` class attribute in the subclass definition. This must be set to a
positive integer and specifies the maximum alignment for the fields. This is
what ``#pragma pack(n)`` also does in MSVC.

``ctypes`` uses the native byte order for Structures and Unions.  To build
structures with non-native byte order, you can use one of the
BigEndianStructure, LittleEndianStructure, BigEndianUnion, and LittleEndianUnion
base classes.  These classes cannot contain pointer fields.


.. _ctypes-bit-fields-in-structures-unions:

Bit fields in structures and unions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

It is possible to create structures and unions containing bit fields. Bit fields
are only possible for integer fields, the bit width is specified as the third
item in the :attr:`_fields_` tuples::

   >>> class Int(Structure):
   ...     _fields_ = [("first_16", c_int, 16),
   ...                 ("second_16", c_int, 16)]
   ...
627
   >>> print(Int.first_16)
628
   <Field type=c_long, ofs=0:0, bits=16>
629
   >>> print(Int.second_16)
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
   <Field type=c_long, ofs=0:16, bits=16>
   >>>


.. _ctypes-arrays:

Arrays
^^^^^^

Arrays are sequences, containing a fixed number of instances of the same type.

The recommended way to create array types is by multiplying a data type with a
positive integer::

   TenPointsArrayType = POINT * 10

646
Here is an example of an somewhat artificial data type, a structure containing 4
647 648 649 650 651 652 653 654 655 656 657
POINTs among other stuff::

   >>> from ctypes import *
   >>> class POINT(Structure):
   ...    _fields_ = ("x", c_int), ("y", c_int)
   ...
   >>> class MyStruct(Structure):
   ...    _fields_ = [("a", c_int),
   ...                ("b", c_float),
   ...                ("point_array", POINT * 4)]
   >>>
658
   >>> print(len(MyStruct().point_array))
659 660 661 662 663 664 665
   4
   >>>

Instances are created in the usual way, by calling the class::

   arr = TenPointsArrayType()
   for pt in arr:
666
       print(pt.x, pt.y)
667 668 669 670 671 672 673 674 675

The above code print a series of ``0 0`` lines, because the array contents is
initialized to zeros.

Initializers of the correct type can also be specified::

   >>> from ctypes import *
   >>> TenIntegers = c_int * 10
   >>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
676
   >>> print(ii)
677
   <c_long_Array_10 object at 0x...>
678
   >>> for i in ii: print(i, end=" ")
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
   ...
   1 2 3 4 5 6 7 8 9 10
   >>>


.. _ctypes-pointers:

Pointers
^^^^^^^^

Pointer instances are created by calling the ``pointer`` function on a
``ctypes`` type::

   >>> from ctypes import *
   >>> i = c_int(42)
   >>> pi = pointer(i)
   >>>

Pointer instances have a ``contents`` attribute which returns the object to
which the pointer points, the ``i`` object above::

   >>> pi.contents
   c_long(42)
   >>>

Note that ``ctypes`` does not have OOR (original object return), it constructs a
new, equivalent object each time you retrieve an attribute::

   >>> pi.contents is i
   False
   >>> pi.contents is pi.contents
   False
   >>>

Assigning another :class:`c_int` instance to the pointer's contents attribute
would cause the pointer to point to the memory location where this is stored::

   >>> i = c_int(99)
   >>> pi.contents = i
   >>> pi.contents
   c_long(99)
   >>>

Pointer instances can also be indexed with integers::

   >>> pi[0]
   99
   >>>

Assigning to an integer index changes the pointed to value::

730
   >>> print(i)
731 732
   c_long(99)
   >>> pi[0] = 22
733
   >>> print(i)
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
   c_long(22)
   >>>

It is also possible to use indexes different from 0, but you must know what
you're doing, just as in C: You can access or change arbitrary memory locations.
Generally you only use this feature if you receive a pointer from a C function,
and you *know* that the pointer actually points to an array instead of a single
item.

Behind the scenes, the ``pointer`` function does more than simply create pointer
instances, it has to create pointer *types* first. This is done with the
``POINTER`` function, which accepts any ``ctypes`` type, and returns a new
type::

   >>> PI = POINTER(c_int)
   >>> PI
   <class 'ctypes.LP_c_long'>
   >>> PI(42)
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   TypeError: expected c_long instead of int
   >>> PI(c_int(42))
   <ctypes.LP_c_long object at 0x...>
   >>>

Calling the pointer type without an argument creates a ``NULL`` pointer.
``NULL`` pointers have a ``False`` boolean value::

   >>> null_ptr = POINTER(c_int)()
763
   >>> print(bool(null_ptr))
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
   False
   >>>

``ctypes`` checks for ``NULL`` when dereferencing pointers (but dereferencing
non-\ ``NULL`` pointers would crash Python)::

   >>> null_ptr[0]
   Traceback (most recent call last):
       ....
   ValueError: NULL pointer access
   >>>

   >>> null_ptr[0] = 1234
   Traceback (most recent call last):
       ....
   ValueError: NULL pointer access
   >>>


.. _ctypes-type-conversions:

Type conversions
^^^^^^^^^^^^^^^^

Usually, ctypes does strict type checking.  This means, if you have
``POINTER(c_int)`` in the :attr:`argtypes` list of a function or as the type of
a member field in a structure definition, only instances of exactly the same
type are accepted.  There are some exceptions to this rule, where ctypes accepts
other objects.  For example, you can pass compatible array instances instead of
pointer types.  So, for ``POINTER(c_int)``, ctypes accepts an array of c_int::

   >>> class Bar(Structure):
   ...     _fields_ = [("count", c_int), ("values", POINTER(c_int))]
   ...
   >>> bar = Bar()
   >>> bar.values = (c_int * 3)(1, 2, 3)
   >>> bar.count = 3
   >>> for i in range(bar.count):
802
   ...     print(bar.values[i])
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
   ...
   1
   2
   3
   >>>

To set a POINTER type field to ``NULL``, you can assign ``None``::

   >>> bar.values = None
   >>>

XXX list other conversions...

Sometimes you have instances of incompatible types.  In ``C``, you can cast one
type into another type.  ``ctypes`` provides a ``cast`` function which can be
used in the same way.  The ``Bar`` structure defined above accepts
``POINTER(c_int)`` pointers or :class:`c_int` arrays for its ``values`` field,
but not instances of other types::

   >>> bar.values = (c_byte * 4)()
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
   >>>

For these cases, the ``cast`` function is handy.

The ``cast`` function can be used to cast a ctypes instance into a pointer to a
different ctypes data type.  ``cast`` takes two parameters, a ctypes object that
is or can be converted to a pointer of some kind, and a ctypes pointer type.  It
returns an instance of the second argument, which references the same memory
block as the first argument::

   >>> a = (c_byte * 4)()
   >>> cast(a, POINTER(c_int))
   <ctypes.LP_c_long object at ...>
   >>>

So, ``cast`` can be used to assign to the ``values`` field of ``Bar`` the
structure::

   >>> bar = Bar()
   >>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
846
   >>> print(bar.values[0])
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
   0
   >>>


.. _ctypes-incomplete-types:

Incomplete Types
^^^^^^^^^^^^^^^^

*Incomplete Types* are structures, unions or arrays whose members are not yet
specified. In C, they are specified by forward declarations, which are defined
later::

   struct cell; /* forward declaration */

   struct {
       char *name;
       struct cell *next;
   } cell;

The straightforward translation into ctypes code would be this, but it does not
work::

   >>> class cell(Structure):
   ...     _fields_ = [("name", c_char_p),
   ...                 ("next", POINTER(cell))]
   ...
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
     File "<stdin>", line 2, in cell
   NameError: name 'cell' is not defined
   >>>

because the new ``class cell`` is not available in the class statement itself.
In ``ctypes``, we can define the ``cell`` class and set the :attr:`_fields_`
attribute later, after the class statement::

   >>> from ctypes import *
   >>> class cell(Structure):
   ...     pass
   ...
   >>> cell._fields_ = [("name", c_char_p),
   ...                  ("next", POINTER(cell))]
   >>>

Lets try it. We create two instances of ``cell``, and let them point to each
other, and finally follow the pointer chain a few times::

   >>> c1 = cell()
   >>> c1.name = "foo"
   >>> c2 = cell()
   >>> c2.name = "bar"
   >>> c1.next = pointer(c2)
   >>> c2.next = pointer(c1)
   >>> p = c1
   >>> for i in range(8):
903
   ...     print(p.name, end=" ")
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
   ...     p = p.next[0]
   ...
   foo bar foo bar foo bar foo bar
   >>>    


.. _ctypes-callback-functions:

Callback functions
^^^^^^^^^^^^^^^^^^

``ctypes`` allows to create C callable function pointers from Python callables.
These are sometimes called *callback functions*.

First, you must create a class for the callback function, the class knows the
calling convention, the return type, and the number and types of arguments this
function will receive.

The CFUNCTYPE factory function creates types for callback functions using the
normal cdecl calling convention, and, on Windows, the WINFUNCTYPE factory
function creates types for callback functions using the stdcall calling
convention.

Both of these factory functions are called with the result type as first
argument, and the callback functions expected argument types as the remaining
arguments.

I will present an example here which uses the standard C library's :func:`qsort`
function, this is used to sort items with the help of a callback function.
:func:`qsort` will be used to sort an array of integers::

   >>> IntArray5 = c_int * 5
   >>> ia = IntArray5(5, 1, 7, 33, 99)
   >>> qsort = libc.qsort
   >>> qsort.restype = None
   >>>

:func:`qsort` must be called with a pointer to the data to sort, the number of
items in the data array, the size of one item, and a pointer to the comparison
function, the callback. The callback will then be called with two pointers to
items, and it must return a negative integer if the first item is smaller than
the second, a zero if they are equal, and a positive integer else.

So our callback function receives pointers to integers, and must return an
integer. First we create the ``type`` for the callback function::

   >>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
   >>>

For the first implementation of the callback function, we simply print the
arguments we get, and return 0 (incremental development ;-)::

   >>> def py_cmp_func(a, b):
957
   ...     print("py_cmp_func", a, b)
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
   ...     return 0
   ...
   >>>

Create the C callable callback::

   >>> cmp_func = CMPFUNC(py_cmp_func)
   >>>

And we're ready to go::

   >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   >>>

We know how to access the contents of a pointer, so lets redefine our callback::

   >>> def py_cmp_func(a, b):
985
   ...     print("py_cmp_func", a[0], b[0])
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
   ...     return 0
   ...
   >>> cmp_func = CMPFUNC(py_cmp_func)
   >>>

Here is what we get on Windows::

   >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
   py_cmp_func 7 1
   py_cmp_func 33 1
   py_cmp_func 99 1
   py_cmp_func 5 1
   py_cmp_func 7 5
   py_cmp_func 33 5
   py_cmp_func 99 5
   py_cmp_func 7 99
   py_cmp_func 33 99
   py_cmp_func 7 33
   >>>

It is funny to see that on linux the sort function seems to work much more
efficient, it is doing less comparisons::

   >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +LINUX
   py_cmp_func 5 1
   py_cmp_func 33 99
   py_cmp_func 7 33
   py_cmp_func 5 7
   py_cmp_func 1 7
   >>>

Ah, we're nearly done! The last step is to actually compare the two items and
return a useful result::

   >>> def py_cmp_func(a, b):
1021
   ...     print("py_cmp_func", a[0], b[0])
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
   ...     return a[0] - b[0]
   ...
   >>>

Final run on Windows::

   >>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +WINDOWS
   py_cmp_func 33 7
   py_cmp_func 99 33
   py_cmp_func 5 99
   py_cmp_func 1 99
   py_cmp_func 33 7
   py_cmp_func 1 33
   py_cmp_func 5 33
   py_cmp_func 5 7
   py_cmp_func 1 7
   py_cmp_func 5 1
   >>>

and on Linux::

   >>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +LINUX
   py_cmp_func 5 1
   py_cmp_func 33 99
   py_cmp_func 7 33
   py_cmp_func 1 7
   py_cmp_func 5 7
   >>>

It is quite interesting to see that the Windows :func:`qsort` function needs
more comparisons than the linux version!

As we can easily check, our array is sorted now::

1056
   >>> for i in ia: print(i, end=" ")
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
   ...
   1 5 7 33 99
   >>>

**Important note for callback functions:**

Make sure you keep references to CFUNCTYPE objects as long as they are used from
C code. ``ctypes`` doesn't, and if you don't, they may be garbage collected,
crashing your program when a callback is made.


.. _ctypes-accessing-values-exported-from-dlls:

Accessing values exported from dlls
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Sometimes, a dll not only exports functions, it also exports variables. An
example in the Python library itself is the ``Py_OptimizeFlag``, an integer set
to 0, 1, or 2, depending on the :option:`-O` or :option:`-OO` flag given on
startup.

``ctypes`` can access values like this with the :meth:`in_dll` class methods of
the type.  *pythonapi* is a predefined symbol giving access to the Python C
api::

   >>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
1083
   >>> print(opt_flag)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
   c_long(0)
   >>>

If the interpreter would have been started with :option:`-O`, the sample would
have printed ``c_long(1)``, or ``c_long(2)`` if :option:`-OO` would have been
specified.

An extended example which also demonstrates the use of pointers accesses the
``PyImport_FrozenModules`` pointer exported by Python.

Quoting the Python docs: *This pointer is initialized to point to an array of
"struct _frozen" records, terminated by one whose members are all NULL or zero.
When a frozen module is imported, it is searched in this table. Third-party code
could play tricks with this to provide a dynamically created collection of
frozen modules.*

So manipulating this pointer could even prove useful. To restrict the example
size, we show only how this table can be read with ``ctypes``::

   >>> from ctypes import *
   >>>
   >>> class struct_frozen(Structure):
   ...     _fields_ = [("name", c_char_p),
   ...                 ("code", POINTER(c_ubyte)),
   ...                 ("size", c_int)]
   ...
   >>>

We have defined the ``struct _frozen`` data type, so we can get the pointer to
the table::

   >>> FrozenTable = POINTER(struct_frozen)
   >>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
   >>>

Since ``table`` is a ``pointer`` to the array of ``struct_frozen`` records, we
can iterate over it, but we just have to make sure that our loop terminates,
because pointers have no size. Sooner or later it would probably crash with an
access violation or whatever, so it's better to break out of the loop when we
hit the NULL entry::

   >>> for item in table:
1126
   ...    print(item.name, item.size)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
   ...    if item.name is None:
   ...        break
   ...
   __hello__ 104
   __phello__ -104
   __phello__.spam 104
   None 0
   >>>

The fact that standard Python has a frozen module and a frozen package
1137
(indicated by the negative size member) is not well known, it is only used for
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
testing. Try it out with ``import __hello__`` for example.


.. _ctypes-surprises:

Surprises
^^^^^^^^^

There are some edges in ``ctypes`` where you may be expect something else than
what actually happens.

Consider the following example::

   >>> from ctypes import *
   >>> class POINT(Structure):
   ...     _fields_ = ("x", c_int), ("y", c_int)
   ...
   >>> class RECT(Structure):
   ...     _fields_ = ("a", POINT), ("b", POINT)
   ...
   >>> p1 = POINT(1, 2)
   >>> p2 = POINT(3, 4)
   >>> rc = RECT(p1, p2)
1161
   >>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
1162 1163 1164
   1 2 3 4
   >>> # now swap the two points
   >>> rc.a, rc.b = rc.b, rc.a
1165
   >>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
1166 1167 1168 1169
   3 4 3 4
   >>>

Hm. We certainly expected the last statement to print ``3 4 1 2``. What
1170
happened? Here are the steps of the ``rc.a, rc.b = rc.b, rc.a`` line above::
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

   >>> temp0, temp1 = rc.b, rc.a
   >>> rc.a = temp0
   >>> rc.b = temp1
   >>>

Note that ``temp0`` and ``temp1`` are objects still using the internal buffer of
the ``rc`` object above. So executing ``rc.a = temp0`` copies the buffer
contents of ``temp0`` into ``rc`` 's buffer.  This, in turn, changes the
contents of ``temp1``. So, the last assignment ``rc.b = temp1``, doesn't have
the expected effect.

1183 1184
Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays
doesn't *copy* the sub-object, instead it retrieves a wrapper object accessing
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
the root-object's underlying buffer.

Another example that may behave different from what one would expect is this::

   >>> s = c_char_p()
   >>> s.value = "abc def ghi"
   >>> s.value
   'abc def ghi'
   >>> s.value is s.value
   False
   >>>

Why is it printing ``False``?  ctypes instances are objects containing a memory
1198 1199 1200 1201
block plus some :term:`descriptor`\s accessing the contents of the memory.
Storing a Python object in the memory block does not store the object itself,
instead the ``contents`` of the object is stored.  Accessing the contents again
constructs a new Python object each time!
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218


.. _ctypes-variable-sized-data-types:

Variable-sized data types
^^^^^^^^^^^^^^^^^^^^^^^^^

``ctypes`` provides some support for variable-sized arrays and structures (this
was added in version 0.9.9.7).

The ``resize`` function can be used to resize the memory buffer of an existing
ctypes object.  The function takes the object as first argument, and the
requested size in bytes as the second argument.  The memory block cannot be made
smaller than the natural memory block specified by the objects type, a
``ValueError`` is raised if this is tried::

   >>> short_array = (c_short * 4)()
1219
   >>> print(sizeof(short_array))
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
   8
   >>> resize(short_array, 4)
   Traceback (most recent call last):
       ...
   ValueError: minimum size is 8
   >>> resize(short_array, 32)
   >>> sizeof(short_array)
   32
   >>> sizeof(type(short_array))
   8
   >>>

This is nice and fine, but how would one access the additional elements
contained in this array?  Since the type still only knows about 4 elements, we
get errors accessing other elements::

   >>> short_array[:]
   [0, 0, 0, 0]
   >>> short_array[7]
   Traceback (most recent call last):
       ...
   IndexError: invalid index
   >>>

Another way to use variable-sized data types with ``ctypes`` is to use the
dynamic nature of Python, and (re-)define the data type after the required size
is already known, on a case by case basis.


.. _ctypes-bugs-todo-non-implemented-things:

Bugs, ToDo and non-implemented things
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Enumeration types are not implemented. You can do it easily yourself, using
:class:`c_int` as the base class.

``long double`` is not implemented.

.. % Local Variables:
.. % compile-command: "make.bat"
.. % End:


.. _ctypes-ctypes-reference:

ctypes reference
----------------


.. _ctypes-finding-shared-libraries:

Finding shared libraries
^^^^^^^^^^^^^^^^^^^^^^^^

When programming in a compiled language, shared libraries are accessed when
compiling/linking a program, and when the program is run.

The purpose of the ``find_library`` function is to locate a library in a way
similar to what the compiler does (on platforms with several versions of a
shared library the most recent should be loaded), while the ctypes library
loaders act like when a program is run, and call the runtime loader directly.

The ``ctypes.util`` module provides a function which can help to determine the
library to load.


.. data:: find_library(name)
   :noindex:

   Try to find a library and return a pathname.  *name* is the library name without
   any prefix like *lib*, suffix like ``.so``, ``.dylib`` or version number (this
   is the form used for the posix linker option :option:`-l`).  If no library can
   be found, returns ``None``.

1295
The exact functionality is system dependent.
1296 1297 1298

On Linux, ``find_library`` tries to run external programs (/sbin/ldconfig, gcc,
and objdump) to find the library file.  It returns the filename of the library
1299
file.  Here are some examples::
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

   >>> from ctypes.util import find_library
   >>> find_library("m")
   'libm.so.6'
   >>> find_library("c")
   'libc.so.6'
   >>> find_library("bz2")
   'libbz2.so.1.0'
   >>>

On OS X, ``find_library`` tries several predefined naming schemes and paths to
1311
locate the library, and returns a full pathname if successful::
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

   >>> from ctypes.util import find_library
   >>> find_library("c")
   '/usr/lib/libc.dylib'
   >>> find_library("m")
   '/usr/lib/libm.dylib'
   >>> find_library("bz2")
   '/usr/lib/libbz2.dylib'
   >>> find_library("AGL")
   '/System/Library/Frameworks/AGL.framework/AGL'
   >>>

On Windows, ``find_library`` searches along the system search path, and returns
the full pathname, but since there is no predefined naming scheme a call like
``find_library("c")`` will fail and return ``None``.

If wrapping a shared library with ``ctypes``, it *may* be better to determine
the shared library name at development type, and hardcode that into the wrapper
module instead of using ``find_library`` to locate the library at runtime.


.. _ctypes-loading-shared-libraries:

Loading shared libraries
^^^^^^^^^^^^^^^^^^^^^^^^

There are several ways to loaded shared libraries into the Python process.  One
way is to instantiate one of the following classes:


.. class:: CDLL(name, mode=DEFAULT_MODE, handle=None)

   Instances of this class represent loaded shared libraries. Functions in these
   libraries use the standard C calling convention, and are assumed to return
   ``int``.


.. class:: OleDLL(name, mode=DEFAULT_MODE, handle=None)

   Windows only: Instances of this class represent loaded shared libraries,
   functions in these libraries use the ``stdcall`` calling convention, and are
   assumed to return the windows specific :class:`HRESULT` code.  :class:`HRESULT`
   values contain information specifying whether the function call failed or
   succeeded, together with additional error code.  If the return value signals a
   failure, an :class:`WindowsError` is automatically raised.


.. class:: WinDLL(name, mode=DEFAULT_MODE, handle=None)

   Windows only: Instances of this class represent loaded shared libraries,
   functions in these libraries use the ``stdcall`` calling convention, and are
   assumed to return ``int`` by default.

   On Windows CE only the standard calling convention is used, for convenience the
   :class:`WinDLL` and :class:`OleDLL` use the standard calling convention on this
   platform.

1369 1370
The Python :term:`global interpreter lock` is released before calling any
function exported by these libraries, and reacquired afterwards.
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413


.. class:: PyDLL(name, mode=DEFAULT_MODE, handle=None)

   Instances of this class behave like :class:`CDLL` instances, except that the
   Python GIL is *not* released during the function call, and after the function
   execution the Python error flag is checked. If the error flag is set, a Python
   exception is raised.

   Thus, this is only useful to call Python C api functions directly.

All these classes can be instantiated by calling them with at least one
argument, the pathname of the shared library.  If you have an existing handle to
an already loaded shard library, it can be passed as the ``handle`` named
parameter, otherwise the underlying platforms ``dlopen`` or :meth:`LoadLibrary`
function is used to load the library into the process, and to get a handle to
it.

The *mode* parameter can be used to specify how the library is loaded.  For
details, consult the ``dlopen(3)`` manpage, on Windows, *mode* is ignored.


.. data:: RTLD_GLOBAL
   :noindex:

   Flag to use as *mode* parameter.  On platforms where this flag is not available,
   it is defined as the integer zero.


.. data:: RTLD_LOCAL
   :noindex:

   Flag to use as *mode* parameter.  On platforms where this is not available, it
   is the same as *RTLD_GLOBAL*.


.. data:: DEFAULT_MODE
   :noindex:

   The default mode which is used to load shared libraries.  On OSX 10.3, this is
   *RTLD_GLOBAL*, otherwise it is the same as *RTLD_LOCAL*.

Instances of these classes have no public methods, however :meth:`__getattr__`
1414
and :meth:`__getitem__` have special behavior: functions exported by the shared
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
library can be accessed as attributes of by index.  Please note that both
:meth:`__getattr__` and :meth:`__getitem__` cache their result, so calling them
repeatedly returns the same object each time.

The following public attributes are available, their name starts with an
underscore to not clash with exported function names:


.. attribute:: PyDLL._handle

   The system handle used to access the library.


.. attribute:: PyDLL._name

1430
   The name of the library passed in the constructor.
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

Shared libraries can also be loaded by using one of the prefabricated objects,
which are instances of the :class:`LibraryLoader` class, either by calling the
:meth:`LoadLibrary` method, or by retrieving the library as attribute of the
loader instance.


.. class:: LibraryLoader(dlltype)

   Class which loads shared libraries.  ``dlltype`` should be one of the
   :class:`CDLL`, :class:`PyDLL`, :class:`WinDLL`, or :class:`OleDLL` types.

1443
   :meth:`__getattr__` has special behavior: It allows to load a shared library by
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
   accessing it as attribute of a library loader instance.  The result is cached,
   so repeated attribute accesses return the same library each time.


.. method:: LibraryLoader.LoadLibrary(name)

   Load a shared library into the process and return it.  This method always
   returns a new instance of the library.

These prefabricated library loaders are available:


.. data:: cdll
   :noindex:

   Creates :class:`CDLL` instances.


.. data:: windll
   :noindex:

   Windows only: Creates :class:`WinDLL` instances.


.. data:: oledll
   :noindex:

   Windows only: Creates :class:`OleDLL` instances.


.. data:: pydll
   :noindex:

   Creates :class:`PyDLL` instances.

For accessing the C Python api directly, a ready-to-use Python shared library
object is available:


.. data:: pythonapi
   :noindex:

   An instance of :class:`PyDLL` that exposes Python C api functions as attributes.
   Note that all these functions are assumed to return C ``int``, which is of
   course not always the truth, so you have to assign the correct :attr:`restype`
   attribute to use these functions.


.. _ctypes-foreign-functions:

Foreign functions
^^^^^^^^^^^^^^^^^

As explained in the previous section, foreign functions can be accessed as
attributes of loaded shared libraries.  The function objects created in this way
by default accept any number of arguments, accept any ctypes data instances as
arguments, and return the default result type specified by the library loader.
They are instances of a private class:


.. class:: _FuncPtr

   Base class for C callable foreign functions.

Instances of foreign functions are also C compatible data types; they represent
C function pointers.

1511
This behavior can be customized by assigning to special attributes of the
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
foreign function object.


.. attribute:: _FuncPtr.restype

   Assign a ctypes type to specify the result type of the foreign function.  Use
   ``None`` for ``void`` a function not returning anything.

   It is possible to assign a callable Python object that is not a ctypes type, in
   this case the function is assumed to return a C ``int``, and the callable will
   be called with this integer, allowing to do further processing or error
1523
   checking.  Using this is deprecated, for more flexible post processing or error
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
   checking use a ctypes data type as :attr:`restype` and assign a callable to the
   :attr:`errcheck` attribute.


.. attribute:: _FuncPtr.argtypes

   Assign a tuple of ctypes types to specify the argument types that the function
   accepts.  Functions using the ``stdcall`` calling convention can only be called
   with the same number of arguments as the length of this tuple; functions using
   the C calling convention accept additional, unspecified arguments as well.

   When a foreign function is called, each actual argument is passed to the
   :meth:`from_param` class method of the items in the :attr:`argtypes` tuple, this
   method allows to adapt the actual argument to an object that the foreign
   function accepts.  For example, a :class:`c_char_p` item in the :attr:`argtypes`
   tuple will convert a unicode string passed as argument into an byte string using
   ctypes conversion rules.

   New: It is now possible to put items in argtypes which are not ctypes types, but
   each item must have a :meth:`from_param` method which returns a value usable as
   argument (integer, string, ctypes instance).  This allows to define adapters
   that can adapt custom objects as function parameters.


.. attribute:: _FuncPtr.errcheck

   Assign a Python function or another callable to this attribute. The callable
   will be called with three or more arguments:


.. function:: callable(result, func, arguments)
   :noindex:

   ``result`` is what the foreign function returns, as specified by the
   :attr:`restype` attribute.

   ``func`` is the foreign function object itself, this allows to reuse the same
1561
   callable object to check or post process the results of several functions.
1562 1563

   ``arguments`` is a tuple containing the parameters originally passed to the
1564
   function call, this allows to specialize the behavior on the arguments used.
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

   The object that this function returns will be returned from the foreign function
   call, but it can also check the result value and raise an exception if the
   foreign function call failed.


.. exception:: ArgumentError()

   This exception is raised when a foreign function call cannot convert one of the
   passed arguments.


.. _ctypes-function-prototypes:

Function prototypes
^^^^^^^^^^^^^^^^^^^

Foreign functions can also be created by instantiating function prototypes.
Function prototypes are similar to function prototypes in C; they describe a
function (return type, argument types, calling convention) without defining an
implementation.  The factory functions must be called with the desired result
type and the argument types of the function.


.. function:: CFUNCTYPE(restype, *argtypes)

   The returned function prototype creates functions that use the standard C
   calling convention.  The function will release the GIL during the call.


.. function:: WINFUNCTYPE(restype, *argtypes)

   Windows only: The returned function prototype creates functions that use the
   ``stdcall`` calling convention, except on Windows CE where :func:`WINFUNCTYPE`
   is the same as :func:`CFUNCTYPE`.  The function will release the GIL during the
   call.


.. function:: PYFUNCTYPE(restype, *argtypes)

   The returned function prototype creates functions that use the Python calling
   convention.  The function will *not* release the GIL during the call.

Function prototypes created by the factory functions can be instantiated in
different ways, depending on the type and number of the parameters in the call.


.. function:: prototype(address)
   :noindex:

   Returns a foreign function at the specified address.


.. function:: prototype(callable)
   :noindex:

   Create a C callable function (a callback function) from a Python ``callable``.


.. function:: prototype(func_spec[, paramflags])
   :noindex:

   Returns a foreign function exported by a shared library. ``func_spec`` must be a
   2-tuple ``(name_or_ordinal, library)``. The first item is the name of the
   exported function as string, or the ordinal of the exported function as small
   integer.  The second item is the shared library instance.


.. function:: prototype(vtbl_index, name[, paramflags[, iid]])
   :noindex:

   Returns a foreign function that will call a COM method. ``vtbl_index`` is the
1637
   index into the virtual function table, a small non-negative integer. *name* is
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
   name of the COM method. *iid* is an optional pointer to the interface identifier
   which is used in extended error reporting.

   COM methods use a special calling convention: They require a pointer to the COM
   interface as first argument, in addition to those parameters that are specified
   in the :attr:`argtypes` tuple.

The optional *paramflags* parameter creates foreign function wrappers with much
more functionality than the features described above.

*paramflags* must be a tuple of the same length as :attr:`argtypes`.

Each item in this tuple contains further information about a parameter, it must
be a tuple containing 1, 2, or 3 items.

The first item is an integer containing flags for the parameter:


.. data:: 1
   :noindex:

   Specifies an input parameter to the function.


.. data:: 2
   :noindex:

   Output parameter.  The foreign function fills in a value.


.. data:: 4
   :noindex:

   Input parameter which defaults to the integer zero.

The optional second item is the parameter name as string.  If this is specified,
the foreign function can be called with named parameters.

The optional third item is the default value for this parameter.

This example demonstrates how to wrap the Windows ``MessageBoxA`` function so
that it supports default parameters and named arguments. The C declaration from
the windows header file is this::

   WINUSERAPI int WINAPI
   MessageBoxA(
       HWND hWnd ,
       LPCSTR lpText,
       LPCSTR lpCaption,
       UINT uType);

Here is the wrapping with ``ctypes``:

   ::

      >>> from ctypes import c_int, WINFUNCTYPE, windll
      >>> from ctypes.wintypes import HWND, LPCSTR, UINT
      >>> prototype = WINFUNCTYPE(c_int, HWND, LPCSTR, LPCSTR, UINT)
      >>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", None), (1, "flags", 0)
      >>> MessageBox = prototype(("MessageBoxA", windll.user32), paramflags)
      >>>

The MessageBox foreign function can now be called in these ways::

   >>> MessageBox()
   >>> MessageBox(text="Spam, spam, spam")
   >>> MessageBox(flags=2, text="foo bar")
   >>>

A second example demonstrates output parameters.  The win32 ``GetWindowRect``
function retrieves the dimensions of a specified window by copying them into
``RECT`` structure that the caller has to supply.  Here is the C declaration::

   WINUSERAPI BOOL WINAPI
   GetWindowRect(
        HWND hWnd,
        LPRECT lpRect);

Here is the wrapping with ``ctypes``:

   ::

      >>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
      >>> from ctypes.wintypes import BOOL, HWND, RECT
      >>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
      >>> paramflags = (1, "hwnd"), (2, "lprect")
      >>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
      >>>

Functions with output parameters will automatically return the output parameter
value if there is a single one, or a tuple containing the output parameter
values when there are more than one, so the GetWindowRect function now returns a
RECT instance, when called.

Output parameters can be combined with the :attr:`errcheck` protocol to do
further output processing and error checking.  The win32 ``GetWindowRect`` api
function returns a ``BOOL`` to signal success or failure, so this function could
do the error checking, and raises an exception when the api call failed::

   >>> def errcheck(result, func, args):
   ...     if not result:
   ...         raise WinError()
   ...     return args
   >>> GetWindowRect.errcheck = errcheck
   >>>

If the :attr:`errcheck` function returns the argument tuple it receives
unchanged, ``ctypes`` continues the normal processing it does on the output
parameters.  If you want to return a tuple of window coordinates instead of a
``RECT`` instance, you can retrieve the fields in the function and return them
instead, the normal processing will no longer take place::

   >>> def errcheck(result, func, args):
   ...     if not result:
   ...         raise WinError()
   ...     rc = args[1]
   ...     return rc.left, rc.top, rc.bottom, rc.right
   >>>
   >>> GetWindowRect.errcheck = errcheck
   >>>


.. _ctypes-utility-functions:

Utility functions
^^^^^^^^^^^^^^^^^


.. function:: addressof(obj)

   Returns the address of the memory buffer as integer.  ``obj`` must be an
   instance of a ctypes type.


.. function:: alignment(obj_or_type)

   Returns the alignment requirements of a ctypes type. ``obj_or_type`` must be a
   ctypes type or instance.


.. function:: byref(obj)

   Returns a light-weight pointer to ``obj``, which must be an instance of a ctypes
   type. The returned object can only be used as a foreign function call parameter.
   It behaves similar to ``pointer(obj)``, but the construction is a lot faster.


.. function:: cast(obj, type)

   This function is similar to the cast operator in C. It returns a new instance of
   ``type`` which points to the same memory block as ``obj``. ``type`` must be a
   pointer type, and ``obj`` must be an object that can be interpreted as a
   pointer.


.. function:: create_string_buffer(init_or_size[, size])

   This function creates a mutable character buffer. The returned object is a
   ctypes array of :class:`c_char`.

   ``init_or_size`` must be an integer which specifies the size of the array, or a
   string which will be used to initialize the array items.

   If a string is specified as first argument, the buffer is made one item larger
   than the length of the string so that the last element in the array is a NUL
   termination character. An integer can be passed as second argument which allows
   to specify the size of the array if the length of the string should not be used.

   If the first parameter is a unicode string, it is converted into an 8-bit string
   according to ctypes conversion rules.


.. function:: create_unicode_buffer(init_or_size[, size])

   This function creates a mutable unicode character buffer. The returned object is
   a ctypes array of :class:`c_wchar`.

   ``init_or_size`` must be an integer which specifies the size of the array, or a
   unicode string which will be used to initialize the array items.

   If a unicode string is specified as first argument, the buffer is made one item
   larger than the length of the string so that the last element in the array is a
   NUL termination character. An integer can be passed as second argument which
   allows to specify the size of the array if the length of the string should not
   be used.

   If the first parameter is a 8-bit string, it is converted into an unicode string
   according to ctypes conversion rules.


.. function:: DllCanUnloadNow()

1830
   Windows only: This function is a hook which allows to implement in-process COM
1831 1832 1833 1834 1835 1836
   servers with ctypes. It is called from the DllCanUnloadNow function that the
   _ctypes extension dll exports.


.. function:: DllGetClassObject()

1837
   Windows only: This function is a hook which allows to implement in-process COM
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
   servers with ctypes. It is called from the DllGetClassObject function that the
   ``_ctypes`` extension dll exports.


.. function:: FormatError([code])

   Windows only: Returns a textual description of the error code. If no error code
   is specified, the last error code is used by calling the Windows api function
   GetLastError.


.. function:: GetLastError()

   Windows only: Returns the last error code set by Windows in the calling thread.


.. function:: memmove(dst, src, count)

   Same as the standard C memmove library function: copies *count* bytes from
   ``src`` to *dst*. *dst* and ``src`` must be integers or ctypes instances that
   can be converted to pointers.


.. function:: memset(dst, c, count)

   Same as the standard C memset library function: fills the memory block at
   address *dst* with *count* bytes of value *c*. *dst* must be an integer
   specifying an address, or a ctypes instance.


.. function:: POINTER(type)

   This factory function creates and returns a new ctypes pointer type. Pointer
   types are cached an reused internally, so calling this function repeatedly is
   cheap. type must be a ctypes type.


.. function:: pointer(obj)

   This function creates a new pointer instance, pointing to ``obj``. The returned
   object is of the type POINTER(type(obj)).

   Note: If you just want to pass a pointer to an object to a foreign function
   call, you should use ``byref(obj)`` which is much faster.


.. function:: resize(obj, size)

   This function resizes the internal memory buffer of obj, which must be an
   instance of a ctypes type. It is not possible to make the buffer smaller than
   the native size of the objects type, as given by sizeof(type(obj)), but it is
   possible to enlarge the buffer.


.. function:: set_conversion_mode(encoding, errors)

   This function sets the rules that ctypes objects use when converting between
   8-bit strings and unicode strings. encoding must be a string specifying an
   encoding, like ``'utf-8'`` or ``'mbcs'``, errors must be a string specifying the
   error handling on encoding/decoding errors. Examples of possible values are
   ``"strict"``, ``"replace"``, or ``"ignore"``.

   ``set_conversion_mode`` returns a 2-tuple containing the previous conversion
   rules. On windows, the initial conversion rules are ``('mbcs', 'ignore')``, on
   other systems ``('ascii', 'strict')``.


.. function:: sizeof(obj_or_type)

   Returns the size in bytes of a ctypes type or instance memory buffer. Does the
   same as the C ``sizeof()`` function.


.. function:: string_at(address[, size])

   This function returns the string starting at memory address address. If size
   is specified, it is used as size, otherwise the string is assumed to be
   zero-terminated.


.. function:: WinError(code=None, descr=None)

   Windows only: this function is probably the worst-named thing in ctypes. It
   creates an instance of WindowsError. If *code* is not specified,
   ``GetLastError`` is called to determine the error code. If ``descr`` is not
1923
   specified, :func:`FormatError` is called to get a textual description of the
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
   error.


.. function:: wstring_at(address)

   This function returns the wide character string starting at memory address
   ``address`` as unicode string. If ``size`` is specified, it is used as the
   number of characters of the string, otherwise the string is assumed to be
   zero-terminated.


.. _ctypes-data-types:

Data types
^^^^^^^^^^


.. class:: _CData

   This non-public class is the common base class of all ctypes data types.  Among
   other things, all ctypes type instances contain a memory block that hold C
   compatible data; the address of the memory block is returned by the
   ``addressof()`` helper function. Another instance variable is exposed as
   :attr:`_objects`; this contains other Python objects that need to be kept alive
   in case the memory block contains pointers.

Common methods of ctypes data types, these are all class methods (to be exact,
1951
they are methods of the :term:`metaclass`):
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984


.. method:: _CData.from_address(address)

   This method returns a ctypes type instance using the memory specified by address
   which must be an integer.


.. method:: _CData.from_param(obj)

   This method adapts obj to a ctypes type.  It is called with the actual object
   used in a foreign function call, when the type is present in the foreign
   functions :attr:`argtypes` tuple; it must return an object that can be used as
   function call parameter.

   All ctypes data types have a default implementation of this classmethod,
   normally it returns ``obj`` if that is an instance of the type.  Some types
   accept other objects as well.


.. method:: _CData.in_dll(library, name)

   This method returns a ctypes type instance exported by a shared library. *name*
   is the name of the symbol that exports the data, *library* is the loaded shared
   library.

Common instance variables of ctypes data types:


.. attribute:: _CData._b_base_

   Sometimes ctypes data instances do not own the memory block they contain,
   instead they share part of the memory block of a base object.  The
1985
   :attr:`_b_base_` read-only member is the root ctypes object that owns the memory
1986 1987 1988 1989 1990
   block.


.. attribute:: _CData._b_needsfree_

1991
   This read-only variable is true when the ctypes data instance has allocated the
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
   memory block itself, false otherwise.


.. attribute:: _CData._objects

   This member is either ``None`` or a dictionary containing Python objects that
   need to be kept alive so that the memory block contents is kept valid.  This
   object is only exposed for debugging; never modify the contents of this
   dictionary.


.. _ctypes-fundamental-data-types-2:

Fundamental data types
^^^^^^^^^^^^^^^^^^^^^^


.. class:: _SimpleCData

   This non-public class is the base class of all fundamental ctypes data types. It
   is mentioned here because it contains the common attributes of the fundamental
   ctypes data types.  ``_SimpleCData`` is a subclass of ``_CData``, so it inherits
   their methods and attributes.

Instances have a single attribute:


.. attribute:: _SimpleCData.value

   This attribute contains the actual value of the instance. For integer and
   pointer types, it is an integer, for character types, it is a single character
   string, for character pointer types it is a Python string or unicode string.

   When the ``value`` attribute is retrieved from a ctypes instance, usually a new
   object is returned each time.  ``ctypes`` does *not* implement original object
   return, always a new object is constructed.  The same is true for all other
   ctypes object instances.

Fundamental data types, when returned as foreign function call results, or, for
example, by retrieving structure field members or array items, are transparently
converted to native Python types.  In other words, if a foreign function has a
:attr:`restype` of :class:`c_char_p`, you will always receive a Python string,
*not* a :class:`c_char_p` instance.

2036
Subclasses of fundamental data types do *not* inherit this behavior. So, if a
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
foreign functions :attr:`restype` is a subclass of :class:`c_void_p`, you will
receive an instance of this subclass from the function call. Of course, you can
get the value of the pointer by accessing the ``value`` attribute.

These are the fundamental ctypes data types:


.. class:: c_byte

   Represents the C signed char datatype, and interprets the value as small
   integer. The constructor accepts an optional integer initializer; no overflow
   checking is done.


.. class:: c_char

   Represents the C char datatype, and interprets the value as a single character.
   The constructor accepts an optional string initializer, the length of the string
   must be exactly one character.


.. class:: c_char_p

   Represents the C char \* datatype, which must be a pointer to a zero-terminated
   string. The constructor accepts an integer address, or a string.


.. class:: c_double

   Represents the C double datatype. The constructor accepts an optional float
   initializer.


2070 2071 2072 2073 2074 2075 2076
.. class:: c_longdouble

   Represents the C long double datatype. The constructor accepts an
   optional float initializer.  On platforms where ``sizeof(long
   double) == sizeof(double)`` it is an alias to :class:`c_double`.


2077 2078
.. class:: c_float

2079
   Represents the C float datatype. The constructor accepts an optional float
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
   initializer.


.. class:: c_int

   Represents the C signed int datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done. On platforms where
   ``sizeof(int) == sizeof(long)`` it is an alias to :class:`c_long`.


.. class:: c_int8

   Represents the C 8-bit ``signed int`` datatype. Usually an alias for
   :class:`c_byte`.


.. class:: c_int16

   Represents the C 16-bit signed int datatype. Usually an alias for
   :class:`c_short`.


.. class:: c_int32

   Represents the C 32-bit signed int datatype. Usually an alias for
   :class:`c_int`.


.. class:: c_int64

   Represents the C 64-bit ``signed int`` datatype. Usually an alias for
   :class:`c_longlong`.


.. class:: c_long

   Represents the C ``signed long`` datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done.


.. class:: c_longlong

   Represents the C ``signed long long`` datatype. The constructor accepts an
   optional integer initializer; no overflow checking is done.


.. class:: c_short

   Represents the C ``signed short`` datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done.


.. class:: c_size_t

   Represents the C ``size_t`` datatype.


.. class:: c_ubyte

   Represents the C ``unsigned char`` datatype, it interprets the value as small
   integer. The constructor accepts an optional integer initializer; no overflow
   checking is done.


.. class:: c_uint

   Represents the C ``unsigned int`` datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done. On platforms where
   ``sizeof(int) == sizeof(long)`` it is an alias for :class:`c_ulong`.


.. class:: c_uint8

   Represents the C 8-bit unsigned int datatype. Usually an alias for
   :class:`c_ubyte`.


.. class:: c_uint16

   Represents the C 16-bit unsigned int datatype. Usually an alias for
   :class:`c_ushort`.


.. class:: c_uint32

   Represents the C 32-bit unsigned int datatype. Usually an alias for
   :class:`c_uint`.


.. class:: c_uint64

   Represents the C 64-bit unsigned int datatype. Usually an alias for
   :class:`c_ulonglong`.


.. class:: c_ulong

   Represents the C ``unsigned long`` datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done.


.. class:: c_ulonglong

   Represents the C ``unsigned long long`` datatype. The constructor accepts an
   optional integer initializer; no overflow checking is done.


.. class:: c_ushort

   Represents the C ``unsigned short`` datatype. The constructor accepts an
   optional integer initializer; no overflow checking is done.


.. class:: c_void_p

   Represents the C ``void *`` type. The value is represented as integer. The
   constructor accepts an optional integer initializer.


.. class:: c_wchar

   Represents the C ``wchar_t`` datatype, and interprets the value as a single
   character unicode string. The constructor accepts an optional string
   initializer, the length of the string must be exactly one character.


.. class:: c_wchar_p

   Represents the C ``wchar_t *`` datatype, which must be a pointer to a
   zero-terminated wide character string. The constructor accepts an integer
   address, or a string.


.. class:: c_bool

   Represent the C ``bool`` datatype (more accurately, _Bool from C99). Its value
   can be True or False, and the constructor accepts any object that has a truth
   value.


.. class:: HRESULT

   Windows only: Represents a :class:`HRESULT` value, which contains success or
   error information for a function or method call.


.. class:: py_object

   Represents the C ``PyObject *`` datatype.  Calling this without an argument
   creates a ``NULL`` ``PyObject *`` pointer.

The ``ctypes.wintypes`` module provides quite some other Windows specific data
types, for example ``HWND``, ``WPARAM``, or ``DWORD``. Some useful structures
like ``MSG`` or ``RECT`` are also defined.


.. _ctypes-structured-data-types:

Structured data types
^^^^^^^^^^^^^^^^^^^^^


.. class:: Union(*args, **kw)

   Abstract base class for unions in native byte order.


.. class:: BigEndianStructure(*args, **kw)

   Abstract base class for structures in *big endian* byte order.


.. class:: LittleEndianStructure(*args, **kw)

   Abstract base class for structures in *little endian* byte order.

Structures with non-native byte order cannot contain pointer type fields, or any
other data types containing pointer type fields.


.. class:: Structure(*args, **kw)

   Abstract base class for structures in *native* byte order.

Concrete structure and union types must be created by subclassing one of these
types, and at least define a :attr:`_fields_` class variable. ``ctypes`` will
2266
create :term:`descriptor`\s which allow reading and writing the fields by direct
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
attribute accesses.  These are the


.. attribute:: Structure._fields_

   A sequence defining the structure fields.  The items must be 2-tuples or
   3-tuples.  The first item is the name of the field, the second item specifies
   the type of the field; it can be any ctypes data type.

   For integer type fields like :class:`c_int`, a third optional item can be given.
   It must be a small positive integer defining the bit width of the field.

   Field names must be unique within one structure or union.  This is not checked,
   only one field can be accessed when names are repeated.

   It is possible to define the :attr:`_fields_` class variable *after* the class
   statement that defines the Structure subclass, this allows to create data types
   that directly or indirectly reference themselves::

      class List(Structure):
          pass
      List._fields_ = [("pnext", POINTER(List)),
                       ...
                      ]

   The :attr:`_fields_` class variable must, however, be defined before the type is
   first used (an instance is created, ``sizeof()`` is called on it, and so on).
   Later assignments to the :attr:`_fields_` class variable will raise an
   AttributeError.

   Structure and union subclass constructors accept both positional and named
   arguments.  Positional arguments are used to initialize the fields in the same
   order as they appear in the :attr:`_fields_` definition, named arguments are
   used to initialize the fields with the corresponding name.

   It is possible to defined sub-subclasses of structure types, they inherit the
   fields of the base class plus the :attr:`_fields_` defined in the sub-subclass,
   if any.


.. attribute:: Structure._pack_

   An optional small integer that allows to override the alignment of structure
   fields in the instance.  :attr:`_pack_` must already be defined when
   :attr:`_fields_` is assigned, otherwise it will have no effect.


.. attribute:: Structure._anonymous_

   An optional sequence that lists the names of unnamed (anonymous) fields.
   ``_anonymous_`` must be already defined when :attr:`_fields_` is assigned,
   otherwise it will have no effect.

   The fields listed in this variable must be structure or union type fields.
   ``ctypes`` will create descriptors in the structure type that allows to access
   the nested fields directly, without the need to create the structure or union
   field.

   Here is an example type (Windows)::

      class _U(Union):
          _fields_ = [("lptdesc", POINTER(TYPEDESC)),
                      ("lpadesc", POINTER(ARRAYDESC)),
                      ("hreftype", HREFTYPE)]

      class TYPEDESC(Structure):
          _fields_ = [("u", _U),
                      ("vt", VARTYPE)]

          _anonymous_ = ("u",)

   The ``TYPEDESC`` structure describes a COM data type, the ``vt`` field specifies
   which one of the union fields is valid.  Since the ``u`` field is defined as
   anonymous field, it is now possible to access the members directly off the
   TYPEDESC instance. ``td.lptdesc`` and ``td.u.lptdesc`` are equivalent, but the
   former is faster since it does not need to create a temporary union instance::

      td = TYPEDESC()
      td.vt = VT_PTR
      td.lptdesc = POINTER(some_type)
      td.u.lptdesc = POINTER(some_type)

It is possible to defined sub-subclasses of structures, they inherit the fields
of the base class.  If the subclass definition has a separate :attr:`_fields_`
variable, the fields specified in this are appended to the fields of the base
class.

Structure and union constructors accept both positional and keyword arguments.
Positional arguments are used to initialize member fields in the same order as
they are appear in :attr:`_fields_`.  Keyword arguments in the constructor are
interpreted as attribute assignments, so they will initialize :attr:`_fields_`
with the same name, or create new attributes for names not present in
:attr:`_fields_`.


.. _ctypes-arrays-pointers:

Arrays and pointers
^^^^^^^^^^^^^^^^^^^

Not yet written - please see the sections :ref:`ctypes-pointers` and
section :ref:`ctypes-arrays` in the tutorial.