pickletools.py 74 KB
Newer Older
Skip Montanaro's avatar
Skip Montanaro committed
1
'''"Executable documentation" for the pickle module.
2 3 4 5 6 7 8

Extensive comments about the pickle protocols and pickle-machine opcodes
can be found here.  Some functions meant for external use:

genops(pickle)
   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.

9
dis(pickle, out=None, memo=None, indentlevel=4)
10
   Print a symbolic disassembly of a pickle.
Skip Montanaro's avatar
Skip Montanaro committed
11
'''
12

13
import codecs
14 15
import pickle
import re
16

Christian Heimes's avatar
Christian Heimes committed
17
__all__ = ['dis', 'genops', 'optimize']
18

19 20
bytes_types = pickle.bytes_types

21 22 23
# Other ideas:
#
# - A pickle verifier:  read a pickle and check it exhaustively for
24
#   well-formedness.  dis() does a lot of this already.
25 26 27
#
# - A protocol identifier:  examine a pickle and return its protocol number
#   (== the highest .proto attr value among all the opcodes in the pickle).
28
#   dis() already prints this info at the end.
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#
# - A pickle optimizer:  for example, tuple-building code is sometimes more
#   elaborate than necessary, catering for the possibility that the tuple
#   is recursive.  Or lots of times a PUT is generated that's never accessed
#   by a later GET.


"""
"A pickle" is a program for a virtual pickle machine (PM, but more accurately
called an unpickling machine).  It's a sequence of opcodes, interpreted by the
PM, building an arbitrarily complex Python object.

For the most part, the PM is very simple:  there are no looping, testing, or
conditional instructions, no arithmetic and no function calls.  Opcodes are
executed once each, from first to last, until a STOP opcode is reached.

The PM has two data areas, "the stack" and "the memo".

Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
integer object on the stack, whose value is gotten from a decimal string
literal immediately following the INT opcode in the pickle bytestream.  Other
opcodes take Python objects off the stack.  The result of unpickling is
whatever object is left on the stack when the final STOP opcode is executed.

The memo is simply an array of objects, or it can be implemented as a dict
mapping little integers to objects.  The memo serves as the PM's "long term
memory", and the little integers indexing the memo are akin to variable
names.  Some opcodes pop a stack object into the memo at a given index,
and others push a memo object at a given index onto the stack again.

At heart, that's all the PM has.  Subtleties arise for these reasons:

+ Object identity.  Objects can be arbitrarily complex, and subobjects
  may be shared (for example, the list [a, a] refers to the same object a
  twice).  It can be vital that unpickling recreate an isomorphic object
  graph, faithfully reproducing sharing.

+ Recursive objects.  For example, after "L = []; L.append(L)", L is a
  list, and L[0] is the same list.  This is related to the object identity
  point, and some sequences of pickle opcodes are subtle in order to
  get the right result in all cases.

+ Things pickle doesn't know everything about.  Examples of things pickle
  does know everything about are Python's builtin scalar and container
  types, like ints and tuples.  They generally have opcodes dedicated to
  them.  For things like module references and instances of user-defined
  classes, pickle's knowledge is limited.  Historically, many enhancements
  have been made to the pickle protocol in order to do a better (faster,
  and/or more compact) job on those.

+ Backward compatibility and micro-optimization.  As explained below,
  pickle opcodes never go away, not even when better ways to do a thing
  get invented.  The repertoire of the PM just keeps growing over time.
82 83 84 85 86 87
  For example, protocol 0 had two opcodes for building Python integers (INT
  and LONG), protocol 1 added three more for more-efficient pickling of short
  integers, and protocol 2 added two more for more-efficient pickling of
  long integers (before protocol 2, the only ways to pickle a Python long
  took time quadratic in the number of digits, for both pickling and
  unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  wearying complication.


Pickle protocols:

For compatibility, the meaning of a pickle opcode never changes.  Instead new
pickle opcodes get added, and each version's unpickler can handle all the
pickle opcodes in all protocol versions to date.  So old pickles continue to
be readable forever.  The pickler can generally be told to restrict itself to
the subset of opcodes available under previous protocol versions too, so that
users can create pickles under the current version readable by older
versions.  However, a pickle does not contain its version number embedded
within it.  If an older unpickler tries to read a pickle using a later
protocol, the result is most likely an exception due to seeing an unknown (in
the older unpickler) opcode.

The original pickle used what's now called "protocol 0", and what was called
"text mode" before Python 2.3.  The entire pickle bytestream is made up of
printable 7-bit ASCII characters, plus the newline character, in protocol 0.
107 108
That's why it was called text mode.  Protocol 0 is small and elegant, but
sometimes painfully inefficient.
109 110 111 112 113 114 115

The second major set of additions is now called "protocol 1", and was called
"binary mode" before Python 2.3.  This added many opcodes with arguments
consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
bytes.  Binary mode pickles can be substantially smaller than equivalent
text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
int as 4 bytes following the opcode, which is cheaper to unpickle than the
116 117
(perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
a number of opcodes that operate on many stack elements at once (like APPENDS
Tim Peters's avatar
Tim Peters committed
118
and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
119 120

The third major set of additions came in Python 2.3, and is called "protocol
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
2".  This added:

- A better way to pickle instances of new-style classes (NEWOBJ).

- A way for a pickle to identify its protocol (PROTO).

- Time- and space- efficient pickling of long ints (LONG{1,4}).

- Shortcuts for small tuples (TUPLE{1,2,3}}.

- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).

- The "extension registry", a vector of popular objects that can be pushed
  efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
  the registry contents are predefined (there's nothing akin to the memo's
  PUT).
137

Skip Montanaro's avatar
Skip Montanaro committed
138 139
Another independent change with Python 2.3 is the abandonment of any
pretense that it might be safe to load pickles received from untrusted
140
parties -- no sufficient security analysis has been done to guarantee
Skip Montanaro's avatar
Skip Montanaro committed
141
this and there isn't a use case that warrants the expense of such an
142 143 144
analysis.

To this end, all tests for __safe_for_unpickling__ or for
145
copyreg.safe_constructors are removed from the unpickling code.
146 147
References to these variables in the descriptions below are to be seen
as describing unpickling in Python 2.2 and before.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
"""

# Meta-rule:  Descriptions are stored in instances of descriptor objects,
# with plain constructors.  No meta-language is defined from which
# descriptors could be constructed.  If you want, e.g., XML, write a little
# program to generate XML from the objects.

##############################################################################
# Some pickle opcodes have an argument, following the opcode in the
# bytestream.  An argument is of a specific type, described by an instance
# of ArgumentDescriptor.  These are not to be confused with arguments taken
# off the stack -- ArgumentDescriptor applies only to arguments embedded in
# the opcode stream, immediately following an opcode.

# Represents the number of bytes consumed by an argument delimited by the
# next newline character.
UP_TO_NEWLINE = -1

# Represents the number of bytes consumed by a two-argument opcode where
# the first argument gives the number of bytes in the second argument.
168 169
TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
170 171 172 173 174 175 176

class ArgumentDescriptor(object):
    __slots__ = (
        # name of descriptor record, also a module global name; a string
        'name',

        # length of argument, in bytes; an int; UP_TO_NEWLINE and
177 178
        # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
        # cases
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        'n',

        # a function taking a file-like object, reading this kind of argument
        # from the object at the current position, advancing the current
        # position by n bytes, and returning the value of the argument
        'reader',

        # human-readable docs for this arg descriptor; a string
        'doc',
    )

    def __init__(self, name, n, reader, doc):
        assert isinstance(name, str)
        self.name = name

        assert isinstance(n, int) and (n >= 0 or
195 196 197
                                       n in (UP_TO_NEWLINE,
                                             TAKEN_FROM_ARGUMENT1,
                                             TAKEN_FROM_ARGUMENT4))
198 199 200 201 202 203 204 205 206 207
        self.n = n

        self.reader = reader

        assert isinstance(doc, str)
        self.doc = doc

from struct import unpack as _unpack

def read_uint1(f):
208
    r"""
209 210
    >>> import io
    >>> read_uint1(io.BytesIO(b'\xff'))
211 212 213 214 215
    255
    """

    data = f.read(1)
    if data:
216
        return data[0]
217 218 219 220 221 222 223 224 225 226
    raise ValueError("not enough data in stream to read uint1")

uint1 = ArgumentDescriptor(
            name='uint1',
            n=1,
            reader=read_uint1,
            doc="One-byte unsigned integer.")


def read_uint2(f):
227
    r"""
228 229
    >>> import io
    >>> read_uint2(io.BytesIO(b'\xff\x00'))
230
    255
231
    >>> read_uint2(io.BytesIO(b'\xff\xff'))
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    65535
    """

    data = f.read(2)
    if len(data) == 2:
        return _unpack("<H", data)[0]
    raise ValueError("not enough data in stream to read uint2")

uint2 = ArgumentDescriptor(
            name='uint2',
            n=2,
            reader=read_uint2,
            doc="Two-byte unsigned integer, little-endian.")


def read_int4(f):
248
    r"""
249 250
    >>> import io
    >>> read_int4(io.BytesIO(b'\xff\x00\x00\x00'))
251
    255
252
    >>> read_int4(io.BytesIO(b'\x00\x00\x00\x80')) == -(2**31)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    True
    """

    data = f.read(4)
    if len(data) == 4:
        return _unpack("<i", data)[0]
    raise ValueError("not enough data in stream to read int4")

int4 = ArgumentDescriptor(
           name='int4',
           n=4,
           reader=read_int4,
           doc="Four-byte signed integer, little-endian, 2's complement.")


def read_stringnl(f, decode=True, stripquotes=True):
269
    r"""
270 271
    >>> import io
    >>> read_stringnl(io.BytesIO(b"'abcd'\nefg\n"))
272 273
    'abcd'

274
    >>> read_stringnl(io.BytesIO(b"\n"))
275 276
    Traceback (most recent call last):
    ...
277
    ValueError: no string quotes around b''
278

279
    >>> read_stringnl(io.BytesIO(b"\n"), stripquotes=False)
280 281
    ''

282
    >>> read_stringnl(io.BytesIO(b"''\n"))
283 284
    ''

285
    >>> read_stringnl(io.BytesIO(b'"abcd"'))
286 287 288 289 290
    Traceback (most recent call last):
    ...
    ValueError: no newline found when trying to read stringnl

    Embedded escapes are undone in the result.
291
    >>> read_stringnl(io.BytesIO(br"'a\n\\b\x00c\td'" + b"\n'e'"))
292
    'a\n\\b\x00c\td'
293 294
    """

295
    data = f.readline()
Guido van Rossum's avatar
Guido van Rossum committed
296
    if not data.endswith(b'\n'):
297 298 299 300
        raise ValueError("no newline found when trying to read stringnl")
    data = data[:-1]    # lose the newline

    if stripquotes:
Guido van Rossum's avatar
Guido van Rossum committed
301
        for q in (b'"', b"'"):
302 303 304 305 306 307 308 309 310 311
            if data.startswith(q):
                if not data.endswith(q):
                    raise ValueError("strinq quote %r not found at both "
                                     "ends of %r" % (q, data))
                data = data[1:-1]
                break
        else:
            raise ValueError("no string quotes around %r" % data)

    if decode:
312
        data = codecs.escape_decode(data)[0].decode("ascii")
313 314 315 316 317 318 319 320 321 322 323 324 325
    return data

stringnl = ArgumentDescriptor(
               name='stringnl',
               n=UP_TO_NEWLINE,
               reader=read_stringnl,
               doc="""A newline-terminated string.

                   This is a repr-style string, with embedded escapes, and
                   bracketing quotes.
                   """)

def read_stringnl_noescape(f):
326
    return read_stringnl(f, stripquotes=False)
327 328 329 330 331 332 333 334 335 336 337 338 339

stringnl_noescape = ArgumentDescriptor(
                        name='stringnl_noescape',
                        n=UP_TO_NEWLINE,
                        reader=read_stringnl_noescape,
                        doc="""A newline-terminated string.

                        This is a str-style string, without embedded escapes,
                        or bracketing quotes.  It should consist solely of
                        printable ASCII characters.
                        """)

def read_stringnl_noescape_pair(f):
340
    r"""
341 342
    >>> import io
    >>> read_stringnl_noescape_pair(io.BytesIO(b"Queue\nEmpty\njunk"))
343
    'Queue Empty'
344 345
    """

346
    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
347 348 349 350 351 352 353 354 355 356 357

stringnl_noescape_pair = ArgumentDescriptor(
                             name='stringnl_noescape_pair',
                             n=UP_TO_NEWLINE,
                             reader=read_stringnl_noescape_pair,
                             doc="""A pair of newline-terminated strings.

                             These are str-style strings, without embedded
                             escapes, or bracketing quotes.  They should
                             consist solely of printable ASCII characters.
                             The pair is returned as a single string, with
358
                             a single blank separating the two strings.
359 360 361
                             """)

def read_string4(f):
362
    r"""
363 364
    >>> import io
    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x00abc"))
365
    ''
366
    >>> read_string4(io.BytesIO(b"\x03\x00\x00\x00abcdef"))
367
    'abc'
368
    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x03abcdef"))
369 370 371 372 373 374 375 376 377 378
    Traceback (most recent call last):
    ...
    ValueError: expected 50331648 bytes in a string4, but only 6 remain
    """

    n = read_int4(f)
    if n < 0:
        raise ValueError("string4 byte count < 0: %d" % n)
    data = f.read(n)
    if len(data) == n:
379
        return data.decode("latin-1")
380 381 382 383 384
    raise ValueError("expected %d bytes in a string4, but only %d remain" %
                     (n, len(data)))

string4 = ArgumentDescriptor(
              name="string4",
385
              n=TAKEN_FROM_ARGUMENT4,
386 387 388 389 390 391 392 393 394 395
              reader=read_string4,
              doc="""A counted string.

              The first argument is a 4-byte little-endian signed int giving
              the number of bytes in the string, and the second argument is
              that many bytes.
              """)


def read_string1(f):
396
    r"""
397 398
    >>> import io
    >>> read_string1(io.BytesIO(b"\x00"))
399
    ''
400
    >>> read_string1(io.BytesIO(b"\x03abcdef"))
401 402 403 404 405 406 407
    'abc'
    """

    n = read_uint1(f)
    assert n >= 0
    data = f.read(n)
    if len(data) == n:
408
        return data.decode("latin-1")
409 410 411 412 413
    raise ValueError("expected %d bytes in a string1, but only %d remain" %
                     (n, len(data)))

string1 = ArgumentDescriptor(
              name="string1",
414
              n=TAKEN_FROM_ARGUMENT1,
415 416 417 418 419 420 421 422 423 424
              reader=read_string1,
              doc="""A counted string.

              The first argument is a 1-byte unsigned int giving the number
              of bytes in the string, and the second argument is that many
              bytes.
              """)


def read_unicodestringnl(f):
425
    r"""
426 427 428
    >>> import io
    >>> read_unicodestringnl(io.BytesIO(b"abc\\uabcd\njunk")) == 'abc\uabcd'
    True
429 430
    """

431
    data = f.readline()
Guido van Rossum's avatar
Guido van Rossum committed
432
    if not data.endswith(b'\n'):
433 434 435
        raise ValueError("no newline found when trying to read "
                         "unicodestringnl")
    data = data[:-1]    # lose the newline
436
    return str(data, 'raw-unicode-escape')
437 438 439 440 441 442 443 444 445 446 447 448 449

unicodestringnl = ArgumentDescriptor(
                      name='unicodestringnl',
                      n=UP_TO_NEWLINE,
                      reader=read_unicodestringnl,
                      doc="""A newline-terminated Unicode string.

                      This is raw-unicode-escape encoded, so consists of
                      printable ASCII characters, and may contain embedded
                      escape sequences.
                      """)

def read_unicodestring4(f):
450
    r"""
451 452
    >>> import io
    >>> s = 'abcd\uabcd'
453 454
    >>> enc = s.encode('utf-8')
    >>> enc
455 456 457
    b'abcd\xea\xaf\x8d'
    >>> n = bytes([len(enc), 0, 0, 0])  # little-endian 4-byte length
    >>> t = read_unicodestring4(io.BytesIO(n + enc + b'junk'))
458 459 460
    >>> s == t
    True

461
    >>> read_unicodestring4(io.BytesIO(n + enc[:-1]))
462 463 464 465 466 467 468 469 470 471
    Traceback (most recent call last):
    ...
    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
    """

    n = read_int4(f)
    if n < 0:
        raise ValueError("unicodestring4 byte count < 0: %d" % n)
    data = f.read(n)
    if len(data) == n:
472
        return str(data, 'utf-8')
473 474 475 476 477
    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
                     "remain" % (n, len(data)))

unicodestring4 = ArgumentDescriptor(
                    name="unicodestring4",
478
                    n=TAKEN_FROM_ARGUMENT4,
479 480 481 482 483 484 485 486 487 488 489
                    reader=read_unicodestring4,
                    doc="""A counted Unicode string.

                    The first argument is a 4-byte little-endian signed int
                    giving the number of bytes in the string, and the second
                    argument-- the UTF-8 encoding of the Unicode string --
                    contains that many bytes.
                    """)


def read_decimalnl_short(f):
490
    r"""
491 492
    >>> import io
    >>> read_decimalnl_short(io.BytesIO(b"1234\n56"))
493 494
    1234

495
    >>> read_decimalnl_short(io.BytesIO(b"1234L\n56"))
496 497
    Traceback (most recent call last):
    ...
498
    ValueError: trailing 'L' not allowed in b'1234L'
499 500 501
    """

    s = read_stringnl(f, decode=False, stripquotes=False)
Guido van Rossum's avatar
Guido van Rossum committed
502
    if s.endswith(b"L"):
503 504 505 506 507
        raise ValueError("trailing 'L' not allowed in %r" % s)

    # It's not necessarily true that the result fits in a Python short int:
    # the pickle may have been written on a 64-bit box.  There's also a hack
    # for True and False here.
508
    if s == b"00":
509
        return False
510
    elif s == b"01":
511 512 513 514 515
        return True

    try:
        return int(s)
    except OverflowError:
516
        return int(s)
517 518

def read_decimalnl_long(f):
519
    r"""
520
    >>> import io
521

522
    >>> read_decimalnl_long(io.BytesIO(b"1234L\n56"))
523
    1234
524

525
    >>> read_decimalnl_long(io.BytesIO(b"123456789012345678901234L\n6"))
526
    123456789012345678901234
527 528 529
    """

    s = read_stringnl(f, decode=False, stripquotes=False)
530 531
    if s[-1:] == b'L':
        s = s[:-1]
532
    return int(s)
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559


decimalnl_short = ArgumentDescriptor(
                      name='decimalnl_short',
                      n=UP_TO_NEWLINE,
                      reader=read_decimalnl_short,
                      doc="""A newline-terminated decimal integer literal.

                          This never has a trailing 'L', and the integer fit
                          in a short Python int on the box where the pickle
                          was written -- but there's no guarantee it will fit
                          in a short Python int on the box where the pickle
                          is read.
                          """)

decimalnl_long = ArgumentDescriptor(
                     name='decimalnl_long',
                     n=UP_TO_NEWLINE,
                     reader=read_decimalnl_long,
                     doc="""A newline-terminated decimal integer literal.

                         This has a trailing 'L', and can represent integers
                         of any size.
                         """)


def read_floatnl(f):
560
    r"""
561 562
    >>> import io
    >>> read_floatnl(io.BytesIO(b"-1.25\n6"))
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    -1.25
    """
    s = read_stringnl(f, decode=False, stripquotes=False)
    return float(s)

floatnl = ArgumentDescriptor(
              name='floatnl',
              n=UP_TO_NEWLINE,
              reader=read_floatnl,
              doc="""A newline-terminated decimal floating literal.

              In general this requires 17 significant digits for roundtrip
              identity, and pickling then unpickling infinities, NaNs, and
              minus zero doesn't work across boxes, or on some boxes even
              on itself (e.g., Windows can't read the strings it produces
              for infinities or NaNs).
              """)

def read_float8(f):
582
    r"""
583
    >>> import io, struct
584 585
    >>> raw = struct.pack(">d", -1.25)
    >>> raw
586 587
    b'\xbf\xf4\x00\x00\x00\x00\x00\x00'
    >>> read_float8(io.BytesIO(raw + b"\n"))
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    -1.25
    """

    data = f.read(8)
    if len(data) == 8:
        return _unpack(">d", data)[0]
    raise ValueError("not enough data in stream to read float8")


float8 = ArgumentDescriptor(
             name='float8',
             n=8,
             reader=read_float8,
             doc="""An 8-byte binary representation of a float, big-endian.

             The format is unique to Python, and shared with the struct
604
             module (format string '>d') "in theory" (the struct and pickle
605 606 607 608 609 610 611 612 613 614
             implementations don't share the code -- they should).  It's
             strongly related to the IEEE-754 double format, and, in normal
             cases, is in fact identical to the big-endian 754 double format.
             On other boxes the dynamic range is limited to that of a 754
             double, and "add a half and chop" rounding is used to reduce
             the precision to 53 bits.  However, even on a 754 box,
             infinities, NaNs, and minus zero may not be handled correctly
             (may not survive roundtrip pickling intact).
             """)

615 616
# Protocol 2 formats

Tim Peters's avatar
Tim Peters committed
617
from pickle import decode_long
618 619 620

def read_long1(f):
    r"""
621 622
    >>> import io
    >>> read_long1(io.BytesIO(b"\x00"))
623
    0
624
    >>> read_long1(io.BytesIO(b"\x02\xff\x00"))
625
    255
626
    >>> read_long1(io.BytesIO(b"\x02\xff\x7f"))
627
    32767
628
    >>> read_long1(io.BytesIO(b"\x02\x00\xff"))
629
    -256
630
    >>> read_long1(io.BytesIO(b"\x02\x00\x80"))
631
    -32768
632 633 634 635 636 637 638 639 640 641
    """

    n = read_uint1(f)
    data = f.read(n)
    if len(data) != n:
        raise ValueError("not enough data in stream to read long1")
    return decode_long(data)

long1 = ArgumentDescriptor(
    name="long1",
642
    n=TAKEN_FROM_ARGUMENT1,
643 644 645 646
    reader=read_long1,
    doc="""A binary long, little-endian, using 1-byte size.

    This first reads one byte as an unsigned size, then reads that
647
    many bytes and interprets them as a little-endian 2's-complement long.
648
    If the size is 0, that's taken as a shortcut for the long 0L.
649 650 651 652
    """)

def read_long4(f):
    r"""
653 654
    >>> import io
    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x00"))
655
    255
656
    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x7f"))
657
    32767
658
    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\xff"))
659
    -256
660
    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\x80"))
661
    -32768
662
    >>> read_long1(io.BytesIO(b"\x00\x00\x00\x00"))
663
    0
664 665 666 667
    """

    n = read_int4(f)
    if n < 0:
668
        raise ValueError("long4 byte count < 0: %d" % n)
669 670
    data = f.read(n)
    if len(data) != n:
671
        raise ValueError("not enough data in stream to read long4")
672 673 674 675
    return decode_long(data)

long4 = ArgumentDescriptor(
    name="long4",
676
    n=TAKEN_FROM_ARGUMENT4,
677 678 679 680 681
    reader=read_long4,
    doc="""A binary representation of a long, little-endian.

    This first reads four bytes as a signed size (but requires the
    size to be >= 0), then reads that many bytes and interprets them
682
    as a little-endian 2's-complement long.  If the size is 0, that's taken
683
    as a shortcut for the int 0, although LONG1 should really be used
684
    then instead (and in any case where # of bytes < 256).
685 686 687
    """)


688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
##############################################################################
# Object descriptors.  The stack used by the pickle machine holds objects,
# and in the stack_before and stack_after attributes of OpcodeInfo
# descriptors we need names to describe the various types of objects that can
# appear on the stack.

class StackObject(object):
    __slots__ = (
        # name of descriptor record, for info only
        'name',

        # type of object, or tuple of type objects (meaning the object can
        # be of any type in the tuple)
        'obtype',

        # human-readable docs for this kind of stack object; a string
        'doc',
    )

    def __init__(self, name, obtype, doc):
708
        assert isinstance(name, str)
709 710 711 712 713 714 715 716
        self.name = name

        assert isinstance(obtype, type) or isinstance(obtype, tuple)
        if isinstance(obtype, tuple):
            for contained in obtype:
                assert isinstance(contained, type)
        self.obtype = obtype

717
        assert isinstance(doc, str)
718 719
        self.doc = doc

720 721 722
    def __repr__(self):
        return self.name

723 724 725 726 727 728 729 730

pyint = StackObject(
            name='int',
            obtype=int,
            doc="A short (as opposed to long) Python integer object.")

pylong = StackObject(
             name='long',
731
             obtype=int,
732 733 734 735
             doc="A long (as opposed to short) Python integer object.")

pyinteger_or_bool = StackObject(
                        name='int_or_bool',
736
                        obtype=(int, int, bool),
737 738 739
                        doc="A Python integer object (short or long), or "
                            "a Python bool.")

740 741 742 743 744
pybool = StackObject(
             name='bool',
             obtype=(bool,),
             doc="A Python bool object.")

745 746 747 748 749 750
pyfloat = StackObject(
              name='float',
              obtype=float,
              doc="A Python float object.")

pystring = StackObject(
751 752 753 754 755
               name='string',
               obtype=bytes,
               doc="A Python (8-bit) string object.")

pybytes = StackObject(
756 757 758
               name='bytes',
               obtype=bytes,
               doc="A Python bytes object.")
759 760

pyunicode = StackObject(
761
                name='str',
762
                obtype=str,
763
                doc="A Python (Unicode) string object.")
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

pynone = StackObject(
             name="None",
             obtype=type(None),
             doc="The Python None object.")

pytuple = StackObject(
              name="tuple",
              obtype=tuple,
              doc="A Python tuple object.")

pylist = StackObject(
             name="list",
             obtype=list,
             doc="A Python list object.")

pydict = StackObject(
             name="dict",
             obtype=dict,
             doc="A Python dict object.")

anyobject = StackObject(
                name='any',
                obtype=object,
                doc="Any kind of object whatsoever.")

markobject = StackObject(
                 name="mark",
                 obtype=StackObject,
                 doc="""'The mark' is a unique object.

                 Opcodes that operate on a variable number of objects
                 generally don't embed the count of objects in the opcode,
                 or pull it off the stack.  Instead the MARK opcode is used
                 to push a special marker object on the stack, and then
                 some other opcodes grab all the objects from the top of
                 the stack down to (but not including) the topmost marker
                 object.
                 """)

stackslice = StackObject(
                 name="stackslice",
                 obtype=StackObject,
                 doc="""An object representing a contiguous slice of the stack.

                 This is used in conjuction with markobject, to represent all
                 of the stack following the topmost markobject.  For example,
                 the POP_MARK opcode changes the stack from

                     [..., markobject, stackslice]
                 to
                     [...]

                 No matter how many object are on the stack after the topmost
                 markobject, POP_MARK gets rid of all of them (including the
                 topmost markobject too).
                 """)

##############################################################################
# Descriptors for pickle opcodes.

class OpcodeInfo(object):

    __slots__ = (
        # symbolic name of opcode; a string
        'name',

        # the code used in a bytestream to represent the opcode; a
        # one-character string
        'code',

        # If the opcode has an argument embedded in the byte string, an
        # instance of ArgumentDescriptor specifying its type.  Note that
        # arg.reader(s) can be used to read and decode the argument from
        # the bytestream s, and arg.doc documents the format of the raw
        # argument bytes.  If the opcode doesn't have an argument embedded
        # in the bytestream, arg should be None.
        'arg',

        # what the stack looks like before this opcode runs; a list
        'stack_before',

        # what the stack looks like after this opcode runs; a list
        'stack_after',

        # the protocol number in which this opcode was introduced; an int
        'proto',

        # human-readable docs for this opcode; a string
        'doc',
    )

    def __init__(self, name, code, arg,
                 stack_before, stack_after, proto, doc):
858
        assert isinstance(name, str)
859 860
        self.name = name

861
        assert isinstance(code, str)
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
        assert len(code) == 1
        self.code = code

        assert arg is None or isinstance(arg, ArgumentDescriptor)
        self.arg = arg

        assert isinstance(stack_before, list)
        for x in stack_before:
            assert isinstance(x, StackObject)
        self.stack_before = stack_before

        assert isinstance(stack_after, list)
        for x in stack_after:
            assert isinstance(x, StackObject)
        self.stack_after = stack_after

878
        assert isinstance(proto, int) and 0 <= proto <= 3
879 880
        self.proto = proto

881
        assert isinstance(doc, str)
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
        self.doc = doc

I = OpcodeInfo
opcodes = [

    # Ways to spell integers.

    I(name='INT',
      code='I',
      arg=decimalnl_short,
      stack_before=[],
      stack_after=[pyinteger_or_bool],
      proto=0,
      doc="""Push an integer or bool.

      The argument is a newline-terminated decimal literal string.

      The intent may have been that this always fit in a short Python int,
      but INT can be generated in pickles written on a 64-bit box that
      require a Python long on a 32-bit box.  The difference between this
      and LONG then is that INT skips a trailing 'L', and produces a short
      int whenever possible.

      Another difference is due to that, when bool was introduced as a
      distinct type in 2.3, builtin names True and False were also added to
      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
      Leading zeroes are never produced for a genuine integer.  The 2.3
      (and later) unpicklers special-case these and return bool instead;
      earlier unpicklers ignore the leading "0" and return the int.
      """),

    I(name='BININT',
      code='J',
      arg=int4,
      stack_before=[],
      stack_after=[pyint],
      proto=1,
      doc="""Push a four-byte signed integer.

      This handles the full range of Python (short) integers on a 32-bit
      box, directly as binary bytes (1 for the opcode and 4 for the integer).
      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
      BININT1 or BININT2 saves space.
      """),

    I(name='BININT1',
      code='K',
      arg=uint1,
      stack_before=[],
      stack_after=[pyint],
      proto=1,
      doc="""Push a one-byte unsigned integer.

      This is a space optimization for pickling very small non-negative ints,
      in range(256).
      """),

    I(name='BININT2',
      code='M',
      arg=uint2,
      stack_before=[],
      stack_after=[pyint],
      proto=1,
      doc="""Push a two-byte unsigned integer.

      This is a space optimization for pickling small positive ints, in
      range(256, 2**16).  Integers in range(256) can also be pickled via
      BININT2, but BININT1 instead saves a byte.
      """),

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    I(name='LONG',
      code='L',
      arg=decimalnl_long,
      stack_before=[],
      stack_after=[pylong],
      proto=0,
      doc="""Push a long integer.

      The same as INT, except that the literal ends with 'L', and always
      unpickles to a Python long.  There doesn't seem a real purpose to the
      trailing 'L'.

      Note that LONG takes time quadratic in the number of digits when
      unpickling (this is simply due to the nature of decimal->binary
      conversion).  Proto 2 added linear-time (in C; still quadratic-time
      in Python) LONG1 and LONG4 opcodes.
      """),

    I(name="LONG1",
      code='\x8a',
      arg=long1,
      stack_before=[],
      stack_after=[pylong],
      proto=2,
      doc="""Long integer using one-byte length.

      A more efficient encoding of a Python long; the long1 encoding
      says it all."""),

    I(name="LONG4",
      code='\x8b',
      arg=long4,
      stack_before=[],
      stack_after=[pylong],
      proto=2,
      doc="""Long integer using found-byte length.

      A more efficient encoding of a Python long; the long4 encoding
      says it all."""),

993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    # Ways to spell strings (8-bit, not Unicode).

    I(name='STRING',
      code='S',
      arg=stringnl,
      stack_before=[],
      stack_after=[pystring],
      proto=0,
      doc="""Push a Python string object.

      The argument is a repr-style string, with bracketing quote characters,
      and perhaps embedded escapes.  The argument extends until the next
1005 1006 1007
      newline character.  (Actually, they are decoded into a str instance
      using the encoding given to the Unpickler constructor. or the default,
      'ASCII'.)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
      """),

    I(name='BINSTRING',
      code='T',
      arg=string4,
      stack_before=[],
      stack_after=[pystring],
      proto=1,
      doc="""Push a Python string object.

      There are two arguments:  the first is a 4-byte little-endian signed int
      giving the number of bytes in the string, and the second is that many
1020 1021 1022
      bytes, which are taken literally as the string content.  (Actually,
      they are decoded into a str instance using the encoding given to the
      Unpickler constructor. or the default, 'ASCII'.)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
      """),

    I(name='SHORT_BINSTRING',
      code='U',
      arg=string1,
      stack_before=[],
      stack_after=[pystring],
      proto=1,
      doc="""Push a Python string object.

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
      There are two arguments:  the first is a 1-byte unsigned int giving
      the number of bytes in the string, and the second is that many bytes,
      which are taken literally as the string content.  (Actually, they
      are decoded into a str instance using the encoding given to the
      Unpickler constructor. or the default, 'ASCII'.)
      """),

    # Bytes (protocol 3 only; older protocols don't support bytes at all)

    I(name='BINBYTES',
      code='B',
      arg=string4,
      stack_before=[],
      stack_after=[pybytes],
      proto=3,
      doc="""Push a Python bytes object.

      There are two arguments:  the first is a 4-byte little-endian signed int
      giving the number of bytes in the string, and the second is that many
      bytes, which are taken literally as the bytes content.
      """),

    I(name='SHORT_BINBYTES',
      code='C',
      arg=string1,
      stack_before=[],
      stack_after=[pybytes],
      proto=1,
      doc="""Push a Python string object.

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
      There are two arguments:  the first is a 1-byte unsigned int giving
      the number of bytes in the string, and the second is that many bytes,
      which are taken literally as the string content.
      """),

    # Ways to spell None.

    I(name='NONE',
      code='N',
      arg=None,
      stack_before=[],
      stack_after=[pynone],
      proto=0,
      doc="Push None on the stack."),

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    # Ways to spell bools, starting with proto 2.  See INT for how this was
    # done before proto 2.

    I(name='NEWTRUE',
      code='\x88',
      arg=None,
      stack_before=[],
      stack_after=[pybool],
      proto=2,
      doc="""True.

      Push True onto the stack."""),

    I(name='NEWFALSE',
      code='\x89',
      arg=None,
      stack_before=[],
      stack_after=[pybool],
      proto=2,
      doc="""True.

      Push False onto the stack."""),

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    # Ways to spell Unicode strings.

    I(name='UNICODE',
      code='V',
      arg=unicodestringnl,
      stack_before=[],
      stack_after=[pyunicode],
      proto=0,  # this may be pure-text, but it's a later addition
      doc="""Push a Python Unicode string object.

      The argument is a raw-unicode-escape encoding of a Unicode string,
      and so may contain embedded escape sequences.  The argument extends
      until the next newline character.
      """),

    I(name='BINUNICODE',
      code='X',
      arg=unicodestring4,
      stack_before=[],
      stack_after=[pyunicode],
      proto=1,
      doc="""Push a Python Unicode string object.

      There are two arguments:  the first is a 4-byte little-endian signed int
      giving the number of bytes in the string.  The second is that many
      bytes, and is the UTF-8 encoding of the Unicode string.
      """),

    # Ways to spell floats.

    I(name='FLOAT',
      code='F',
      arg=floatnl,
      stack_before=[],
      stack_after=[pyfloat],
      proto=0,
      doc="""Newline-terminated decimal float literal.

      The argument is repr(a_float), and in general requires 17 significant
      digits for roundtrip conversion to be an identity (this is so for
      IEEE-754 double precision values, which is what Python float maps to
      on most boxes).

      In general, FLOAT cannot be used to transport infinities, NaNs, or
      minus zero across boxes (or even on a single box, if the platform C
      library can't read the strings it produces for such things -- Windows
      is like that), but may do less damage than BINFLOAT on boxes with
      greater precision or dynamic range than IEEE-754 double.
      """),

    I(name='BINFLOAT',
      code='G',
      arg=float8,
      stack_before=[],
      stack_after=[pyfloat],
      proto=1,
      doc="""Float stored in binary form, with 8 bytes of data.

      This generally requires less than half the space of FLOAT encoding.
      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
      minus zero, raises an exception if the exponent exceeds the range of
      an IEEE-754 double, and retains no more than 53 bits of precision (if
      there are more than that, "add a half and chop" rounding is used to
      cut it back to 53 significant bits).
      """),

    # Ways to build lists.

    I(name='EMPTY_LIST',
      code=']',
      arg=None,
      stack_before=[],
      stack_after=[pylist],
      proto=1,
      doc="Push an empty list."),

    I(name='APPEND',
      code='a',
      arg=None,
      stack_before=[pylist, anyobject],
      stack_after=[pylist],
      proto=0,
      doc="""Append an object to a list.

      Stack before:  ... pylist anyobject
      Stack after:   ... pylist+[anyobject]
Tim Peters's avatar
Tim Peters committed
1187 1188

      although pylist is really extended in-place.
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
      """),

    I(name='APPENDS',
      code='e',
      arg=None,
      stack_before=[pylist, markobject, stackslice],
      stack_after=[pylist],
      proto=1,
      doc="""Extend a list by a slice of stack objects.

      Stack before:  ... pylist markobject stackslice
      Stack after:   ... pylist+stackslice
Tim Peters's avatar
Tim Peters committed
1201 1202

      although pylist is really extended in-place.
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
      """),

    I(name='LIST',
      code='l',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[pylist],
      proto=0,
      doc="""Build a list out of the topmost stack slice, after markobject.

      All the stack entries following the topmost markobject are placed into
      a single Python list, which single list object replaces all of the
      stack from the topmost markobject onward.  For example,

      Stack before: ... markobject 1 2 3 'abc'
      Stack after:  ... [1, 2, 3, 'abc']
      """),

    # Ways to build tuples.

    I(name='EMPTY_TUPLE',
      code=')',
      arg=None,
      stack_before=[],
      stack_after=[pytuple],
      proto=1,
      doc="Push an empty tuple."),

    I(name='TUPLE',
      code='t',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[pytuple],
      proto=0,
      doc="""Build a tuple out of the topmost stack slice, after markobject.

      All the stack entries following the topmost markobject are placed into
      a single Python tuple, which single tuple object replaces all of the
      stack from the topmost markobject onward.  For example,

      Stack before: ... markobject 1 2 3 'abc'
      Stack after:  ... (1, 2, 3, 'abc')
      """),

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
    I(name='TUPLE1',
      code='\x85',
      arg=None,
      stack_before=[anyobject],
      stack_after=[pytuple],
      proto=2,
      doc="""One-tuple.

      This code pops one value off the stack and pushes a tuple of
      length 1 whose one item is that value back onto it.  IOW:

          stack[-1] = tuple(stack[-1:])
      """),

    I(name='TUPLE2',
      code='\x86',
      arg=None,
      stack_before=[anyobject, anyobject],
      stack_after=[pytuple],
      proto=2,
      doc="""One-tuple.

      This code pops two values off the stack and pushes a tuple
      of length 2 whose items are those values back onto it.  IOW:

          stack[-2:] = [tuple(stack[-2:])]
      """),

    I(name='TUPLE3',
      code='\x87',
      arg=None,
      stack_before=[anyobject, anyobject, anyobject],
      stack_after=[pytuple],
      proto=2,
      doc="""One-tuple.

      This code pops three values off the stack and pushes a tuple
      of length 3 whose items are those values back onto it.  IOW:

          stack[-3:] = [tuple(stack[-3:])]
      """),

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
    # Ways to build dicts.

    I(name='EMPTY_DICT',
      code='}',
      arg=None,
      stack_before=[],
      stack_after=[pydict],
      proto=1,
      doc="Push an empty dict."),

    I(name='DICT',
      code='d',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[pydict],
      proto=0,
      doc="""Build a dict out of the topmost stack slice, after markobject.

      All the stack entries following the topmost markobject are placed into
      a single Python dict, which single dict object replaces all of the
      stack from the topmost markobject onward.  The stack slice alternates
      key, value, key, value, ....  For example,

      Stack before: ... markobject 1 2 3 'abc'
      Stack after:  ... {1: 2, 3: 'abc'}
      """),

    I(name='SETITEM',
      code='s',
      arg=None,
      stack_before=[pydict, anyobject, anyobject],
      stack_after=[pydict],
      proto=0,
      doc="""Add a key+value pair to an existing dict.

      Stack before:  ... pydict key value
      Stack after:   ... pydict

      where pydict has been modified via pydict[key] = value.
      """),

    I(name='SETITEMS',
      code='u',
      arg=None,
      stack_before=[pydict, markobject, stackslice],
      stack_after=[pydict],
      proto=1,
      doc="""Add an arbitrary number of key+value pairs to an existing dict.

      The slice of the stack following the topmost markobject is taken as
      an alternating sequence of keys and values, added to the dict
      immediately under the topmost markobject.  Everything at and after the
      topmost markobject is popped, leaving the mutated dict at the top
      of the stack.

      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
      Stack after:   ... pydict

      where pydict has been modified via pydict[key_i] = value_i for i in
      1, 2, ..., n, and in that order.
      """),

    # Stack manipulation.

    I(name='POP',
      code='0',
      arg=None,
      stack_before=[anyobject],
      stack_after=[],
      proto=0,
      doc="Discard the top stack item, shrinking the stack by one item."),

    I(name='DUP',
      code='2',
      arg=None,
      stack_before=[anyobject],
      stack_after=[anyobject, anyobject],
      proto=0,
      doc="Push the top stack item onto the stack again, duplicating it."),

    I(name='MARK',
      code='(',
      arg=None,
      stack_before=[],
      stack_after=[markobject],
      proto=0,
      doc="""Push markobject onto the stack.

      markobject is a unique object, used by other opcodes to identify a
      region of the stack containing a variable number of objects for them
      to work on.  See markobject.doc for more detail.
      """),

    I(name='POP_MARK',
      code='1',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[],
      proto=0,
      doc="""Pop all the stack objects at and above the topmost markobject.

      When an opcode using a variable number of stack objects is done,
      POP_MARK is used to remove those objects, and to remove the markobject
      that delimited their starting position on the stack.
      """),

    # Memo manipulation.  There are really only two operations (get and put),
    # each in all-text, "short binary", and "long binary" flavors.

    I(name='GET',
      code='g',
      arg=decimalnl_short,
      stack_before=[],
      stack_after=[anyobject],
      proto=0,
      doc="""Read an object from the memo and push it on the stack.

      The index of the memo object to push is given by the newline-teriminated
      decimal string following.  BINGET and LONG_BINGET are space-optimized
      versions.
      """),

    I(name='BINGET',
      code='h',
      arg=uint1,
      stack_before=[],
      stack_after=[anyobject],
      proto=1,
      doc="""Read an object from the memo and push it on the stack.

      The index of the memo object to push is given by the 1-byte unsigned
      integer following.
      """),

    I(name='LONG_BINGET',
      code='j',
      arg=int4,
      stack_before=[],
      stack_after=[anyobject],
      proto=1,
      doc="""Read an object from the memo and push it on the stack.

      The index of the memo object to push is given by the 4-byte signed
      little-endian integer following.
      """),

    I(name='PUT',
      code='p',
      arg=decimalnl_short,
      stack_before=[],
      stack_after=[],
      proto=0,
      doc="""Store the stack top into the memo.  The stack is not popped.

      The index of the memo location to write into is given by the newline-
      terminated decimal string following.  BINPUT and LONG_BINPUT are
      space-optimized versions.
      """),

    I(name='BINPUT',
      code='q',
      arg=uint1,
      stack_before=[],
      stack_after=[],
      proto=1,
      doc="""Store the stack top into the memo.  The stack is not popped.

      The index of the memo location to write into is given by the 1-byte
      unsigned integer following.
      """),

    I(name='LONG_BINPUT',
      code='r',
      arg=int4,
      stack_before=[],
      stack_after=[],
      proto=1,
      doc="""Store the stack top into the memo.  The stack is not popped.

      The index of the memo location to write into is given by the 4-byte
      signed little-endian integer following.
      """),

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    # Access the extension registry (predefined objects).  Akin to the GET
    # family.

    I(name='EXT1',
      code='\x82',
      arg=uint1,
      stack_before=[],
      stack_after=[anyobject],
      proto=2,
      doc="""Extension code.

      This code and the similar EXT2 and EXT4 allow using a registry
      of popular objects that are pickled by name, typically classes.
      It is envisioned that through a global negotiation and
      registration process, third parties can set up a mapping between
      ints and object names.

      In order to guarantee pickle interchangeability, the extension
      code registry ought to be global, although a range of codes may
      be reserved for private use.

      EXT1 has a 1-byte integer argument.  This is used to index into the
      extension registry, and the object at that index is pushed on the stack.
      """),

    I(name='EXT2',
      code='\x83',
      arg=uint2,
      stack_before=[],
      stack_after=[anyobject],
      proto=2,
      doc="""Extension code.

      See EXT1.  EXT2 has a two-byte integer argument.
      """),

    I(name='EXT4',
      code='\x84',
      arg=int4,
      stack_before=[],
      stack_after=[anyobject],
      proto=2,
      doc="""Extension code.

      See EXT1.  EXT4 has a four-byte integer argument.
      """),

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
    # Push a class object, or module function, on the stack, via its module
    # and name.

    I(name='GLOBAL',
      code='c',
      arg=stringnl_noescape_pair,
      stack_before=[],
      stack_after=[anyobject],
      proto=0,
      doc="""Push a global object (module.attr) on the stack.

      Two newline-terminated strings follow the GLOBAL opcode.  The first is
      taken as a module name, and the second as a class name.  The class
      object module.class is pushed on the stack.  More accurately, the
      object returned by self.find_class(module, class) is pushed on the
      stack, so unpickling subclasses can override this form of lookup.
      """),

    # Ways to build objects of classes pickle doesn't know about directly
    # (user-defined classes).  I despair of documenting this accurately
    # and comprehensibly -- you really have to read the pickle code to
    # find all the special cases.

    I(name='REDUCE',
      code='R',
      arg=None,
      stack_before=[anyobject, anyobject],
      stack_after=[anyobject],
      proto=0,
      doc="""Push an object built from a callable and an argument tuple.

      The opcode is named to remind of the __reduce__() method.

      Stack before: ... callable pytuple
      Stack after:  ... callable(*pytuple)

      The callable and the argument tuple are the first two items returned
      by a __reduce__ method.  Applying the callable to the argtuple is
      supposed to reproduce the original object, or at least get it started.
      If the __reduce__ method returns a 3-tuple, the last component is an
      argument to be passed to the object's __setstate__, and then the REDUCE
      opcode is followed by code to create setstate's argument, and then a
      BUILD opcode to apply  __setstate__ to that argument.

1563
      If not isinstance(callable, type), REDUCE complains unless the
1564
      callable has been registered with the copyreg module's
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
      safe_constructors dict, or the callable has a magic
      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
      why it does this, but I've sure seen this complaint often enough when
      I didn't want to <wink>.
      """),

    I(name='BUILD',
      code='b',
      arg=None,
      stack_before=[anyobject, anyobject],
      stack_after=[anyobject],
      proto=0,
      doc="""Finish building an object, via __setstate__ or dict update.

      Stack before: ... anyobject argument
      Stack after:  ... anyobject

      where anyobject may have been mutated, as follows:

      If the object has a __setstate__ method,

          anyobject.__setstate__(argument)

      is called.

      Else the argument must be a dict, the object must have a __dict__, and
      the object is updated via

          anyobject.__dict__.update(argument)
      """),

    I(name='INST',
      code='i',
      arg=stringnl_noescape_pair,
      stack_before=[markobject, stackslice],
      stack_after=[anyobject],
      proto=0,
      doc="""Build a class instance.

      This is the protocol 0 version of protocol 1's OBJ opcode.
      INST is followed by two newline-terminated strings, giving a
      module and class name, just as for the GLOBAL opcode (and see
      GLOBAL for more details about that).  self.find_class(module, name)
      is used to get a class object.

      In addition, all the objects on the stack following the topmost
      markobject are gathered into a tuple and popped (along with the
      topmost markobject), just as for the TUPLE opcode.

      Now it gets complicated.  If all of these are true:

        + The argtuple is empty (markobject was at the top of the stack
          at the start).

        + The class object does not have a __getinitargs__ attribute.

      then we want to create an old-style class instance without invoking
      its __init__() method (pickle has waffled on this over the years; not
      calling __init__() is current wisdom).  In this case, an instance of
      an old-style dummy class is created, and then we try to rebind its
      __class__ attribute to the desired class object.  If this succeeds,
1626
      the new instance object is pushed on the stack, and we're done.
1627 1628 1629 1630 1631 1632

      Else (the argtuple is not empty, it's not an old-style class object,
      or the class object does have a __getinitargs__ attribute), the code
      first insists that the class object have a __safe_for_unpickling__
      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
      it doesn't matter whether this attribute has a true or false value, it
1633 1634
      only matters whether it exists (XXX this is a bug).  If
      __safe_for_unpickling__ doesn't exist, UnpicklingError is raised.
1635 1636 1637 1638 1639

      Else (the class object does have a __safe_for_unpickling__ attr),
      the class object obtained from INST's arguments is applied to the
      argtuple obtained from the stack, and the resulting instance object
      is pushed on the stack.
1640 1641

      NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
      """),

    I(name='OBJ',
      code='o',
      arg=None,
      stack_before=[markobject, anyobject, stackslice],
      stack_after=[anyobject],
      proto=1,
      doc="""Build a class instance.

      This is the protocol 1 version of protocol 0's INST opcode, and is
      very much like it.  The major difference is that the class object
      is taken off the stack, allowing it to be retrieved from the memo
      repeatedly if several instances of the same class are created.  This
      can be much more efficient (in both time and space) than repeatedly
      embedding the module and class names in INST opcodes.

      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
      the class object is taken off the stack, immediately above the
      topmost markobject:

      Stack before: ... markobject classobject stackslice
      Stack after:  ... new_instance_object

      As for INST, the remainder of the stack above the markobject is
      gathered into an argument tuple, and then the logic seems identical,
1668
      except that no __safe_for_unpickling__ check is done (XXX this is
1669
      a bug).  See INST for the gory details.
1670 1671 1672 1673

      NOTE:  In Python 2.3, INST and OBJ are identical except for how they
      get the class object.  That was always the intent; the implementations
      had diverged for accidental reasons.
1674 1675
      """),

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    I(name='NEWOBJ',
      code='\x81',
      arg=None,
      stack_before=[anyobject, anyobject],
      stack_after=[anyobject],
      proto=2,
      doc="""Build an object instance.

      The stack before should be thought of as containing a class
      object followed by an argument tuple (the tuple being the stack
      top).  Call these cls and args.  They are popped off the stack,
      and the value returned by cls.__new__(cls, *args) is pushed back
      onto the stack.
      """),

1691 1692
    # Machine control.

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    I(name='PROTO',
      code='\x80',
      arg=uint1,
      stack_before=[],
      stack_after=[],
      proto=2,
      doc="""Protocol version indicator.

      For protocol 2 and above, a pickle must start with this opcode.
      The argument is the protocol version, an int in range(2, 256).
      """),

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
    I(name='STOP',
      code='.',
      arg=None,
      stack_before=[anyobject],
      stack_after=[],
      proto=0,
      doc="""Stop the unpickling machine.

      Every pickle ends with this opcode.  The object at the top of the stack
      is popped, and that's the result of unpickling.  The stack should be
      empty then.
      """),

    # Ways to deal with persistent IDs.

    I(name='PERSID',
      code='P',
      arg=stringnl_noescape,
      stack_before=[],
      stack_after=[anyobject],
      proto=0,
      doc="""Push an object identified by a persistent ID.

      The pickle module doesn't define what a persistent ID means.  PERSID's
      argument is a newline-terminated str-style (no embedded escapes, no
      bracketing quote characters) string, which *is* "the persistent ID".
      The unpickler passes this string to self.persistent_load().  Whatever
      object that returns is pushed on the stack.  There is no implementation
      of persistent_load() in Python's unpickler:  it must be supplied by an
      unpickler subclass.
      """),

    I(name='BINPERSID',
      code='Q',
      arg=None,
      stack_before=[anyobject],
      stack_after=[anyobject],
      proto=1,
      doc="""Push an object identified by a persistent ID.

      Like PERSID, except the persistent ID is popped off the stack (instead
      of being a string embedded in the opcode bytestream).  The persistent
      ID is passed to self.persistent_load(), and whatever object that
      returns is pushed on the stack.  See PERSID for more detail.
      """),
]
del I

# Verify uniqueness of .name and .code members.
name2i = {}
code2i = {}

for i, d in enumerate(opcodes):
    if d.name in name2i:
        raise ValueError("repeated name %r at indices %d and %d" %
                         (d.name, name2i[d.name], i))
    if d.code in code2i:
        raise ValueError("repeated code %r at indices %d and %d" %
                         (d.code, code2i[d.code], i))

    name2i[d.name] = i
    code2i[d.code] = i

del name2i, code2i, i, d

##############################################################################
# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
# Also ensure we've got the same stuff as pickle.py, although the
# introspection here is dicey.

code2op = {}
for d in opcodes:
    code2op[d.code] = d
del d

def assure_pickle_consistency(verbose=False):

    copy = code2op.copy()
    for name in pickle.__all__:
        if not re.match("[A-Z][A-Z0-9_]+$", name):
            if verbose:
1786
                print("skipping %r: it doesn't look like an opcode name" % name)
1787 1788
            continue
        picklecode = getattr(pickle, name)
1789
        if not isinstance(picklecode, bytes) or len(picklecode) != 1:
1790
            if verbose:
1791 1792
                print(("skipping %r: value %r doesn't look like a pickle "
                       "code" % (name, picklecode)))
1793
            continue
1794
        picklecode = picklecode.decode("latin-1")
1795 1796
        if picklecode in copy:
            if verbose:
1797 1798
                print("checking name %r w/ code %r for consistency" % (
                      name, picklecode))
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
            d = copy[picklecode]
            if d.name != name:
                raise ValueError("for pickle code %r, pickle.py uses name %r "
                                 "but we're using name %r" % (picklecode,
                                                              name,
                                                              d.name))
            # Forget this one.  Any left over in copy at the end are a problem
            # of a different kind.
            del copy[picklecode]
        else:
            raise ValueError("pickle.py appears to have a pickle opcode with "
                             "name %r and code %r, but we don't" %
                             (name, picklecode))
    if copy:
        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
        for code, d in copy.items():
            msg.append("    name %r with code %r" % (d.name, code))
        raise ValueError("\n".join(msg))

assure_pickle_consistency()
Tim Peters's avatar
Tim Peters committed
1819
del assure_pickle_consistency
1820 1821 1822 1823 1824

##############################################################################
# A pickle opcode generator.

def genops(pickle):
Guido van Rossum's avatar
Guido van Rossum committed
1825
    """Generate all the opcodes in a pickle.
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

    'pickle' is a file-like object, or string, containing the pickle.

    Each opcode in the pickle is generated, from the current pickle position,
    stopping after a STOP opcode is delivered.  A triple is generated for
    each opcode:

        opcode, arg, pos

    opcode is an OpcodeInfo record, describing the current opcode.

    If the opcode has an argument embedded in the pickle, arg is its decoded
    value, as a Python object.  If the opcode doesn't have an argument, arg
    is None.

    If the pickle has a tell() method, pos was the value of pickle.tell()
1842 1843
    before reading the current opcode.  If the pickle is a bytes object,
    it's wrapped in a BytesIO object, and the latter's tell() result is
1844 1845 1846 1847
    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
    to query its current position) pos is None.
    """

1848
    if isinstance(pickle, bytes_types):
1849 1850
        import io
        pickle = io.BytesIO(pickle)
1851 1852 1853 1854 1855 1856 1857 1858 1859

    if hasattr(pickle, "tell"):
        getpos = pickle.tell
    else:
        getpos = lambda: None

    while True:
        pos = getpos()
        code = pickle.read(1)
1860
        opcode = code2op.get(code.decode("latin-1"))
1861
        if opcode is None:
1862
            if code == b"":
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
                raise ValueError("pickle exhausted before seeing STOP")
            else:
                raise ValueError("at position %s, opcode %r unknown" % (
                                 pos is None and "<unknown>" or pos,
                                 code))
        if opcode.arg is None:
            arg = None
        else:
            arg = opcode.arg.reader(pickle)
        yield opcode, arg, pos
1873
        if code == b'.':
1874 1875 1876
            assert opcode.name == 'STOP'
            break

Christian Heimes's avatar
Christian Heimes committed
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
##############################################################################
# A pickle optimizer.

def optimize(p):
    'Optimize a pickle string by removing unused PUT opcodes'
    gets = set()            # set of args used by a GET opcode
    puts = []               # (arg, startpos, stoppos) for the PUT opcodes
    prevpos = None          # set to pos if previous opcode was a PUT
    for opcode, arg, pos in genops(p):
        if prevpos is not None:
            puts.append((prevarg, prevpos, pos))
            prevpos = None
        if 'PUT' in opcode.name:
            prevarg, prevpos = arg, pos
        elif 'GET' in opcode.name:
            gets.add(arg)

    # Copy the pickle string except for PUTS without a corresponding GET
    s = []
    i = 0
    for arg, start, stop in puts:
        j = stop if (arg in gets) else start
        s.append(p[i:j])
        i = stop
    s.append(p[i:])
Christian Heimes's avatar
Christian Heimes committed
1902
    return b''.join(s)
Christian Heimes's avatar
Christian Heimes committed
1903

1904 1905 1906
##############################################################################
# A symbolic pickle disassembler.

1907
def dis(pickle, out=None, memo=None, indentlevel=4):
1908 1909 1910 1911 1912 1913 1914 1915 1916
    """Produce a symbolic disassembly of a pickle.

    'pickle' is a file-like object, or string, containing a (at least one)
    pickle.  The pickle is disassembled from the current position, through
    the first STOP opcode encountered.

    Optional arg 'out' is a file-like object to which the disassembly is
    printed.  It defaults to sys.stdout.

1917 1918 1919 1920 1921 1922
    Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
    may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
    Passing the same memo object to another dis() call then allows disassembly
    to proceed across multiple pickles that were all created by the same
    pickler with the same memo.  Ordinarily you don't need to worry about this.

1923 1924
    Optional arg indentlevel is the number of blanks by which to indent
    a new MARK level.  It defaults to 4.
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

    In addition to printing the disassembly, some sanity checks are made:

    + All embedded opcode arguments "make sense".

    + Explicit and implicit pop operations have enough items on the stack.

    + When an opcode implicitly refers to a markobject, a markobject is
      actually on the stack.

    + A memo entry isn't referenced before it's defined.

    + The markobject isn't stored in the memo.

    + A memo entry isn't redefined.
1940 1941
    """

1942 1943 1944 1945 1946
    # Most of the hair here is for sanity checks, but most of it is needed
    # anyway to detect when a protocol 0 POP takes a MARK off the stack
    # (which in turn is needed to indent MARK blocks correctly).

    stack = []          # crude emulation of unpickler stack
1947 1948
    if memo is None:
        memo = {}       # crude emulation of unpicker memo
1949 1950
    maxproto = -1       # max protocol number seen
    markstack = []      # bytecode positions of MARK opcodes
1951
    indentchunk = ' ' * indentlevel
1952
    errormsg = None
1953 1954
    for opcode, arg, pos in genops(pickle):
        if pos is not None:
1955
            print("%5d:" % pos, end=' ', file=out)
1956

1957 1958 1959
        line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
                              indentchunk * len(markstack),
                              opcode.name)
1960

1961 1962 1963
        maxproto = max(maxproto, opcode.proto)
        before = opcode.stack_before    # don't mutate
        after = opcode.stack_after      # don't mutate
1964 1965 1966
        numtopop = len(before)

        # See whether a MARK should be popped.
1967
        markmsg = None
1968 1969 1970 1971
        if markobject in before or (opcode.name == "POP" and
                                    stack and
                                    stack[-1] is markobject):
            assert markobject not in after
1972 1973 1974
            if __debug__:
                if markobject in before:
                    assert before[-1] is stackslice
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
            if markstack:
                markpos = markstack.pop()
                if markpos is None:
                    markmsg = "(MARK at unknown opcode offset)"
                else:
                    markmsg = "(MARK at %d)" % markpos
                # Pop everything at and after the topmost markobject.
                while stack[-1] is not markobject:
                    stack.pop()
                stack.pop()
1985
                # Stop later code from popping too much.
1986
                try:
1987
                    numtopop = before.index(markobject)
1988 1989
                except ValueError:
                    assert opcode.name == "POP"
1990
                    numtopop = 0
1991 1992 1993 1994 1995
            else:
                errormsg = markmsg = "no MARK exists on stack"

        # Check for correct memo usage.
        if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
1996
            assert arg is not None
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
            if arg in memo:
                errormsg = "memo key %r already defined" % arg
            elif not stack:
                errormsg = "stack is empty -- can't store into memo"
            elif stack[-1] is markobject:
                errormsg = "can't store markobject in the memo"
            else:
                memo[arg] = stack[-1]

        elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
            if arg in memo:
                assert len(after) == 1
                after = [memo[arg]]     # for better stack emulation
            else:
                errormsg = "memo key %r has never been stored into" % arg
2012 2013 2014 2015 2016 2017 2018 2019

        if arg is not None or markmsg:
            # make a mild effort to align arguments
            line += ' ' * (10 - len(opcode.name))
            if arg is not None:
                line += ' ' + repr(arg)
            if markmsg:
                line += ' ' + markmsg
2020
        print(line, file=out)
2021

2022 2023 2024 2025 2026 2027
        if errormsg:
            # Note that we delayed complaining until the offending opcode
            # was printed.
            raise ValueError(errormsg)

        # Emulate the stack effects.
2028 2029 2030 2031 2032
        if len(stack) < numtopop:
            raise ValueError("tries to pop %d items from stack with "
                             "only %d items" % (numtopop, len(stack)))
        if numtopop:
            del stack[-numtopop:]
2033
        if markobject in after:
2034
            assert markobject not in before
2035 2036
            markstack.append(pos)

2037 2038
        stack.extend(after)

2039
    print("highest protocol among opcodes =", maxproto, file=out)
2040 2041
    if stack:
        raise ValueError("stack not empty after STOP: %r" % stack)
2042

2043 2044 2045 2046 2047
# For use in the doctest, simply as an example of a class to pickle.
class _Example:
    def __init__(self, value):
        self.value = value

2048
_dis_test = r"""
2049
>>> import pickle
2050 2051 2052
>>> x = [1, 2, (3, 4), {b'abc': "def"}]
>>> pkl0 = pickle.dumps(x, 0)
>>> dis(pkl0)
2053 2054 2055
    0: (    MARK
    1: l        LIST       (MARK at 0)
    2: p    PUT        0
2056
    5: L    LONG       1
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
    9: a    APPEND
   10: L    LONG       2
   14: a    APPEND
   15: (    MARK
   16: L        LONG       3
   20: L        LONG       4
   24: t        TUPLE      (MARK at 15)
   25: p    PUT        1
   28: a    APPEND
   29: (    MARK
   30: d        DICT       (MARK at 29)
   31: p    PUT        2
   34: c    GLOBAL     'builtins bytes'
   50: p    PUT        3
   53: (    MARK
   54: (        MARK
   55: l            LIST       (MARK at 54)
   56: p        PUT        4
   59: L        LONG       97
2076
   64: a        APPEND
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
   65: L        LONG       98
   70: a        APPEND
   71: L        LONG       99
   76: a        APPEND
   77: t        TUPLE      (MARK at 53)
   78: p    PUT        5
   81: R    REDUCE
   82: p    PUT        6
   85: V    UNICODE    'def'
   90: p    PUT        7
   93: s    SETITEM
   94: a    APPEND
   95: .    STOP
2090
highest protocol among opcodes = 0
2091 2092 2093

Try again with a "binary" pickle.

2094 2095
>>> pkl1 = pickle.dumps(x, 1)
>>> dis(pkl1)
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    0: ]    EMPTY_LIST
    1: q    BINPUT     0
    3: (    MARK
    4: K        BININT1    1
    6: K        BININT1    2
    8: (        MARK
    9: K            BININT1    3
   11: K            BININT1    4
   13: t            TUPLE      (MARK at 8)
   14: q        BINPUT     1
   16: }        EMPTY_DICT
   17: q        BINPUT     2
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
   19: c        GLOBAL     'builtins bytes'
   35: q        BINPUT     3
   37: (        MARK
   38: ]            EMPTY_LIST
   39: q            BINPUT     4
   41: (            MARK
   42: K                BININT1    97
   44: K                BININT1    98
   46: K                BININT1    99
   48: e                APPENDS    (MARK at 41)
   49: t            TUPLE      (MARK at 37)
   50: q        BINPUT     5
   52: R        REDUCE
2121 2122 2123 2124 2125 2126
   53: q        BINPUT     6
   55: X        BINUNICODE 'def'
   63: q        BINPUT     7
   65: s        SETITEM
   66: e        APPENDS    (MARK at 3)
   67: .    STOP
2127
highest protocol among opcodes = 1
2128 2129 2130

Exercise the INST/OBJ/BUILD family.

2131 2132 2133 2134 2135
>>> import pickletools
>>> dis(pickle.dumps(pickletools.dis, 0))
    0: c    GLOBAL     'pickletools dis'
   17: p    PUT        0
   20: .    STOP
2136
highest protocol among opcodes = 0
2137

2138 2139
>>> from pickletools import _Example
>>> x = [_Example(42)] * 2
2140
>>> dis(pickle.dumps(x, 0))
2141 2142 2143
    0: (    MARK
    1: l        LIST       (MARK at 0)
    2: p    PUT        0
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
    5: c    GLOBAL     'copyreg _reconstructor'
   29: p    PUT        1
   32: (    MARK
   33: c        GLOBAL     'pickletools _Example'
   55: p        PUT        2
   58: c        GLOBAL     'builtins object'
   75: p        PUT        3
   78: N        NONE
   79: t        TUPLE      (MARK at 32)
   80: p    PUT        4
   83: R    REDUCE
   84: p    PUT        5
   87: (    MARK
   88: d        DICT       (MARK at 87)
   89: p    PUT        6
   92: V    UNICODE    'value'
   99: p    PUT        7
  102: L    LONG       42
2162 2163 2164 2165 2166 2167
  107: s    SETITEM
  108: b    BUILD
  109: a    APPEND
  110: g    GET        5
  113: a    APPEND
  114: .    STOP
2168
highest protocol among opcodes = 0
2169 2170

>>> dis(pickle.dumps(x, 1))
2171 2172 2173
    0: ]    EMPTY_LIST
    1: q    BINPUT     0
    3: (    MARK
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
    4: c        GLOBAL     'copyreg _reconstructor'
   28: q        BINPUT     1
   30: (        MARK
   31: c            GLOBAL     'pickletools _Example'
   53: q            BINPUT     2
   55: c            GLOBAL     'builtins object'
   72: q            BINPUT     3
   74: N            NONE
   75: t            TUPLE      (MARK at 30)
   76: q        BINPUT     4
   78: R        REDUCE
   79: q        BINPUT     5
   81: }        EMPTY_DICT
   82: q        BINPUT     6
   84: X        BINUNICODE 'value'
   94: q        BINPUT     7
   96: K        BININT1    42
   98: s        SETITEM
   99: b        BUILD
  100: h        BINGET     5
  102: e        APPENDS    (MARK at 3)
  103: .    STOP
2196
highest protocol among opcodes = 1
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

Try "the canonical" recursive-object test.

>>> L = []
>>> T = L,
>>> L.append(T)
>>> L[0] is T
True
>>> T[0] is L
True
>>> L[0][0] is L
True
>>> T[0][0] is T
True
2211
>>> dis(pickle.dumps(L, 0))
2212 2213 2214 2215 2216 2217 2218 2219 2220
    0: (    MARK
    1: l        LIST       (MARK at 0)
    2: p    PUT        0
    5: (    MARK
    6: g        GET        0
    9: t        TUPLE      (MARK at 5)
   10: p    PUT        1
   13: a    APPEND
   14: .    STOP
2221 2222
highest protocol among opcodes = 0

2223
>>> dis(pickle.dumps(L, 1))
2224 2225 2226 2227 2228 2229 2230 2231
    0: ]    EMPTY_LIST
    1: q    BINPUT     0
    3: (    MARK
    4: h        BINGET     0
    6: t        TUPLE      (MARK at 3)
    7: q    BINPUT     1
    9: a    APPEND
   10: .    STOP
2232
highest protocol among opcodes = 1
2233

2234 2235 2236
Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
has to emulate the stack in order to realize that the POP opcode at 16 gets
rid of the MARK at 0.
2237

2238
>>> dis(pickle.dumps(T, 0))
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    0: (    MARK
    1: (        MARK
    2: l            LIST       (MARK at 1)
    3: p        PUT        0
    6: (        MARK
    7: g            GET        0
   10: t            TUPLE      (MARK at 6)
   11: p        PUT        1
   14: a        APPEND
   15: 0        POP
2249 2250 2251 2252 2253
   16: 0        POP        (MARK at 0)
   17: g    GET        1
   20: .    STOP
highest protocol among opcodes = 0

2254
>>> dis(pickle.dumps(T, 1))
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
    0: (    MARK
    1: ]        EMPTY_LIST
    2: q        BINPUT     0
    4: (        MARK
    5: h            BINGET     0
    7: t            TUPLE      (MARK at 4)
    8: q        BINPUT     1
   10: a        APPEND
   11: 1        POP_MARK   (MARK at 0)
   12: h    BINGET     1
   14: .    STOP
2266
highest protocol among opcodes = 1
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

Try protocol 2.

>>> dis(pickle.dumps(L, 2))
    0: \x80 PROTO      2
    2: ]    EMPTY_LIST
    3: q    BINPUT     0
    5: h    BINGET     0
    7: \x85 TUPLE1
    8: q    BINPUT     1
   10: a    APPEND
   11: .    STOP
2279
highest protocol among opcodes = 2
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

>>> dis(pickle.dumps(T, 2))
    0: \x80 PROTO      2
    2: ]    EMPTY_LIST
    3: q    BINPUT     0
    5: h    BINGET     0
    7: \x85 TUPLE1
    8: q    BINPUT     1
   10: a    APPEND
   11: 0    POP
   12: h    BINGET     1
   14: .    STOP
2292
highest protocol among opcodes = 2
2293 2294
"""

2295 2296
_memo_test = r"""
>>> import pickle
2297 2298
>>> import io
>>> f = io.BytesIO()
2299 2300 2301 2302 2303
>>> p = pickle.Pickler(f, 2)
>>> x = [1, 2, 3]
>>> p.dump(x)
>>> p.dump(x)
>>> f.seek(0)
2304
0
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
>>> memo = {}
>>> dis(f, memo=memo)
    0: \x80 PROTO      2
    2: ]    EMPTY_LIST
    3: q    BINPUT     0
    5: (    MARK
    6: K        BININT1    1
    8: K        BININT1    2
   10: K        BININT1    3
   12: e        APPENDS    (MARK at 5)
   13: .    STOP
highest protocol among opcodes = 2
>>> dis(f, memo=memo)
   14: \x80 PROTO      2
   16: h    BINGET     0
   18: .    STOP
highest protocol among opcodes = 2
"""

2324
__test__ = {'disassembler_test': _dis_test,
2325
            'disassembler_memo_test': _memo_test,
2326 2327 2328 2329 2330 2331 2332 2333
           }

def _test():
    import doctest
    return doctest.testmod()

if __name__ == "__main__":
    _test()