test_descrtut.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# This contains most of the executable examples from Guido's descr
# tutorial, once at
#
#     http://www.python.org/2.2/descrintro.html
#
# A few examples left implicit in the writeup were fleshed out, a few were
# skipped due to lack of interest (e.g., faking super() by hand isn't
# of much interest anymore), and a few were fiddled to make the output
# deterministic.

from test_support import sortdict
import pprint

14
class defaultdict(dict):
15
    def __init__(self, default=None):
16
        dict.__init__(self)
17 18 19 20
        self.default = default

    def __getitem__(self, key):
        try:
21
            return dict.__getitem__(self, key)
22 23 24 25 26 27
        except KeyError:
            return self.default

    def get(self, key, *args):
        if not args:
            args = (self.default,)
28
        return dict.get(self, key, *args)
29 30 31 32 33 34 35 36 37 38 39

    def merge(self, other):
        for key in other:
            if key not in self:
                self[key] = other[key]

test_1 = """

Here's the new type at work:

    >>> print defaultdict               # show our type
40
    <class 'test.test_descrtut.defaultdict'>
41 42 43 44 45 46
    >>> print type(defaultdict)         # its metatype
    <type 'type'>
    >>> a = defaultdict(default=0.0)    # create an instance
    >>> print a                         # show the instance
    {}
    >>> print type(a)                   # show its type
47
    <class 'test.test_descrtut.defaultdict'>
48
    >>> print a.__class__               # show its class
49
    <class 'test.test_descrtut.defaultdict'>
50
    >>> print type(a) is a.__class__    # its type is its class
51
    True
52 53 54 55 56 57 58
    >>> a[1] = 3.25                     # modify the instance
    >>> print a                         # show the new value
    {1: 3.25}
    >>> print a[1]                      # show the new item
    3.25
    >>> print a[0]                      # a non-existant item
    0.0
59
    >>> a.merge({1:100, 2:200})         # use a dict method
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    >>> print sortdict(a)               # show the result
    {1: 3.25, 2: 200}
    >>>

We can also use the new type in contexts where classic only allows "real"
dictionaries, such as the locals/globals dictionaries for the exec
statement or the built-in function eval():

    >>> def sorted(seq):
    ...     seq.sort()
    ...     return seq
    >>> print sorted(a.keys())
    [1, 2]
    >>> exec "x = 3; print x" in a
    3
    >>> print sorted(a.keys())
    [1, 2, '__builtins__', 'x']
    >>> print a['x']
    3
    >>>

However, our __getitem__() method is not used for variable access by the
interpreter:

    >>> exec "print foo" in a
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
      File "<string>", line 1, in ?
    NameError: name 'foo' is not defined
    >>>

Now I'll show that defaultdict instances have dynamic instance variables,
just like classic classes:

    >>> a.default = -1
    >>> print a["noway"]
    -1
    >>> a.default = -1000
    >>> print a["noway"]
    -1000
100
    >>> 'default' in dir(a)
101
    True
102 103 104 105
    >>> a.x1 = 100
    >>> a.x2 = 200
    >>> print a.x1
    100
106 107
    >>> d = dir(a)
    >>> 'default' in d and 'x1' in d and 'x2' in d
108
    True
109 110 111 112 113
    >>> print a.__dict__
    {'default': -1000, 'x2': 200, 'x1': 100}
    >>>
"""

114
class defaultdict2(dict):
115 116 117
    __slots__ = ['default']

    def __init__(self, default=None):
118
        dict.__init__(self)
119 120 121 122
        self.default = default

    def __getitem__(self, key):
        try:
123
            return dict.__getitem__(self, key)
124 125 126 127 128 129
        except KeyError:
            return self.default

    def get(self, key, *args):
        if not args:
            args = (self.default,)
130
        return dict.get(self, key, *args)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

    def merge(self, other):
        for key in other:
            if key not in self:
                self[key] = other[key]

test_2 = """

The __slots__ declaration takes a list of instance variables, and reserves
space for exactly these in the instance. When __slots__ is used, other
instance variables cannot be assigned to:

    >>> a = defaultdict2(default=0.0)
    >>> a[1]
    0.0
    >>> a.default = -1
    >>> a[1]
    -1
    >>> a.x1 = 1
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
    AttributeError: 'defaultdict2' object has no attribute 'x1'
    >>>

"""

test_3 = """

Introspecting instances of built-in types

For instance of built-in types, x.__class__ is now the same as type(x):

    >>> type([])
    <type 'list'>
    >>> [].__class__
    <type 'list'>
    >>> list
    <type 'list'>
    >>> isinstance([], list)
170
    True
171
    >>> isinstance([], dict)
172
    False
173
    >>> isinstance([], object)
174
    True
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    >>>

Under the new proposal, the __methods__ attribute no longer exists:

    >>> [].__methods__
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
    AttributeError: 'list' object has no attribute '__methods__'
    >>>

Instead, you can get the same information from the list type:

    >>> pprint.pprint(dir(list))    # like list.__dict__.keys(), but sorted
    ['__add__',
     '__class__',
     '__contains__',
     '__delattr__',
     '__delitem__',
193
     '__delslice__',
194
     '__doc__',
195 196
     '__eq__',
     '__ge__',
197
     '__getattribute__',
198 199 200 201 202 203 204
     '__getitem__',
     '__getslice__',
     '__gt__',
     '__hash__',
     '__iadd__',
     '__imul__',
     '__init__',
205
     '__iter__',
206 207 208 209 210 211
     '__le__',
     '__len__',
     '__lt__',
     '__mul__',
     '__ne__',
     '__new__',
212
     '__reduce__',
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
     '__repr__',
     '__rmul__',
     '__setattr__',
     '__setitem__',
     '__setslice__',
     '__str__',
     'append',
     'count',
     'extend',
     'index',
     'insert',
     'pop',
     'remove',
     'reverse',
     'sort']

The new introspection API gives more information than the old one:  in
addition to the regular methods, it also shows the methods that are
normally invoked through special notations, e.g. __iadd__ (+=), __len__
(len), __ne__ (!=). You can invoke any method from this list directly:

    >>> a = ['tic', 'tac']
    >>> list.__len__(a)          # same as len(a)
    2
    >>> a.__len__()              # ditto
    2
    >>> list.append(a, 'toe')    # same as a.append('toe')
    >>> a
    ['tic', 'tac', 'toe']
    >>>

This is just like it is for user-defined classes.
"""

test_4 = """

Static methods and class methods

The new introspection API makes it possible to add static methods and class
methods. Static methods are easy to describe: they behave pretty much like
static methods in C++ or Java. Here's an example:

    >>> class C:
    ...
    ...     def foo(x, y):
    ...         print "staticmethod", x, y
    ...     foo = staticmethod(foo)

    >>> C.foo(1, 2)
    staticmethod 1 2
    >>> c = C()
    >>> c.foo(1, 2)
    staticmethod 1 2

Class methods use a similar pattern to declare methods that receive an
implicit first argument that is the *class* for which they are invoked.

    >>> class C:
    ...     def foo(cls, y):
    ...         print "classmethod", cls, y
    ...     foo = classmethod(foo)

    >>> C.foo(1)
276
    classmethod test.test_descrtut.C 1
277 278
    >>> c = C()
    >>> c.foo(1)
279
    classmethod test.test_descrtut.C 1
280 281 282 283 284

    >>> class D(C):
    ...     pass

    >>> D.foo(1)
285
    classmethod test.test_descrtut.D 1
286 287
    >>> d = D()
    >>> d.foo(1)
288
    classmethod test.test_descrtut.D 1
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

This prints "classmethod __main__.D 1" both times; in other words, the
class passed as the first argument of foo() is the class involved in the
call, not the class involved in the definition of foo().

But notice this:

    >>> class E(C):
    ...     def foo(cls, y): # override C.foo
    ...         print "E.foo() called"
    ...         C.foo(y)
    ...     foo = classmethod(foo)

    >>> E.foo(1)
    E.foo() called
304
    classmethod test.test_descrtut.C 1
305 306 307
    >>> e = E()
    >>> e.foo(1)
    E.foo() called
308
    classmethod test.test_descrtut.C 1
309 310 311 312 313 314 315 316 317 318 319 320 321

In this example, the call to C.foo() from E.foo() will see class C as its
first argument, not class E. This is to be expected, since the call
specifies the class C. But it stresses the difference between these class
methods and methods defined in metaclasses (where an upcall to a metamethod
would pass the target class as an explicit first argument).
"""

test_5 = """

Attributes defined by get/set methods


322
    >>> class property(object):
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    ...
    ...     def __init__(self, get, set=None):
    ...         self.__get = get
    ...         self.__set = set
    ...
    ...     def __get__(self, inst, type=None):
    ...         return self.__get(inst)
    ...
    ...     def __set__(self, inst, value):
    ...         if self.__set is None:
    ...             raise AttributeError, "this attribute is read-only"
    ...         return self.__set(inst, value)

Now let's define a class with an attribute x defined by a pair of methods,
getx() and and setx():

    >>> class C(object):
    ...
    ...     def __init__(self):
    ...         self.__x = 0
    ...
    ...     def getx(self):
    ...         return self.__x
    ...
    ...     def setx(self, x):
    ...         if x < 0: x = 0
    ...         self.__x = x
    ...
351
    ...     x = property(getx, setx)
352 353 354 355 356 357 358 359 360 361 362 363

Here's a small demonstration:

    >>> a = C()
    >>> a.x = 10
    >>> print a.x
    10
    >>> a.x = -10
    >>> print a.x
    0
    >>>

364
Hmm -- property is builtin now, so let's try it that way too.
365

366 367 368
    >>> del property  # unmask the builtin
    >>> property
    <type 'property'>
369 370 371 372 373 374 375 376 377

    >>> class C(object):
    ...     def __init__(self):
    ...         self.__x = 0
    ...     def getx(self):
    ...         return self.__x
    ...     def setx(self, x):
    ...         if x < 0: x = 0
    ...         self.__x = x
378
    ...     x = property(getx, setx)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490


    >>> a = C()
    >>> a.x = 10
    >>> print a.x
    10
    >>> a.x = -10
    >>> print a.x
    0
    >>>
"""

test_6 = """

Method resolution order

This example is implicit in the writeup.

>>> class A:    # classic class
...     def save(self):
...         print "called A.save()"
>>> class B(A):
...     pass
>>> class C(A):
...     def save(self):
...         print "called C.save()"
>>> class D(B, C):
...     pass

>>> D().save()
called A.save()

>>> class A(object):  # new class
...     def save(self):
...         print "called A.save()"
>>> class B(A):
...     pass
>>> class C(A):
...     def save(self):
...         print "called C.save()"
>>> class D(B, C):
...     pass

>>> D().save()
called C.save()
"""

class A(object):
    def m(self):
        return "A"

class B(A):
    def m(self):
        return "B" + super(B, self).m()

class C(A):
    def m(self):
        return "C" + super(C, self).m()

class D(C, B):
    def m(self):
        return "D" + super(D, self).m()


test_7 = """

Cooperative methods and "super"

>>> print D().m() # "DCBA"
DCBA
"""

test_8 = """

Backwards incompatibilities

>>> class A:
...     def foo(self):
...         print "called A.foo()"

>>> class B(A):
...     pass

>>> class C(A):
...     def foo(self):
...         B.foo(self)

>>> C().foo()
Traceback (most recent call last):
 ...
TypeError: unbound method foo() must be called with B instance as first argument (got C instance instead)

>>> class C(A):
...     def foo(self):
...         A.foo(self)
>>> C().foo()
called A.foo()
"""

__test__ = {"tut1": test_1,
            "tut2": test_2,
            "tut3": test_3,
            "tut4": test_4,
            "tut5": test_5,
            "tut6": test_6,
            "tut7": test_7,
            "tut8": test_8}

# Magic test name that regrtest.py invokes *after* importing this module.
# This worms around a bootstrap problem.
# Note that doctest and regrtest both look in sys.argv for a "-v" argument,
# so this works as expected in both ways of running regrtest.
491 492 493 494 495 496 497 498
def test_main(verbose=None):
    # Obscure:  import this module as test.test_descrtut instead of as
    # plain test_descrtut because the name of this module works its way
    # into the doctest examples, and unless the full test.test_descrtut
    # business is used the name can change depending on how the test is
    # invoked.
    import test_support, test.test_descrtut
    test_support.run_doctest(test.test_descrtut, verbose)
499 500 501

# This part isn't needed for regrtest, but for running the test directly.
if __name__ == "__main__":
502
    test_main(1)