transpose.c 7.35 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/*
 * Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */


#include "mpdecimal.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <assert.h>
#include "bits.h"
#include "constants.h"
#include "typearith.h"
#include "transpose.h"


#define BUFSIZE 4096
#define SIDE 128


/* Bignum: The transpose functions are used for very large transforms
   in sixstep.c and fourstep.c. */


/* Definition of the matrix transpose */
void
std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
{
    mpd_size_t idest, isrc;
    mpd_size_t r, c;

    for (r = 0; r < rows; r++) {
        isrc = r * cols;
        idest = r;
        for (c = 0; c < cols; c++) {
            dest[idest] = src[isrc];
            isrc += 1;
            idest += rows;
        }
    }
}

/*
 * Swap half-rows of 2^n * (2*2^n) matrix.
 * FORWARD_CYCLE: even/odd permutation of the halfrows.
 * BACKWARD_CYCLE: reverse the even/odd permutation.
 */
static int
swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
{
    mpd_uint_t buf1[BUFSIZE];
    mpd_uint_t buf2[BUFSIZE];
    mpd_uint_t *readbuf, *writebuf, *hp;
    mpd_size_t *done, dbits;
    mpd_size_t b = BUFSIZE, stride;
    mpd_size_t hn, hmax; /* halfrow number */
    mpd_size_t m, r=0;
    mpd_size_t offset;
    mpd_size_t next;


    assert(cols == mul_size_t(2, rows));

    if (dir == FORWARD_CYCLE) {
        r = rows;
    }
    else if (dir == BACKWARD_CYCLE) {
        r = 2;
    }
    else {
        abort(); /* GCOV_NOT_REACHED */
    }

    m = cols - 1;
    hmax = rows; /* cycles start at odd halfrows */
    dbits = 8 * sizeof *done;
    if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
        return 0;
    }

    for (hn = 1; hn <= hmax; hn += 2) {

        if (done[hn/dbits] & mpd_bits[hn%dbits]) {
            continue;
        }

        readbuf = buf1; writebuf = buf2;

        for (offset = 0; offset < cols/2; offset += b) {

            stride = (offset + b < cols/2) ? b : cols/2-offset;

            hp = matrix + hn*cols/2;
            memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
            pointerswap(&readbuf, &writebuf);

            next = mulmod_size_t(hn, r, m);
            hp = matrix + next*cols/2;

            while (next != hn) {

                memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
                memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
                pointerswap(&readbuf, &writebuf);

                done[next/dbits] |= mpd_bits[next%dbits];

                next = mulmod_size_t(next, r, m);
                    hp = matrix + next*cols/2;

            }

            memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));

            done[hn/dbits] |= mpd_bits[hn%dbits];
        }
    }

    mpd_free(done);
    return 1;
}

/* In-place transpose of a square matrix */
static inline void
squaretrans(mpd_uint_t *buf, mpd_size_t cols)
{
    mpd_uint_t tmp;
    mpd_size_t idest, isrc;
    mpd_size_t r, c;

    for (r = 0; r < cols; r++) {
        c = r+1;
        isrc = r*cols + c;
        idest = c*cols + r;
        for (c = r+1; c < cols; c++) {
            tmp = buf[isrc];
            buf[isrc] = buf[idest];
            buf[idest] = tmp;
            isrc += 1;
            idest += cols;
        }
    }
}

/*
 * Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
 * square blocks with side length 'SIDE'. First, the blocks are transposed,
 * then a square tranposition is done on each individual block.
 */
static void
squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
{
    mpd_uint_t buf1[SIDE*SIDE];
    mpd_uint_t buf2[SIDE*SIDE];
    mpd_uint_t *to, *from;
    mpd_size_t b = size;
    mpd_size_t r, c;
    mpd_size_t i;

    while (b > SIDE) b >>= 1;

    for (r = 0; r < size; r += b) {

        for (c = r; c < size; c += b) {

            from = matrix + r*size + c;
            to = buf1;
            for (i = 0; i < b; i++) {
                memcpy(to, from, b*(sizeof *to));
                from += size;
                to += b;
            }
            squaretrans(buf1, b);

            if (r == c) {
                to = matrix + r*size + c;
                from = buf1;
                for (i = 0; i < b; i++) {
                    memcpy(to, from, b*(sizeof *to));
                    from += b;
                    to += size;
                }
                continue;
            }
            else {
                from = matrix + c*size + r;
                to = buf2;
                for (i = 0; i < b; i++) {
                    memcpy(to, from, b*(sizeof *to));
                    from += size;
                    to += b;
                }
                squaretrans(buf2, b);

                to = matrix + c*size + r;
                from = buf1;
                for (i = 0; i < b; i++) {
                    memcpy(to, from, b*(sizeof *to));
                    from += b;
                    to += size;
                }

                to = matrix + r*size + c;
                from = buf2;
                for (i = 0; i < b; i++) {
                    memcpy(to, from, b*(sizeof *to));
                    from += b;
                    to += size;
                }
            }
        }
    }

}

/*
 * In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
 * or a (2*2^n) x 2^n matrix.
 */
int
transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
{
    mpd_size_t size = mul_size_t(rows, cols);

    assert(ispower2(rows));
    assert(ispower2(cols));

    if (cols == rows) {
        squaretrans_pow2(matrix, rows);
    }
    else if (cols == mul_size_t(2, rows)) {
        if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
            return 0;
        }
        squaretrans_pow2(matrix, rows);
        squaretrans_pow2(matrix+(size/2), rows);
    }
    else if (rows == mul_size_t(2, cols)) {
        squaretrans_pow2(matrix, cols);
        squaretrans_pow2(matrix+(size/2), cols);
        if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
            return 0;
        }
    }
    else {
        abort(); /* GCOV_NOT_REACHED */
    }

    return 1;
}