thread_nt.h 10.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
/* Eliminated some memory leaks, gsw@agere.com */

#include <windows.h>
#include <limits.h>
#ifdef HAVE_PROCESS_H
#include <process.h>
#endif

/* options */
#ifndef _PY_USE_CV_LOCKS
#define _PY_USE_CV_LOCKS 1     /* use locks based on cond vars */
#endif

/* Now, define a non-recursive mutex using either condition variables
 * and critical sections (fast) or using operating system mutexes
 * (slow)
 */

#if _PY_USE_CV_LOCKS

#include "condvar.h"

typedef struct _NRMUTEX
{
    PyMUTEX_T cs;
    PyCOND_T cv;
    int locked;
} NRMUTEX;
typedef NRMUTEX *PNRMUTEX;

PNRMUTEX
AllocNonRecursiveMutex()
{
    PNRMUTEX m = (PNRMUTEX)malloc(sizeof(NRMUTEX));
    if (!m)
        return NULL;
    if (PyCOND_INIT(&m->cv))
        goto fail;
    if (PyMUTEX_INIT(&m->cs)) {
        PyCOND_FINI(&m->cv);
        goto fail;
    }
    m->locked = 0;
    return m;
fail:
    free(m);
    return NULL;
}

VOID
FreeNonRecursiveMutex(PNRMUTEX mutex)
{
    if (mutex) {
        PyCOND_FINI(&mutex->cv);
        PyMUTEX_FINI(&mutex->cs);
        free(mutex);
    }
}

DWORD
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
{
    DWORD result = WAIT_OBJECT_0;
    if (PyMUTEX_LOCK(&mutex->cs))
        return WAIT_FAILED;
    if (milliseconds == INFINITE) {
        while (mutex->locked) {
            if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
                result = WAIT_FAILED;
                break;
            }
        }
    } else if (milliseconds != 0) {
        /* wait at least until the target */
        DWORD now, target = GetTickCount() + milliseconds;
        while (mutex->locked) {
            if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, milliseconds*1000) < 0) {
                result = WAIT_FAILED;
                break;
            }
            now = GetTickCount();
            if (target <= now)
                break;
            milliseconds = target-now;
        }
    }
    if (!mutex->locked) {
        mutex->locked = 1;
        result = WAIT_OBJECT_0;
    } else if (result == WAIT_OBJECT_0)
        result = WAIT_TIMEOUT;
    /* else, it is WAIT_FAILED */
    PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
    return result;
}

BOOL
LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
    BOOL result;
    if (PyMUTEX_LOCK(&mutex->cs))
        return FALSE;
    mutex->locked = 0;
    result = PyCOND_SIGNAL(&mutex->cv);
    result &= PyMUTEX_UNLOCK(&mutex->cs);
    return result;
}    

#else /* if ! _PY_USE_CV_LOCKS */

/* NR-locks based on a kernel mutex */
#define PNRMUTEX HANDLE

PNRMUTEX
AllocNonRecursiveMutex()
{
    return CreateSemaphore(NULL, 1, 1, NULL);
}

VOID
FreeNonRecursiveMutex(PNRMUTEX mutex)
{
    /* No in-use check */
    CloseHandle(mutex);
}

DWORD
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
{
    return WaitForSingleObject(mutex, milliseconds);
}

BOOL
LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
    return ReleaseSemaphore(mutex, 1, NULL);
}
#endif /* _PY_USE_CV_LOCKS */

long PyThread_get_thread_ident(void);

/*
 * Initialization of the C package, should not be needed.
 */
static void
PyThread__init_thread(void)
{
}

/*
 * Thread support.
 */

typedef struct {
    void (*func)(void*);
    void *arg;
} callobj;

/* thunker to call adapt between the function type used by the system's
thread start function and the internally used one. */
#if defined(MS_WINCE)
static DWORD WINAPI
#else
static unsigned __stdcall
#endif
bootstrap(void *call)
{
    callobj *obj = (callobj*)call;
    void (*func)(void*) = obj->func;
    void *arg = obj->arg;
    HeapFree(GetProcessHeap(), 0, obj);
    func(arg);
    return 0;
}

long
PyThread_start_new_thread(void (*func)(void *), void *arg)
{
    HANDLE hThread;
    unsigned threadID;
    callobj *obj;

    dprintf(("%ld: PyThread_start_new_thread called\n",
             PyThread_get_thread_ident()));
    if (!initialized)
        PyThread_init_thread();

    obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
    if (!obj)
        return -1;
    obj->func = func;
    obj->arg = arg;
#if defined(MS_WINCE)
    hThread = CreateThread(NULL,
                           Py_SAFE_DOWNCAST(_pythread_stacksize, Py_ssize_t, SIZE_T),
                           bootstrap, obj, 0, &threadID);
#else
    hThread = (HANDLE)_beginthreadex(0,
                      Py_SAFE_DOWNCAST(_pythread_stacksize,
                                       Py_ssize_t, unsigned int),
                      bootstrap, obj,
                      0, &threadID);
#endif
    if (hThread == 0) {
#if defined(MS_WINCE)
        /* Save error in variable, to prevent PyThread_get_thread_ident
           from clobbering it. */
        unsigned e = GetLastError();
        dprintf(("%ld: PyThread_start_new_thread failed, win32 error code %u\n",
                 PyThread_get_thread_ident(), e));
#else
        /* I've seen errno == EAGAIN here, which means "there are
         * too many threads".
         */
        int e = errno;
        dprintf(("%ld: PyThread_start_new_thread failed, errno %d\n",
                 PyThread_get_thread_ident(), e));
#endif
        threadID = (unsigned)-1;
        HeapFree(GetProcessHeap(), 0, obj);
    }
    else {
        dprintf(("%ld: PyThread_start_new_thread succeeded: %p\n",
                 PyThread_get_thread_ident(), (void*)hThread));
        CloseHandle(hThread);
    }
    return (long) threadID;
}

/*
 * Return the thread Id instead of an handle. The Id is said to uniquely identify the
 * thread in the system
 */
long
PyThread_get_thread_ident(void)
{
    if (!initialized)
        PyThread_init_thread();

    return GetCurrentThreadId();
}

void
PyThread_exit_thread(void)
{
    dprintf(("%ld: PyThread_exit_thread called\n", PyThread_get_thread_ident()));
    if (!initialized)
        exit(0);
#if defined(MS_WINCE)
    ExitThread(0);
#else
    _endthreadex(0);
#endif
}

/*
 * Lock support. It has too be implemented as semaphores.
 * I [Dag] tried to implement it with mutex but I could find a way to
 * tell whether a thread already own the lock or not.
 */
PyThread_type_lock
PyThread_allocate_lock(void)
{
    PNRMUTEX aLock;

    dprintf(("PyThread_allocate_lock called\n"));
    if (!initialized)
        PyThread_init_thread();

    aLock = AllocNonRecursiveMutex() ;

    dprintf(("%ld: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock));

    return (PyThread_type_lock) aLock;
}

void
PyThread_free_lock(PyThread_type_lock aLock)
{
    dprintf(("%ld: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock));

    FreeNonRecursiveMutex(aLock) ;
}

/*
 * Return 1 on success if the lock was acquired
 *
 * and 0 if the lock was not acquired. This means a 0 is returned
 * if the lock has already been acquired by this thread!
 */
PyLockStatus
PyThread_acquire_lock_timed(PyThread_type_lock aLock,
                            PY_TIMEOUT_T microseconds, int intr_flag)
{
    /* Fow now, intr_flag does nothing on Windows, and lock acquires are
     * uninterruptible.  */
    PyLockStatus success;
    PY_TIMEOUT_T milliseconds;

    if (microseconds >= 0) {
        milliseconds = microseconds / 1000;
        if (microseconds % 1000 > 0)
            ++milliseconds;
        if ((DWORD) milliseconds != milliseconds)
            Py_FatalError("Timeout too large for a DWORD, "
                           "please check PY_TIMEOUT_MAX");
    }
    else
        milliseconds = INFINITE;

    dprintf(("%ld: PyThread_acquire_lock_timed(%p, %lld) called\n",
             PyThread_get_thread_ident(), aLock, microseconds));

    if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock,
                                        (DWORD)milliseconds) == WAIT_OBJECT_0) {
        success = PY_LOCK_ACQUIRED;
    }
    else {
        success = PY_LOCK_FAILURE;
    }

    dprintf(("%ld: PyThread_acquire_lock(%p, %lld) -> %d\n",
             PyThread_get_thread_ident(), aLock, microseconds, success));

    return success;
}
int
PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
{
    return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
}

void
PyThread_release_lock(PyThread_type_lock aLock)
{
    dprintf(("%ld: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock));

    if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock)))
        dprintf(("%ld: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError()));
}

/* minimum/maximum thread stack sizes supported */
#define THREAD_MIN_STACKSIZE    0x8000          /* 32kB */
#define THREAD_MAX_STACKSIZE    0x10000000      /* 256MB */

/* set the thread stack size.
 * Return 0 if size is valid, -1 otherwise.
 */
static int
_pythread_nt_set_stacksize(size_t size)
{
    /* set to default */
    if (size == 0) {
        _pythread_stacksize = 0;
        return 0;
    }

    /* valid range? */
    if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
        _pythread_stacksize = size;
        return 0;
    }

    return -1;
}

#define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)


/* use native Windows TLS functions */
#define Py_HAVE_NATIVE_TLS

#ifdef Py_HAVE_NATIVE_TLS
int
PyThread_create_key(void)
{
    DWORD result= TlsAlloc();
    if (result == TLS_OUT_OF_INDEXES)
        return -1;
    return (int)result;
}

void
PyThread_delete_key(int key)
{
    TlsFree(key);
}

/* We must be careful to emulate the strange semantics implemented in thread.c,
 * where the value is only set if it hasn't been set before.
 */
int
PyThread_set_key_value(int key, void *value)
{
    BOOL ok;
    void *oldvalue;

    assert(value != NULL);
    oldvalue = TlsGetValue(key);
    if (oldvalue != NULL)
        /* ignore value if already set */
        return 0;
    ok = TlsSetValue(key, value);
    if (!ok)
        return -1;
    return 0;
}

void *
PyThread_get_key_value(int key)
{
    /* because TLS is used in the Py_END_ALLOW_THREAD macro,
     * it is necessary to preserve the windows error state, because
     * it is assumed to be preserved across the call to the macro.
     * Ideally, the macro should be fixed, but it is simpler to
     * do it here.
     */
    DWORD error = GetLastError();
    void *result = TlsGetValue(key);
    SetLastError(error);
    return result;
}

void
PyThread_delete_key_value(int key)
{
    /* NULL is used as "key missing", and it is also the default
     * given by TlsGetValue() if nothing has been set yet.
     */
    TlsSetValue(key, NULL);
}

/* reinitialization of TLS is not necessary after fork when using
 * the native TLS functions.  And forking isn't supported on Windows either.
 */
void
PyThread_ReInitTLS(void)
{}

#endif