difflib.py 40.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
#! /usr/bin/env python

"""
Module difflib -- helpers for computing deltas between objects.

Function get_close_matches(word, possibilities, n=3, cutoff=0.6):
    Use SequenceMatcher to return list of the best "good enough" matches.

Function ndiff(a, b):
    Return a delta: the difference between `a` and `b` (lists of strings).

Function restore(delta, which):
    Return one of the two sequences that generated an ndiff delta.

Class SequenceMatcher:
    A flexible class for comparing pairs of sequences of any type.

Class Differ:
    For producing human-readable deltas from sequences of lines of text.
"""

__all__ = ['get_close_matches', 'ndiff', 'restore', 'SequenceMatcher',
           'Differ']

class SequenceMatcher:

    """
    SequenceMatcher is a flexible class for comparing pairs of sequences of
    any type, so long as the sequence elements are hashable.  The basic
    algorithm predates, and is a little fancier than, an algorithm
    published in the late 1980's by Ratcliff and Obershelp under the
    hyperbolic name "gestalt pattern matching".  The basic idea is to find
    the longest contiguous matching subsequence that contains no "junk"
    elements (R-O doesn't address junk).  The same idea is then applied
    recursively to the pieces of the sequences to the left and to the right
    of the matching subsequence.  This does not yield minimal edit
    sequences, but does tend to yield matches that "look right" to people.

    SequenceMatcher tries to compute a "human-friendly diff" between two
    sequences.  Unlike e.g. UNIX(tm) diff, the fundamental notion is the
    longest *contiguous* & junk-free matching subsequence.  That's what
    catches peoples' eyes.  The Windows(tm) windiff has another interesting
    notion, pairing up elements that appear uniquely in each sequence.
    That, and the method here, appear to yield more intuitive difference
    reports than does diff.  This method appears to be the least vulnerable
    to synching up on blocks of "junk lines", though (like blank lines in
    ordinary text files, or maybe "<P>" lines in HTML files).  That may be
    because this is the only method of the 3 that has a *concept* of
    "junk" <wink>.

    Example, comparing two strings, and considering blanks to be "junk":

    >>> s = SequenceMatcher(lambda x: x == " ",
    ...                     "private Thread currentThread;",
    ...                     "private volatile Thread currentThread;")
    >>>

    .ratio() returns a float in [0, 1], measuring the "similarity" of the
    sequences.  As a rule of thumb, a .ratio() value over 0.6 means the
    sequences are close matches:

    >>> print round(s.ratio(), 3)
    0.866
    >>>

    If you're only interested in where the sequences match,
    .get_matching_blocks() is handy:

    >>> for block in s.get_matching_blocks():
    ...     print "a[%d] and b[%d] match for %d elements" % block
    a[0] and b[0] match for 8 elements
    a[8] and b[17] match for 6 elements
    a[14] and b[23] match for 15 elements
    a[29] and b[38] match for 0 elements

    Note that the last tuple returned by .get_matching_blocks() is always a
    dummy, (len(a), len(b), 0), and this is the only case in which the last
    tuple element (number of elements matched) is 0.

    If you want to know how to change the first sequence into the second,
    use .get_opcodes():

    >>> for opcode in s.get_opcodes():
    ...     print "%6s a[%d:%d] b[%d:%d]" % opcode
     equal a[0:8] b[0:8]
    insert a[8:8] b[8:17]
     equal a[8:14] b[17:23]
     equal a[14:29] b[23:38]

    See the Differ class for a fancy human-friendly file differencer, which
    uses SequenceMatcher both to compare sequences of lines, and to compare
    sequences of characters within similar (near-matching) lines.

    See also function get_close_matches() in this module, which shows how
    simple code building on SequenceMatcher can be used to do useful work.

    Timing:  Basic R-O is cubic time worst case and quadratic time expected
    case.  SequenceMatcher is quadratic time for the worst case and has
    expected-case behavior dependent in a complicated way on how many
    elements the sequences have in common; best case time is linear.

    Methods:

    __init__(isjunk=None, a='', b='')
        Construct a SequenceMatcher.

    set_seqs(a, b)
        Set the two sequences to be compared.

    set_seq1(a)
        Set the first sequence to be compared.

    set_seq2(b)
        Set the second sequence to be compared.

    find_longest_match(alo, ahi, blo, bhi)
        Find longest matching block in a[alo:ahi] and b[blo:bhi].

    get_matching_blocks()
        Return list of triples describing matching subsequences.

    get_opcodes()
        Return list of 5-tuples describing how to turn a into b.

    ratio()
        Return a measure of the sequences' similarity (float in [0,1]).

    quick_ratio()
        Return an upper bound on .ratio() relatively quickly.

    real_quick_ratio()
        Return an upper bound on ratio() very quickly.
    """

    def __init__(self, isjunk=None, a='', b=''):
        """Construct a SequenceMatcher.

        Optional arg isjunk is None (the default), or a one-argument
        function that takes a sequence element and returns true iff the
        element is junk.  None is equivalent to passing "lambda x: 0", i.e.
        no elements are considered to be junk.  For example, pass
            lambda x: x in " \\t"
        if you're comparing lines as sequences of characters, and don't
        want to synch up on blanks or hard tabs.

        Optional arg a is the first of two sequences to be compared.  By
        default, an empty string.  The elements of a must be hashable.  See
        also .set_seqs() and .set_seq1().

        Optional arg b is the second of two sequences to be compared.  By
        default, an empty string.  The elements of b must be hashable. See
        also .set_seqs() and .set_seq2().
        """

        # Members:
        # a
        #      first sequence
        # b
        #      second sequence; differences are computed as "what do
        #      we need to do to 'a' to change it into 'b'?"
        # b2j
        #      for x in b, b2j[x] is a list of the indices (into b)
        #      at which x appears; junk elements do not appear
        # fullbcount
        #      for x in b, fullbcount[x] == the number of times x
        #      appears in b; only materialized if really needed (used
        #      only for computing quick_ratio())
        # matching_blocks
        #      a list of (i, j, k) triples, where a[i:i+k] == b[j:j+k];
        #      ascending & non-overlapping in i and in j; terminated by
        #      a dummy (len(a), len(b), 0) sentinel
        # opcodes
        #      a list of (tag, i1, i2, j1, j2) tuples, where tag is
        #      one of
        #          'replace'   a[i1:i2] should be replaced by b[j1:j2]
        #          'delete'    a[i1:i2] should be deleted
        #          'insert'    b[j1:j2] should be inserted
        #          'equal'     a[i1:i2] == b[j1:j2]
        # isjunk
        #      a user-supplied function taking a sequence element and
        #      returning true iff the element is "junk" -- this has
        #      subtle but helpful effects on the algorithm, which I'll
        #      get around to writing up someday <0.9 wink>.
        #      DON'T USE!  Only __chain_b uses this.  Use isbjunk.
        # isbjunk
        #      for x in b, isbjunk(x) == isjunk(x) but much faster;
        #      it's really the has_key method of a hidden dict.
        #      DOES NOT WORK for x in a!
        # isbpopular
        #      for x in b, isbpopular(x) is true iff b is reasonably long
        #      (at least 200 elements) and x accounts for more than 1% of
        #      its elements.  DOES NOT WORK for x in a!

        self.isjunk = isjunk
        self.a = self.b = None
        self.set_seqs(a, b)

    def set_seqs(self, a, b):
        """Set the two sequences to be compared.

        >>> s = SequenceMatcher()
        >>> s.set_seqs("abcd", "bcde")
        >>> s.ratio()
        0.75
        """

        self.set_seq1(a)
        self.set_seq2(b)

    def set_seq1(self, a):
        """Set the first sequence to be compared.

        The second sequence to be compared is not changed.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.set_seq1("bcde")
        >>> s.ratio()
        1.0
        >>>

        SequenceMatcher computes and caches detailed information about the
        second sequence, so if you want to compare one sequence S against
        many sequences, use .set_seq2(S) once and call .set_seq1(x)
        repeatedly for each of the other sequences.

        See also set_seqs() and set_seq2().
        """

        if a is self.a:
            return
        self.a = a
        self.matching_blocks = self.opcodes = None

    def set_seq2(self, b):
        """Set the second sequence to be compared.

        The first sequence to be compared is not changed.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.set_seq2("abcd")
        >>> s.ratio()
        1.0
        >>>

        SequenceMatcher computes and caches detailed information about the
        second sequence, so if you want to compare one sequence S against
        many sequences, use .set_seq2(S) once and call .set_seq1(x)
        repeatedly for each of the other sequences.

        See also set_seqs() and set_seq1().
        """

        if b is self.b:
            return
        self.b = b
        self.matching_blocks = self.opcodes = None
        self.fullbcount = None
        self.__chain_b()

    # For each element x in b, set b2j[x] to a list of the indices in
    # b where x appears; the indices are in increasing order; note that
    # the number of times x appears in b is len(b2j[x]) ...
    # when self.isjunk is defined, junk elements don't show up in this
    # map at all, which stops the central find_longest_match method
    # from starting any matching block at a junk element ...
    # also creates the fast isbjunk function ...
    # b2j also does not contain entries for "popular" elements, meaning
    # elements that account for more than 1% of the total elements, and
    # when the sequence is reasonably large (>= 200 elements); this can
    # be viewed as an adaptive notion of semi-junk, and yields an enormous
    # speedup when, e.g., comparing program files with hundreds of
    # instances of "return NULL;" ...
    # note that this is only called when b changes; so for cross-product
    # kinds of matches, it's best to call set_seq2 once, then set_seq1
    # repeatedly

    def __chain_b(self):
        # Because isjunk is a user-defined (not C) function, and we test
        # for junk a LOT, it's important to minimize the number of calls.
        # Before the tricks described here, __chain_b was by far the most
        # time-consuming routine in the whole module!  If anyone sees
        # Jim Roskind, thank him again for profile.py -- I never would
        # have guessed that.
        # The first trick is to build b2j ignoring the possibility
        # of junk.  I.e., we don't call isjunk at all yet.  Throwing
        # out the junk later is much cheaper than building b2j "right"
        # from the start.
        b = self.b
        n = len(b)
        self.b2j = b2j = {}
        populardict = {}
        for i, elt in enumerate(b):
            if elt in b2j:
                indices = b2j[elt]
                if n >= 200 and len(indices) * 100 > n:
                    populardict[elt] = 1
                    del indices[:]
                else:
                    indices.append(i)
            else:
                b2j[elt] = [i]

        # Purge leftover indices for popular elements.
        for elt in populardict:
            del b2j[elt]

        # Now b2j.keys() contains elements uniquely, and especially when
        # the sequence is a string, that's usually a good deal smaller
        # than len(string).  The difference is the number of isjunk calls
        # saved.
        isjunk = self.isjunk
        junkdict = {}
        if isjunk:
            for d in populardict, b2j:
                for elt in d.keys():
                    if isjunk(elt):
                        junkdict[elt] = 1
                        del d[elt]

        # Now for x in b, isjunk(x) == x in junkdict, but the
        # latter is much faster.  Note too that while there may be a
        # lot of junk in the sequence, the number of *unique* junk
        # elements is probably small.  So the memory burden of keeping
        # this dict alive is likely trivial compared to the size of b2j.
        self.isbjunk = junkdict.has_key
        self.isbpopular = populardict.has_key

    def find_longest_match(self, alo, ahi, blo, bhi):
        """Find longest matching block in a[alo:ahi] and b[blo:bhi].

        If isjunk is not defined:

        Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
            alo <= i <= i+k <= ahi
            blo <= j <= j+k <= bhi
        and for all (i',j',k') meeting those conditions,
            k >= k'
            i <= i'
            and if i == i', j <= j'

        In other words, of all maximal matching blocks, return one that
        starts earliest in a, and of all those maximal matching blocks that
        start earliest in a, return the one that starts earliest in b.

        >>> s = SequenceMatcher(None, " abcd", "abcd abcd")
        >>> s.find_longest_match(0, 5, 0, 9)
        (0, 4, 5)

        If isjunk is defined, first the longest matching block is
        determined as above, but with the additional restriction that no
        junk element appears in the block.  Then that block is extended as
        far as possible by matching (only) junk elements on both sides.  So
        the resulting block never matches on junk except as identical junk
        happens to be adjacent to an "interesting" match.

        Here's the same example as before, but considering blanks to be
        junk.  That prevents " abcd" from matching the " abcd" at the tail
        end of the second sequence directly.  Instead only the "abcd" can
        match, and matches the leftmost "abcd" in the second sequence:

        >>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
        >>> s.find_longest_match(0, 5, 0, 9)
        (1, 0, 4)

        If no blocks match, return (alo, blo, 0).

        >>> s = SequenceMatcher(None, "ab", "c")
        >>> s.find_longest_match(0, 2, 0, 1)
        (0, 0, 0)
        """

        # CAUTION:  stripping common prefix or suffix would be incorrect.
        # E.g.,
        #    ab
        #    acab
        # Longest matching block is "ab", but if common prefix is
        # stripped, it's "a" (tied with "b").  UNIX(tm) diff does so
        # strip, so ends up claiming that ab is changed to acab by
        # inserting "ca" in the middle.  That's minimal but unintuitive:
        # "it's obvious" that someone inserted "ac" at the front.
        # Windiff ends up at the same place as diff, but by pairing up
        # the unique 'b's and then matching the first two 'a's.

        a, b, b2j, isbjunk = self.a, self.b, self.b2j, self.isbjunk
        besti, bestj, bestsize = alo, blo, 0
        # find longest junk-free match
        # during an iteration of the loop, j2len[j] = length of longest
        # junk-free match ending with a[i-1] and b[j]
        j2len = {}
        nothing = []
        for i in xrange(alo, ahi):
            # look at all instances of a[i] in b; note that because
            # b2j has no junk keys, the loop is skipped if a[i] is junk
            j2lenget = j2len.get
            newj2len = {}
            for j in b2j.get(a[i], nothing):
                # a[i] matches b[j]
                if j < blo:
                    continue
                if j >= bhi:
                    break
                k = newj2len[j] = j2lenget(j-1, 0) + 1
                if k > bestsize:
                    besti, bestj, bestsize = i-k+1, j-k+1, k
            j2len = newj2len

        # Extend the best by non-junk elements on each end.  In particular,
        # "popular" non-junk elements aren't in b2j, which greatly speeds
        # the inner loop above, but also means "the best" match so far
        # doesn't contain any junk *or* popular non-junk elements.
        while besti > alo and bestj > blo and \
              not isbjunk(b[bestj-1]) and \
              a[besti-1] == b[bestj-1]:
            besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
        while besti+bestsize < ahi and bestj+bestsize < bhi and \
              not isbjunk(b[bestj+bestsize]) and \
              a[besti+bestsize] == b[bestj+bestsize]:
            bestsize += 1

        # Now that we have a wholly interesting match (albeit possibly
        # empty!), we may as well suck up the matching junk on each
        # side of it too.  Can't think of a good reason not to, and it
        # saves post-processing the (possibly considerable) expense of
        # figuring out what to do with it.  In the case of an empty
        # interesting match, this is clearly the right thing to do,
        # because no other kind of match is possible in the regions.
        while besti > alo and bestj > blo and \
              isbjunk(b[bestj-1]) and \
              a[besti-1] == b[bestj-1]:
            besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
        while besti+bestsize < ahi and bestj+bestsize < bhi and \
              isbjunk(b[bestj+bestsize]) and \
              a[besti+bestsize] == b[bestj+bestsize]:
            bestsize = bestsize + 1

        return besti, bestj, bestsize

    def get_matching_blocks(self):
        """Return list of triples describing matching subsequences.

        Each triple is of the form (i, j, n), and means that
        a[i:i+n] == b[j:j+n].  The triples are monotonically increasing in
        i and in j.

        The last triple is a dummy, (len(a), len(b), 0), and is the only
        triple with n==0.

        >>> s = SequenceMatcher(None, "abxcd", "abcd")
        >>> s.get_matching_blocks()
        [(0, 0, 2), (3, 2, 2), (5, 4, 0)]
        """

        if self.matching_blocks is not None:
            return self.matching_blocks
        self.matching_blocks = []
        la, lb = len(self.a), len(self.b)
        self.__helper(0, la, 0, lb, self.matching_blocks)
        self.matching_blocks.append( (la, lb, 0) )
        return self.matching_blocks

    # builds list of matching blocks covering a[alo:ahi] and
    # b[blo:bhi], appending them in increasing order to answer

    def __helper(self, alo, ahi, blo, bhi, answer):
        i, j, k = x = self.find_longest_match(alo, ahi, blo, bhi)
        # a[alo:i] vs b[blo:j] unknown
        # a[i:i+k] same as b[j:j+k]
        # a[i+k:ahi] vs b[j+k:bhi] unknown
        if k:
            if alo < i and blo < j:
                self.__helper(alo, i, blo, j, answer)
            answer.append(x)
            if i+k < ahi and j+k < bhi:
                self.__helper(i+k, ahi, j+k, bhi, answer)

    def get_opcodes(self):
        """Return list of 5-tuples describing how to turn a into b.

        Each tuple is of the form (tag, i1, i2, j1, j2).  The first tuple
        has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
        tuple preceding it, and likewise for j1 == the previous j2.

        The tags are strings, with these meanings:

        'replace':  a[i1:i2] should be replaced by b[j1:j2]
        'delete':   a[i1:i2] should be deleted.
                    Note that j1==j2 in this case.
        'insert':   b[j1:j2] should be inserted at a[i1:i1].
                    Note that i1==i2 in this case.
        'equal':    a[i1:i2] == b[j1:j2]

        >>> a = "qabxcd"
        >>> b = "abycdf"
        >>> s = SequenceMatcher(None, a, b)
        >>> for tag, i1, i2, j1, j2 in s.get_opcodes():
        ...    print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
        ...           (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2]))
         delete a[0:1] (q) b[0:0] ()
          equal a[1:3] (ab) b[0:2] (ab)
        replace a[3:4] (x) b[2:3] (y)
          equal a[4:6] (cd) b[3:5] (cd)
         insert a[6:6] () b[5:6] (f)
        """

        if self.opcodes is not None:
            return self.opcodes
        i = j = 0
        self.opcodes = answer = []
        for ai, bj, size in self.get_matching_blocks():
            # invariant:  we've pumped out correct diffs to change
            # a[:i] into b[:j], and the next matching block is
            # a[ai:ai+size] == b[bj:bj+size].  So we need to pump
            # out a diff to change a[i:ai] into b[j:bj], pump out
            # the matching block, and move (i,j) beyond the match
            tag = ''
            if i < ai and j < bj:
                tag = 'replace'
            elif i < ai:
                tag = 'delete'
            elif j < bj:
                tag = 'insert'
            if tag:
                answer.append( (tag, i, ai, j, bj) )
            i, j = ai+size, bj+size
            # the list of matching blocks is terminated by a
            # sentinel with size 0
            if size:
                answer.append( ('equal', ai, i, bj, j) )
        return answer

    def ratio(self):
        """Return a measure of the sequences' similarity (float in [0,1]).

        Where T is the total number of elements in both sequences, and
        M is the number of matches, this is 2,0*M / T.
        Note that this is 1 if the sequences are identical, and 0 if
        they have nothing in common.

        .ratio() is expensive to compute if you haven't already computed
        .get_matching_blocks() or .get_opcodes(), in which case you may
        want to try .quick_ratio() or .real_quick_ratio() first to get an
        upper bound.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.quick_ratio()
        0.75
        >>> s.real_quick_ratio()
        1.0
        """

        matches = reduce(lambda sum, triple: sum + triple[-1],
                         self.get_matching_blocks(), 0)
        return 2.0 * matches / (len(self.a) + len(self.b))

    def quick_ratio(self):
        """Return an upper bound on ratio() relatively quickly.

        This isn't defined beyond that it is an upper bound on .ratio(), and
        is faster to compute.
        """

        # viewing a and b as multisets, set matches to the cardinality
        # of their intersection; this counts the number of matches
        # without regard to order, so is clearly an upper bound
        if self.fullbcount is None:
            self.fullbcount = fullbcount = {}
            for elt in self.b:
                fullbcount[elt] = fullbcount.get(elt, 0) + 1
        fullbcount = self.fullbcount
        # avail[x] is the number of times x appears in 'b' less the
        # number of times we've seen it in 'a' so far ... kinda
        avail = {}
        availhas, matches = avail.has_key, 0
        for elt in self.a:
            if availhas(elt):
                numb = avail[elt]
            else:
                numb = fullbcount.get(elt, 0)
            avail[elt] = numb - 1
            if numb > 0:
                matches = matches + 1
        return 2.0 * matches / (len(self.a) + len(self.b))

    def real_quick_ratio(self):
        """Return an upper bound on ratio() very quickly.

        This isn't defined beyond that it is an upper bound on .ratio(), and
        is faster to compute than either .ratio() or .quick_ratio().
        """

        la, lb = len(self.a), len(self.b)
        # can't have more matches than the number of elements in the
        # shorter sequence
        return 2.0 * min(la, lb) / (la + lb)

def get_close_matches(word, possibilities, n=3, cutoff=0.6):
    """Use SequenceMatcher to return list of the best "good enough" matches.

    word is a sequence for which close matches are desired (typically a
    string).

    possibilities is a list of sequences against which to match word
    (typically a list of strings).

    Optional arg n (default 3) is the maximum number of close matches to
    return.  n must be > 0.

    Optional arg cutoff (default 0.6) is a float in [0, 1].  Possibilities
    that don't score at least that similar to word are ignored.

    The best (no more than n) matches among the possibilities are returned
    in a list, sorted by similarity score, most similar first.

    >>> get_close_matches("appel", ["ape", "apple", "peach", "puppy"])
    ['apple', 'ape']
    >>> import keyword as _keyword
    >>> get_close_matches("wheel", _keyword.kwlist)
    ['while']
    >>> get_close_matches("apple", _keyword.kwlist)
    []
    >>> get_close_matches("accept", _keyword.kwlist)
    ['except']
    """

    if not n >  0:
        raise ValueError("n must be > 0: " + `n`)
    if not 0.0 <= cutoff <= 1.0:
        raise ValueError("cutoff must be in [0.0, 1.0]: " + `cutoff`)
    result = []
    s = SequenceMatcher()
    s.set_seq2(word)
    for x in possibilities:
        s.set_seq1(x)
        if s.real_quick_ratio() >= cutoff and \
           s.quick_ratio() >= cutoff and \
           s.ratio() >= cutoff:
            result.append((s.ratio(), x))
    # Sort by score.
    result.sort()
    # Retain only the best n.
    result = result[-n:]
    # Move best-scorer to head of list.
    result.reverse()
    # Strip scores.
    return [x for score, x in result]


def _count_leading(line, ch):
    """
    Return number of `ch` characters at the start of `line`.

    Example:

    >>> _count_leading('   abc', ' ')
    3
    """

    i, n = 0, len(line)
    while i < n and line[i] == ch:
        i += 1
    return i

class Differ:
    r"""
    Differ is a class for comparing sequences of lines of text, and
    producing human-readable differences or deltas.  Differ uses
    SequenceMatcher both to compare sequences of lines, and to compare
    sequences of characters within similar (near-matching) lines.

    Each line of a Differ delta begins with a two-letter code:

        '- '    line unique to sequence 1
        '+ '    line unique to sequence 2
        '  '    line common to both sequences
        '? '    line not present in either input sequence

    Lines beginning with '? ' attempt to guide the eye to intraline
    differences, and were not present in either input sequence.  These lines
    can be confusing if the sequences contain tab characters.

    Note that Differ makes no claim to produce a *minimal* diff.  To the
    contrary, minimal diffs are often counter-intuitive, because they synch
    up anywhere possible, sometimes accidental matches 100 pages apart.
    Restricting synch points to contiguous matches preserves some notion of
    locality, at the occasional cost of producing a longer diff.

    Example: Comparing two texts.

    First we set up the texts, sequences of individual single-line strings
    ending with newlines (such sequences can also be obtained from the
    `readlines()` method of file-like objects):

    >>> text1 = '''  1. Beautiful is better than ugly.
    ...   2. Explicit is better than implicit.
    ...   3. Simple is better than complex.
    ...   4. Complex is better than complicated.
    ... '''.splitlines(1)
    >>> len(text1)
    4
    >>> text1[0][-1]
    '\n'
    >>> text2 = '''  1. Beautiful is better than ugly.
    ...   3.   Simple is better than complex.
    ...   4. Complicated is better than complex.
    ...   5. Flat is better than nested.
    ... '''.splitlines(1)

    Next we instantiate a Differ object:

    >>> d = Differ()

    Note that when instantiating a Differ object we may pass functions to
    filter out line and character 'junk'.  See Differ.__init__ for details.

    Finally, we compare the two:

    >>> result = list(d.compare(text1, text2))

    'result' is a list of strings, so let's pretty-print it:

    >>> from pprint import pprint as _pprint
    >>> _pprint(result)
    ['    1. Beautiful is better than ugly.\n',
     '-   2. Explicit is better than implicit.\n',
     '-   3. Simple is better than complex.\n',
     '+   3.   Simple is better than complex.\n',
     '?     ++\n',
     '-   4. Complex is better than complicated.\n',
     '?            ^                     ---- ^\n',
     '+   4. Complicated is better than complex.\n',
     '?           ++++ ^                      ^\n',
     '+   5. Flat is better than nested.\n']

    As a single multi-line string it looks like this:

    >>> print ''.join(result),
        1. Beautiful is better than ugly.
    -   2. Explicit is better than implicit.
    -   3. Simple is better than complex.
    +   3.   Simple is better than complex.
    ?     ++
    -   4. Complex is better than complicated.
    ?            ^                     ---- ^
    +   4. Complicated is better than complex.
    ?           ++++ ^                      ^
    +   5. Flat is better than nested.

    Methods:

    __init__(linejunk=None, charjunk=None)
        Construct a text differencer, with optional filters.

    compare(a, b)
        Compare two sequences of lines; generate the resulting delta.
    """

    def __init__(self, linejunk=None, charjunk=None):
        """
        Construct a text differencer, with optional filters.

        The two optional keyword parameters are for filter functions:

        - `linejunk`: A function that should accept a single string argument,
          and return true iff the string is junk. The module-level function
          `IS_LINE_JUNK` may be used to filter out lines without visible
          characters, except for at most one splat ('#').  It is recommended
          to leave linejunk None; as of Python 2.3, the underlying
          SequenceMatcher class has grown an adaptive notion of "noise" lines
          that's better than any static definition the author has ever been
          able to craft.

        - `charjunk`: A function that should accept a string of length 1. The
          module-level function `IS_CHARACTER_JUNK` may be used to filter out
          whitespace characters (a blank or tab; **note**: bad idea to include
          newline in this!).  Use of IS_CHARACTER_JUNK is recommended.
        """

        self.linejunk = linejunk
        self.charjunk = charjunk

    def compare(self, a, b):
        r"""
        Compare two sequences of lines; generate the resulting delta.

        Each sequence must contain individual single-line strings ending with
        newlines. Such sequences can be obtained from the `readlines()` method
        of file-like objects.  The delta generated also consists of newline-
        terminated strings, ready to be printed as-is via the writeline()
        method of a file-like object.

        Example:

        >>> print ''.join(Differ().compare('one\ntwo\nthree\n'.splitlines(1),
        ...                                'ore\ntree\nemu\n'.splitlines(1))),
        - one
        ?  ^
        + ore
        ?  ^
        - two
        - three
        ?  -
        + tree
        + emu
        """

        cruncher = SequenceMatcher(self.linejunk, a, b)
        for tag, alo, ahi, blo, bhi in cruncher.get_opcodes():
            if tag == 'replace':
                g = self._fancy_replace(a, alo, ahi, b, blo, bhi)
            elif tag == 'delete':
                g = self._dump('-', a, alo, ahi)
            elif tag == 'insert':
                g = self._dump('+', b, blo, bhi)
            elif tag == 'equal':
                g = self._dump(' ', a, alo, ahi)
            else:
                raise ValueError, 'unknown tag ' + `tag`

            for line in g:
                yield line

    def _dump(self, tag, x, lo, hi):
        """Generate comparison results for a same-tagged range."""
        for i in xrange(lo, hi):
            yield '%s %s' % (tag, x[i])

    def _plain_replace(self, a, alo, ahi, b, blo, bhi):
        assert alo < ahi and blo < bhi
        # dump the shorter block first -- reduces the burden on short-term
        # memory if the blocks are of very different sizes
        if bhi - blo < ahi - alo:
            first  = self._dump('+', b, blo, bhi)
            second = self._dump('-', a, alo, ahi)
        else:
            first  = self._dump('-', a, alo, ahi)
            second = self._dump('+', b, blo, bhi)

        for g in first, second:
            for line in g:
                yield line

    def _fancy_replace(self, a, alo, ahi, b, blo, bhi):
        r"""
        When replacing one block of lines with another, search the blocks
        for *similar* lines; the best-matching pair (if any) is used as a
        synch point, and intraline difference marking is done on the
        similar pair. Lots of work, but often worth it.

        Example:

        >>> d = Differ()
        >>> d._fancy_replace(['abcDefghiJkl\n'], 0, 1, ['abcdefGhijkl\n'], 0, 1)
        >>> print ''.join(d.results),
        - abcDefghiJkl
        ?    ^  ^  ^
        + abcdefGhijkl
        ?    ^  ^  ^
        """

        # don't synch up unless the lines have a similarity score of at
        # least cutoff; best_ratio tracks the best score seen so far
        best_ratio, cutoff = 0.74, 0.75
        cruncher = SequenceMatcher(self.charjunk)
        eqi, eqj = None, None   # 1st indices of equal lines (if any)

        # search for the pair that matches best without being identical
        # (identical lines must be junk lines, & we don't want to synch up
        # on junk -- unless we have to)
        for j in xrange(blo, bhi):
            bj = b[j]
            cruncher.set_seq2(bj)
            for i in xrange(alo, ahi):
                ai = a[i]
                if ai == bj:
                    if eqi is None:
                        eqi, eqj = i, j
                    continue
                cruncher.set_seq1(ai)
                # computing similarity is expensive, so use the quick
                # upper bounds first -- have seen this speed up messy
                # compares by a factor of 3.
                # note that ratio() is only expensive to compute the first
                # time it's called on a sequence pair; the expensive part
                # of the computation is cached by cruncher
                if cruncher.real_quick_ratio() > best_ratio and \
                      cruncher.quick_ratio() > best_ratio and \
                      cruncher.ratio() > best_ratio:
                    best_ratio, best_i, best_j = cruncher.ratio(), i, j
        if best_ratio < cutoff:
            # no non-identical "pretty close" pair
            if eqi is None:
                # no identical pair either -- treat it as a straight replace
                for line in self._plain_replace(a, alo, ahi, b, blo, bhi):
                    yield line
                return
            # no close pair, but an identical pair -- synch up on that
            best_i, best_j, best_ratio = eqi, eqj, 1.0
        else:
            # there's a close pair, so forget the identical pair (if any)
            eqi = None

        # a[best_i] very similar to b[best_j]; eqi is None iff they're not
        # identical

        # pump out diffs from before the synch point
        for line in self._fancy_helper(a, alo, best_i, b, blo, best_j):
            yield line

        # do intraline marking on the synch pair
        aelt, belt = a[best_i], b[best_j]
        if eqi is None:
            # pump out a '-', '?', '+', '?' quad for the synched lines
            atags = btags = ""
            cruncher.set_seqs(aelt, belt)
            for tag, ai1, ai2, bj1, bj2 in cruncher.get_opcodes():
                la, lb = ai2 - ai1, bj2 - bj1
                if tag == 'replace':
                    atags += '^' * la
                    btags += '^' * lb
                elif tag == 'delete':
                    atags += '-' * la
                elif tag == 'insert':
                    btags += '+' * lb
                elif tag == 'equal':
                    atags += ' ' * la
                    btags += ' ' * lb
                else:
                    raise ValueError, 'unknown tag ' + `tag`
            for line in self._qformat(aelt, belt, atags, btags):
                yield line
        else:
            # the synch pair is identical
            yield '  ' + aelt

        # pump out diffs from after the synch point
        for line in self._fancy_helper(a, best_i+1, ahi, b, best_j+1, bhi):
            yield line

    def _fancy_helper(self, a, alo, ahi, b, blo, bhi):
        g = []
        if alo < ahi:
            if blo < bhi:
                g = self._fancy_replace(a, alo, ahi, b, blo, bhi)
            else:
                g = self._dump('-', a, alo, ahi)
        elif blo < bhi:
            g = self._dump('+', b, blo, bhi)

        for line in g:
            yield line

    def _qformat(self, aline, bline, atags, btags):
        r"""
        Format "?" output and deal with leading tabs.

        Example:

        >>> d = Differ()
        >>> d._qformat('\tabcDefghiJkl\n', '\t\tabcdefGhijkl\n',
        ...            '  ^ ^  ^      ', '+  ^ ^  ^      ')
        >>> for line in d.results: print repr(line)
        ...
        '- \tabcDefghiJkl\n'
        '? \t ^ ^  ^\n'
        '+ \t\tabcdefGhijkl\n'
        '? \t  ^ ^  ^\n'
        """

        # Can hurt, but will probably help most of the time.
        common = min(_count_leading(aline, "\t"),
                     _count_leading(bline, "\t"))
        common = min(common, _count_leading(atags[:common], " "))
        atags = atags[common:].rstrip()
        btags = btags[common:].rstrip()

        yield "- " + aline
        if atags:
            yield "? %s%s\n" % ("\t" * common, atags)

        yield "+ " + bline
        if btags:
            yield "? %s%s\n" % ("\t" * common, btags)

# With respect to junk, an earlier version of ndiff simply refused to
# *start* a match with a junk element.  The result was cases like this:
#     before: private Thread currentThread;
#     after:  private volatile Thread currentThread;
# If you consider whitespace to be junk, the longest contiguous match
# not starting with junk is "e Thread currentThread".  So ndiff reported
# that "e volatil" was inserted between the 't' and the 'e' in "private".
# While an accurate view, to people that's absurd.  The current version
# looks for matching blocks that are entirely junk-free, then extends the
# longest one of those as far as possible but only with matching junk.
# So now "currentThread" is matched, then extended to suck up the
# preceding blank; then "private" is matched, and extended to suck up the
# following blank; then "Thread" is matched; and finally ndiff reports
# that "volatile " was inserted before "Thread".  The only quibble
# remaining is that perhaps it was really the case that " volatile"
# was inserted after "private".  I can live with that <wink>.

import re

def IS_LINE_JUNK(line, pat=re.compile(r"\s*#?\s*$").match):
    r"""
    Return 1 for ignorable line: iff `line` is blank or contains a single '#'.

    Examples:

    >>> IS_LINE_JUNK('\n')
    True
    >>> IS_LINE_JUNK('  #   \n')
    True
    >>> IS_LINE_JUNK('hello\n')
    False
    """

    return pat(line) is not None

def IS_CHARACTER_JUNK(ch, ws=" \t"):
    r"""
    Return 1 for ignorable character: iff `ch` is a space or tab.

    Examples:

    >>> IS_CHARACTER_JUNK(' ')
    True
    >>> IS_CHARACTER_JUNK('\t')
    True
    >>> IS_CHARACTER_JUNK('\n')
    False
    >>> IS_CHARACTER_JUNK('x')
    False
    """

    return ch in ws

del re

def ndiff(a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK):
    r"""
    Compare `a` and `b` (lists of strings); return a `Differ`-style delta.

    Optional keyword parameters `linejunk` and `charjunk` are for filter
    functions (or None):

    - linejunk: A function that should accept a single string argument, and
      return true iff the string is junk.  The default is None, and is
      recommended; as of Python 2.3, an adaptive notion of "noise" lines is
      used that does a good job on its own.

    - charjunk: A function that should accept a string of length 1. The
      default is module-level function IS_CHARACTER_JUNK, which filters out
      whitespace characters (a blank or tab; note: bad idea to include newline
      in this!).

    Tools/scripts/ndiff.py is a command-line front-end to this function.

    Example:

    >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
    ...              'ore\ntree\nemu\n'.splitlines(1))
    >>> print ''.join(diff),
    - one
    ?  ^
    + ore
    ?  ^
    - two
    - three
    ?  -
    + tree
    + emu
    """
    return Differ(linejunk, charjunk).compare(a, b)

def restore(delta, which):
    r"""
    Generate one of the two sequences that generated a delta.

    Given a `delta` produced by `Differ.compare()` or `ndiff()`, extract
    lines originating from file 1 or 2 (parameter `which`), stripping off line
    prefixes.

    Examples:

    >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
    ...              'ore\ntree\nemu\n'.splitlines(1))
    >>> diff = list(diff)
    >>> print ''.join(restore(diff, 1)),
    one
    two
    three
    >>> print ''.join(restore(diff, 2)),
    ore
    tree
    emu
    """
    try:
        tag = {1: "- ", 2: "+ "}[int(which)]
    except KeyError:
        raise ValueError, ('unknown delta choice (must be 1 or 2): %r'
                           % which)
    prefixes = ("  ", tag)
    for line in delta:
        if line[:2] in prefixes:
            yield line[2:]

def _test():
    import doctest, difflib
    return doctest.testmod(difflib)

if __name__ == "__main__":
    _test()