pickle.py 15.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
"""\
Pickling Algorithm
------------------

This module implements a basic but powerful algorithm for "pickling" (a.k.a.
serializing, marshalling or flattening) nearly arbitrary Python objects.
This is a more primitive notion than persistency -- although pickle
reads and writes file objects, it does not handle the issue of naming
persistent objects, nor the (even more complicated) area of concurrent
access to persistent objects.  The pickle module can transform a complex
object into a byte stream and it can transform the byte stream into
an object with the same internal structure.  The most obvious thing to
do with these byte streams is to write them onto a file, but it is also
conceivable to send them across a network or store them in a database.

Unlike the built-in marshal module, pickle handles the following correctly:

- recursive objects
- pointer sharing
- classes and class instances

Pickle is Python-specific.  This has the advantage that there are no
restrictions imposed by external standards such as CORBA (which probably
can't represent pointer sharing or recursive objects); however it means
that non-Python programs may not be able to reconstruct pickled Python
objects.

Pickle uses a printable ASCII representation.  This is slightly more
voluminous than a binary representation.  However, small integers actually
take *less* space when represented as minimal-size decimal strings than
when represented as 32-bit binary numbers, and strings are only much longer
if they contain control characters or 8-bit characters.  The big advantage
of using printable ASCII (and of some other characteristics of pickle's
representation) is that for debugging or recovery purposes it is possible
for a human to read the pickled file with a standard text editor.  (I could
have gone a step further and used a notation like S-expressions, but the
parser would have been considerably more complicated and slower, and the
files would probably have become much larger.)

Pickle doesn't handle code objects, which marshal does.
I suppose pickle could, and maybe it should, but there's probably no
great need for it right now (as long as marshal continues to be used
for reading and writing code objects), and at least this avoids
the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written using pickle, it supports
the notion of a reference to an object outside the pickled data stream.
Such objects are referenced by a name, which is an arbitrary string of
printable ASCII characters.  The resolution of such names is not defined
by the pickle module -- the persistent object module will have to implement
a method "persistent_load".  To write references to persistent objects,
the persistent module must define a method "persistent_id" which returns
either None or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module.

Next, it must normally be possible to create class instances by
calling the class without arguments.  Usually, this is best
accomplished by providing default values for all arguments to its
__init__ method (if it has one).  If this is undesirable, the
class can define a method __getinitargs__, which should return a
*tuple* containing the arguments to be passed to the class
constructor.

Classes can influence how their instances are pickled -- if the class defines
the method __getstate__, it is called and the return state is pickled
as the contents for the instance, and if the class defines the
method __setstate__, it is called with the unpickled state.  (Note
that these methods can also be used to implement copying class instances.)
If there is no __getstate__ method, the instance's __dict__
is pickled.  If there is no __setstate__ method, the pickled object
must be a dictionary and its items are assigned to the new instance's
dictionary.  (If a class defines both __getstate__ and __setstate__,
the state object needn't be a dictionary -- these methods can do what they
want.)

Note that when class instances are pickled, their class's code and data
is not pickled along with them.  Only the instance data is pickled.
This is done on purpose, so you can fix bugs in a class or add methods and
still load objects that were created with an earlier version of the
class.  If you plan to have long-lived objects that will see many versions
of a class, it may be worth to put a version number in the objects so
that suitable conversions can be made by the class's __setstate__ method.

The interface is as follows:

To pickle an object x onto a file f, open for writing:

	p = pickle.Pickler(f)
	p.dump(x)

To unpickle an object x from a file f, open for reading:

	u = pickle.Unpickler(f)
	x = u.load()

The Pickler class only calls the method f.write with a string argument
(XXX possibly the interface should pass f.write instead of f).
The Unpickler calls the methods f.read(with an integer argument)
and f.readline(without argument), both returning a string.
It is explicitly allowed to pass non-file objects here, as long as they
have the right methods.

The following types can be pickled:

- None
- integers, long integers, floating point numbers
- strings
- tuples, lists and dictionaries containing only picklable objects
- class instances whose __dict__ or __setstate__() is picklable
- classes

Attempts to pickle unpicklable objects will raise an exception
after having written an unspecified number of bytes to the file argument.

It is possible to make multiple calls to Pickler.dump() or to
Unpickler.load(), as long as there is a one-to-one correspondence
between pickler and Unpickler objects and between dump and load calls
for any pair of corresponding Pickler and Unpicklers.  WARNING: this
is intended for pickleing multiple objects without intervening modifications
to the objects or their parts.  If you modify an object and then pickle
it again using the same Pickler instance, the object is not pickled
again -- a reference to it is pickled and the Unpickler will return
the old value, not the modified one.  (XXX There are two problems here:
(a) detecting changes, and (b) marshalling a minimal set of changes.
I have no answers.  Garbage Collection may also become a problem here.)
"""

__version__ = "1.6"			# Code version

from types import *
import string

format_version = "1.1"			# File format version we write
compatible_formats = ["1.0"]		# Old format versions we can read

PicklingError = "pickle.PicklingError"

AtomicTypes = [NoneType, IntType, FloatType, StringType]

def safe(object):
	t = type(object)
	if t in AtomicTypes:
		return 1
	if t is TupleType:
		for item in object:
			if not safe(item): return 0
		return 1
	return 0

MARK = '('
POP = '0'
DUP = '2'
STOP = '.'
TUPLE = 't'
LIST = 'l'
DICT = 'd'
INST = 'i'
CLASS = 'c'
GET = 'g'
PUT = 'p'
APPEND = 'a'
SETITEM = 's'
BUILD = 'b'
NONE = 'N'
INT = 'I'
LONG = 'L'
FLOAT = 'F'
STRING = 'S'
PERSID = 'P'
AtomicKeys = [NONE, INT, LONG, FLOAT, STRING]
AtomicMap = {
	NoneType: NONE,
	IntType: INT,
	LongType: LONG,
	FloatType: FLOAT,
	StringType: STRING,
}

class Pickler:

	def __init__(self, file):
		self.write = file.write
		self.memo = {}

	def dump(self, object):
		self.save(object)
		self.write(STOP)

	def save(self, object):
		pid = self.persistent_id(object)
		if pid:
			self.write(PERSID + str(pid) + '\n')
			return
		d = id(object)
		if self.memo.has_key(d):
			self.write(GET + `d` + '\n')
			return
		t = type(object)
		try:
			f = self.dispatch[t]
		except KeyError:
		        if hasattr(object, '__class__'):
			        f = self.dispatch[InstanceType]
			else:
			        raise PicklingError, \
				"can't pickle %s objects" % `t.__name__`
		f(self, object)

	def persistent_id(self, object):
		return None

	dispatch = {}

	def save_none(self, object):
		self.write(NONE)
	dispatch[NoneType] = save_none

	def save_int(self, object):
		self.write(INT + `object` + '\n')
	dispatch[IntType] = save_int

	def save_long(self, object):
		self.write(LONG + `object` + '\n')
	dispatch[LongType] = save_long

	def save_float(self, object):
		self.write(FLOAT + `object` + '\n')
	dispatch[FloatType] = save_float

	def save_string(self, object):
		d = id(object)
		self.write(STRING + `object` + '\n')
		self.write(PUT + `d` + '\n')
		self.memo[d] = object
	dispatch[StringType] = save_string

	def save_tuple(self, object):
		d = id(object)
		write = self.write
		save = self.save
		has_key = self.memo.has_key
		write(MARK)
		n = len(object)
		for k in range(n):
			save(object[k])
			if has_key(d):
				# Saving object[k] has saved us!
				while k >= 0:
					write(POP)
					k = k-1
				write(GET + `d` + '\n')
				break
		else:
			write(TUPLE + PUT + `d` + '\n')
			self.memo[d] = object
	dispatch[TupleType] = save_tuple

	def save_list(self, object):
		d = id(object)
		write = self.write
		save = self.save
		write(MARK)
		n = len(object)
		for k in range(n):
			item = object[k]
			if not safe(item):
				break
			save(item)
		else:
			k = n
		write(LIST + PUT + `d` + '\n')
		self.memo[d] = object
		for k in range(k, n):
			item = object[k]
			save(item)
			write(APPEND)
	dispatch[ListType] = save_list

	def save_dict(self, object):
		d = id(object)
		write = self.write
		save = self.save
		write(MARK)
		items = object.items()
		n = len(items)
		for k in range(n):
			key, value = items[k]
			if not safe(key) or not safe(value):
				break
			save(key)
			save(value)
		else:
			k = n
		self.write(DICT + PUT + `d` + '\n')
		self.memo[d] = object
		for k in range(k, n):
			key, value = items[k]
			save(key)
			save(value)
			write(SETITEM)
	dispatch[DictionaryType] = save_dict

	def save_inst(self, object):
		d = id(object)
		cls = object.__class__
		write = self.write
		save = self.save
		module = whichmodule(cls)
		name = cls.__name__
		if hasattr(object, '__getinitargs__'):
			args = object.__getinitargs__()
			len(args) # XXX Assert it's a sequence
		else:
			args = ()
		write(MARK)
		for arg in args:
			save(arg)
		write(INST + module + '\n' + name + '\n' +
		      PUT + `d` + '\n')
		self.memo[d] = object
		try:
			getstate = object.__getstate__
		except AttributeError:
			stuff = object.__dict__
		else:
			stuff = getstate()
		save(stuff)
		write(BUILD)
	dispatch[InstanceType] = save_inst

	def save_class(self, object):
		d = id(object)
		module = whichmodule(object)
		name = object.__name__
		self.write(CLASS + module + '\n' + name + '\n' + 
			   PUT + `d` + '\n')
	dispatch[ClassType] = save_class


classmap = {}

def whichmodule(cls):
	"""Figure out the module in which a class occurs.

	Search sys.modules for the module.
	Cache in classmap.
	Return a module name.
	If the class cannot be found, return __main__.
	"""
	if classmap.has_key(cls):
		return classmap[cls]
	import sys
	clsname = cls.__name__
	for name, module in sys.modules.items():
		if name != '__main__' and \
		   hasattr(module, clsname) and \
		   getattr(module, clsname) is cls:
			break
	else:
		name = '__main__'
	classmap[cls] = name
	return name


class Unpickler:

	def __init__(self, file):
		self.readline = file.readline
		self.read = file.read
		self.memo = {}

	def load(self):
		self.mark = ['spam'] # Any new unique object
		self.stack = []
		self.append = self.stack.append
		read = self.read
		dispatch = self.dispatch
		try:
			while 1:
				key = read(1)
				dispatch[key](self)
		except STOP, value:
			return value

	def marker(self):
	        stack = self.stack
		mark = self.mark
		k = len(stack)-1
		while stack[k] is not mark: k = k-1
		return k

	dispatch = {}

	def load_eof(self):
		raise EOFError
	dispatch[''] = load_eof

	def load_persid(self):
		pid = self.readline()[:-1]
		self.append(self.persistent_load(pid))
	dispatch[PERSID] = load_persid

	def load_none(self):
		self.append(None)
	dispatch[NONE] = load_none

	def load_int(self):
		self.append(string.atoi(self.readline()[:-1], 0))
	dispatch[INT] = load_int

	def load_long(self):
		self.append(string.atol(self.readline()[:-1], 0))
	dispatch[LONG] = load_long

	def load_float(self):
		self.append(string.atof(self.readline()[:-1]))
	dispatch[FLOAT] = load_float

	def load_string(self):
		self.append(eval(self.readline()[:-1],
				 {'__builtins__': {}})) # Let's be careful
	dispatch[STRING] = load_string

	def load_tuple(self):
		k = self.marker()
		self.stack[k:] = [tuple(self.stack[k+1:])]
	dispatch[TUPLE] = load_tuple

	def load_list(self):
		k = self.marker()
		self.stack[k:] = [self.stack[k+1:]]
	dispatch[LIST] = load_list

	def load_dict(self):
		k = self.marker()
		d = {}
		items = self.stack[k+1:]
		for i in range(0, len(items), 2):
			key = items[i]
			value = items[i+1]
			d[key] = value
		self.stack[k:] = [d]
	dispatch[DICT] = load_dict

	def load_inst(self):
		k = self.marker()
		args = tuple(self.stack[k+1:])
		del self.stack[k:]
		module = self.readline()[:-1]
		name = self.readline()[:-1]
		klass = self.find_class(module, name)
		value = apply(klass, args)
		self.append(value)
	dispatch[INST] = load_inst

	def load_class(self):
		module = self.readline()[:-1]
		name = self.readline()[:-1]
		klass = self.find_class(module, name)
		self.append(klass)
		return klass
	dispatch[CLASS] = load_class

	def find_class(self, module, name):
		env = {}
		try:
			exec 'from %s import %s' % (module, name) in env
		except ImportError:
			raise SystemError, \
			      "Failed to import class %s from module %s" % \
			      (name, module)
		klass = env[name]
		if type(klass) is BuiltinFunctionType:
			raise SystemError, \
			 "Imported object %s from module %s is not a class" % \
			 (name, module)
		return klass

	def load_pop(self):
		del self.stack[-1]
	dispatch[POP] = load_pop

	def load_dup(self):
		self.append(stack[-1])
	dispatch[DUP] = load_dup

	def load_get(self):
		self.append(self.memo[self.readline()[:-1]])
	dispatch[GET] = load_get

	def load_put(self):
		self.memo[self.readline()[:-1]] = self.stack[-1]
	dispatch[PUT] = load_put

	def load_append(self):
	        stack = self.stack
		value = stack[-1]
		del stack[-1]
		list = stack[-1]
		list.append(value)
	dispatch[APPEND] = load_append

	def load_setitem(self):
	        stack = self.stack
		value = stack[-1]
		key = stack[-2]
		del stack[-2:]
		dict = stack[-1]
		dict[key] = value
	dispatch[SETITEM] = load_setitem

	def load_build(self):
	        stack = self.stack
		value = stack[-1]
		del stack[-1]
		inst = stack[-1]
		try:
			setstate = inst.__setstate__
		except AttributeError:
			for key in value.keys():
				setattr(inst, key, value[key])
		else:
			setstate(value)
	dispatch[BUILD] = load_build

	def load_mark(self):
		self.append(self.mark)
	dispatch[MARK] = load_mark

	def load_stop(self):
		value = self.stack[-1]
		del self.stack[-1]
		raise STOP, value
	dispatch[STOP] = load_stop


# Shorthands

from StringIO import StringIO

def dump(object, file):
	Pickler(file).dump(object)

def dumps(object):
	file = StringIO()
	Pickler(file).dump(object)
	return file.getvalue()

def load(file):
	return Unpickler(file).load()

def loads(str):
	file = StringIO(str)
	return Unpickler(file).load()


# The rest is used for testing only

class C:
	def __cmp__(self, other):
		return cmp(self.__dict__, other.__dict__)

def test():
	fn = 'pickle_tmp'
	c = C()
	c.foo = 1
	c.bar = 2L
	x = [0, 1, 2, 3]
	y = ('abc', 'abc', c, c)
	x.append(y)
	x.append(y)
	x.append(5)
	f = open(fn, 'w')
	F = Pickler(f)
	F.dump(x)
	f.close()
	f = open(fn, 'r')
	U = Unpickler(f)
	x2 = U.load()
	print x
	print x2
	print x == x2
	print map(id, x)
	print map(id, x2)
	print F.memo
	print U.memo

if __name__ == '__main__':
	test()