floatobject.c 40.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

/* Float object implementation */

/* XXX There should be overflow checks here, but it's hard to check
   for any kind of float exception without losing portability. */

#include "Python.h"

#include <ctype.h>

#if !defined(__STDC__)
extern double fmod(double, double);
extern double pow(double, double);
#endif

/* Special free list -- see comments for same code in intobject.c. */
#define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */
#define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */
#define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))

struct _floatblock {
	struct _floatblock *next;
	PyFloatObject objects[N_FLOATOBJECTS];
};

typedef struct _floatblock PyFloatBlock;

static PyFloatBlock *block_list = NULL;
static PyFloatObject *free_list = NULL;

static PyFloatObject *
fill_free_list(void)
{
	PyFloatObject *p, *q;
	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
	if (p == NULL)
		return (PyFloatObject *) PyErr_NoMemory();
	((PyFloatBlock *)p)->next = block_list;
	block_list = (PyFloatBlock *)p;
	p = &((PyFloatBlock *)p)->objects[0];
	q = p + N_FLOATOBJECTS;
	while (--q > p)
		q->ob_type = (struct _typeobject *)(q-1);
	q->ob_type = NULL;
	return p + N_FLOATOBJECTS - 1;
}

PyObject *
PyFloat_FromDouble(double fval)
{
	register PyFloatObject *op;
	if (free_list == NULL) {
		if ((free_list = fill_free_list()) == NULL)
			return NULL;
	}
	/* Inline PyObject_New */
	op = free_list;
	free_list = (PyFloatObject *)op->ob_type;
	PyObject_INIT(op, &PyFloat_Type);
	op->ob_fval = fval;
	return (PyObject *) op;
}

/**************************************************************************
RED_FLAG 22-Sep-2000 tim
PyFloat_FromString's pend argument is braindead.  Prior to this RED_FLAG,

1.  If v was a regular string, *pend was set to point to its terminating
    null byte.  That's useless (the caller can find that without any
    help from this function!).

2.  If v was a Unicode string, or an object convertible to a character
    buffer, *pend was set to point into stack trash (the auto temp
    vector holding the character buffer).  That was downright dangerous.

Since we can't change the interface of a public API function, pend is
still supported but now *officially* useless:  if pend is not NULL,
*pend is set to NULL.
**************************************************************************/
PyObject *
PyFloat_FromString(PyObject *v, char **pend)
{
	const char *s, *last, *end;
	double x;
	char buffer[256]; /* for errors */
#ifdef Py_USING_UNICODE
	char s_buffer[256]; /* for objects convertible to a char buffer */
#endif
	Py_ssize_t len;

	if (pend)
		*pend = NULL;
	if (PyString_Check(v)) {
		s = PyString_AS_STRING(v);
		len = PyString_GET_SIZE(v);
	}
#ifdef Py_USING_UNICODE
	else if (PyUnicode_Check(v)) {
		if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) {
			PyErr_SetString(PyExc_ValueError,
				"Unicode float() literal too long to convert");
			return NULL;
		}
		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
					    PyUnicode_GET_SIZE(v),
					    s_buffer,
					    NULL))
			return NULL;
		s = s_buffer;
		len = strlen(s);
	}
#endif
	else if (PyObject_AsCharBuffer(v, &s, &len)) {
		PyErr_SetString(PyExc_TypeError,
				"float() argument must be a string or a number");
		return NULL;
	}

	last = s + len;
	while (*s && isspace(Py_CHARMASK(*s)))
		s++;
	if (*s == '\0') {
		PyErr_SetString(PyExc_ValueError, "empty string for float()");
		return NULL;
	}
	/* We don't care about overflow or underflow.  If the platform supports
	 * them, infinities and signed zeroes (on underflow) are fine.
	 * However, strtod can return 0 for denormalized numbers, where atof
	 * does not.  So (alas!) we special-case a zero result.  Note that
	 * whether strtod sets errno on underflow is not defined, so we can't
	 * key off errno.
         */
	PyFPE_START_PROTECT("strtod", return NULL)
	x = PyOS_ascii_strtod(s, (char **)&end);
	PyFPE_END_PROTECT(x)
	errno = 0;
	/* Believe it or not, Solaris 2.6 can move end *beyond* the null
	   byte at the end of the string, when the input is inf(inity). */
	if (end > last)
		end = last;
	if (end == s) {
		PyOS_snprintf(buffer, sizeof(buffer),
			      "invalid literal for float(): %.200s", s);
		PyErr_SetString(PyExc_ValueError, buffer);
		return NULL;
	}
	/* Since end != s, the platform made *some* kind of sense out
	   of the input.  Trust it. */
	while (*end && isspace(Py_CHARMASK(*end)))
		end++;
	if (*end != '\0') {
		PyOS_snprintf(buffer, sizeof(buffer),
			      "invalid literal for float(): %.200s", s);
		PyErr_SetString(PyExc_ValueError, buffer);
		return NULL;
	}
	else if (end != last) {
		PyErr_SetString(PyExc_ValueError,
				"null byte in argument for float()");
		return NULL;
	}
	if (x == 0.0) {
		/* See above -- may have been strtod being anal
		   about denorms. */
		PyFPE_START_PROTECT("atof", return NULL)
		x = PyOS_ascii_atof(s);
		PyFPE_END_PROTECT(x)
		errno = 0;    /* whether atof ever set errno is undefined */
	}
	return PyFloat_FromDouble(x);
}

static void
float_dealloc(PyFloatObject *op)
{
	if (PyFloat_CheckExact(op)) {
		op->ob_type = (struct _typeobject *)free_list;
		free_list = op;
	}
	else
		op->ob_type->tp_free((PyObject *)op);
}

double
PyFloat_AsDouble(PyObject *op)
{
	PyNumberMethods *nb;
	PyFloatObject *fo;
	double val;

	if (op && PyFloat_Check(op))
		return PyFloat_AS_DOUBLE((PyFloatObject*) op);

	if (op == NULL) {
		PyErr_BadArgument();
		return -1;
	}

	if ((nb = op->ob_type->tp_as_number) == NULL || nb->nb_float == NULL) {
		PyErr_SetString(PyExc_TypeError, "a float is required");
		return -1;
	}

	fo = (PyFloatObject*) (*nb->nb_float) (op);
	if (fo == NULL)
		return -1;
	if (!PyFloat_Check(fo)) {
		PyErr_SetString(PyExc_TypeError,
				"nb_float should return float object");
		return -1;
	}

	val = PyFloat_AS_DOUBLE(fo);
	Py_DECREF(fo);

	return val;
}

/* Methods */

static void
format_float(char *buf, size_t buflen, PyFloatObject *v, int precision)
{
	register char *cp;
	char format[32];
	/* Subroutine for float_repr and float_print.
	   We want float numbers to be recognizable as such,
	   i.e., they should contain a decimal point or an exponent.
	   However, %g may print the number as an integer;
	   in such cases, we append ".0" to the string. */

	assert(PyFloat_Check(v));
	PyOS_snprintf(format, 32, "%%.%ig", precision);
	PyOS_ascii_formatd(buf, buflen, format, v->ob_fval);
	cp = buf;
	if (*cp == '-')
		cp++;
	for (; *cp != '\0'; cp++) {
		/* Any non-digit means it's not an integer;
		   this takes care of NAN and INF as well. */
		if (!isdigit(Py_CHARMASK(*cp)))
			break;
	}
	if (*cp == '\0') {
		*cp++ = '.';
		*cp++ = '0';
		*cp++ = '\0';
	}
}

/* XXX PyFloat_AsStringEx should not be a public API function (for one
   XXX thing, its signature passes a buffer without a length; for another,
   XXX it isn't useful outside this file).
*/
void
PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision)
{
	format_float(buf, 100, v, precision);
}

/* Macro and helper that convert PyObject obj to a C double and store
   the value in dbl; this replaces the functionality of the coercion
   slot function.  If conversion to double raises an exception, obj is
   set to NULL, and the function invoking this macro returns NULL.  If
   obj is not of float, int or long type, Py_NotImplemented is incref'ed,
   stored in obj, and returned from the function invoking this macro.
*/
#define CONVERT_TO_DOUBLE(obj, dbl)			\
	if (PyFloat_Check(obj))				\
		dbl = PyFloat_AS_DOUBLE(obj);		\
	else if (convert_to_double(&(obj), &(dbl)) < 0)	\
		return obj;

static int
convert_to_double(PyObject **v, double *dbl)
{
	register PyObject *obj = *v;

	if (PyInt_Check(obj)) {
		*dbl = (double)PyInt_AS_LONG(obj);
	}
	else if (PyLong_Check(obj)) {
		*dbl = PyLong_AsDouble(obj);
		if (*dbl == -1.0 && PyErr_Occurred()) {
			*v = NULL;
			return -1;
		}
	}
	else {
		Py_INCREF(Py_NotImplemented);
		*v = Py_NotImplemented;
		return -1;
	}
	return 0;
}

/* Precisions used by repr() and str(), respectively.

   The repr() precision (17 significant decimal digits) is the minimal number
   that is guaranteed to have enough precision so that if the number is read
   back in the exact same binary value is recreated.  This is true for IEEE
   floating point by design, and also happens to work for all other modern
   hardware.

   The str() precision is chosen so that in most cases, the rounding noise
   created by various operations is suppressed, while giving plenty of
   precision for practical use.

*/

#define PREC_REPR	17
#define PREC_STR	12

/* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated:
   XXX they pass a char buffer without passing a length.
*/
void
PyFloat_AsString(char *buf, PyFloatObject *v)
{
	format_float(buf, 100, v, PREC_STR);
}

void
PyFloat_AsReprString(char *buf, PyFloatObject *v)
{
	format_float(buf, 100, v, PREC_REPR);
}

/* ARGSUSED */
static int
float_print(PyFloatObject *v, FILE *fp, int flags)
{
	char buf[100];
	format_float(buf, sizeof(buf), v,
		     (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
	fputs(buf, fp);
	return 0;
}

static PyObject *
float_repr(PyFloatObject *v)
{
	char buf[100];
	format_float(buf, sizeof(buf), v, PREC_REPR);
	return PyString_FromString(buf);
}

static PyObject *
float_str(PyFloatObject *v)
{
	char buf[100];
	format_float(buf, sizeof(buf), v, PREC_STR);
	return PyString_FromString(buf);
}

/* Comparison is pretty much a nightmare.  When comparing float to float,
 * we do it as straightforwardly (and long-windedly) as conceivable, so
 * that, e.g., Python x == y delivers the same result as the platform
 * C x == y when x and/or y is a NaN.
 * When mixing float with an integer type, there's no good *uniform* approach.
 * Converting the double to an integer obviously doesn't work, since we
 * may lose info from fractional bits.  Converting the integer to a double
 * also has two failure modes:  (1) a long int may trigger overflow (too
 * large to fit in the dynamic range of a C double); (2) even a C long may have
 * more bits than fit in a C double (e.g., on a a 64-bit box long may have
 * 63 bits of precision, but a C double probably has only 53), and then
 * we can falsely claim equality when low-order integer bits are lost by
 * coercion to double.  So this part is painful too.
 */

static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{
	double i, j;
	int r = 0;

	assert(PyFloat_Check(v));
	i = PyFloat_AS_DOUBLE(v);

	/* Switch on the type of w.  Set i and j to doubles to be compared,
	 * and op to the richcomp to use.
	 */
	if (PyFloat_Check(w))
		j = PyFloat_AS_DOUBLE(w);

	else if (Py_IS_INFINITY(i) || Py_IS_NAN(i)) {
		if (PyInt_Check(w) || PyLong_Check(w))
			/* If i is an infinity, its magnitude exceeds any
			 * finite integer, so it doesn't matter which int we
			 * compare i with.  If i is a NaN, similarly.
			 */
			j = 0.0;
		else
			goto Unimplemented;
	}

	else if (PyInt_Check(w)) {
		long jj = PyInt_AS_LONG(w);
		/* In the worst realistic case I can imagine, C double is a
		 * Cray single with 48 bits of precision, and long has 64
		 * bits.
		 */
#if SIZEOF_LONG > 6
		unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj);
		if (abs >> 48) {
			/* Needs more than 48 bits.  Make it take the
			 * PyLong path.
			 */
			PyObject *result;
			PyObject *ww = PyLong_FromLong(jj);

			if (ww == NULL)
				return NULL;
			result = float_richcompare(v, ww, op);
			Py_DECREF(ww);
			return result;
		}
#endif
		j = (double)jj;
		assert((long)j == jj);
	}

	else if (PyLong_Check(w)) {
		int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
		int wsign = _PyLong_Sign(w);
		size_t nbits;
		int exponent;

		if (vsign != wsign) {
			/* Magnitudes are irrelevant -- the signs alone
			 * determine the outcome.
			 */
			i = (double)vsign;
			j = (double)wsign;
			goto Compare;
		}
		/* The signs are the same. */
		/* Convert w to a double if it fits.  In particular, 0 fits. */
		nbits = _PyLong_NumBits(w);
		if (nbits == (size_t)-1 && PyErr_Occurred()) {
			/* This long is so large that size_t isn't big enough
			 * to hold the # of bits.  Replace with little doubles
			 * that give the same outcome -- w is so large that
			 * its magnitude must exceed the magnitude of any
			 * finite float.
			 */
			PyErr_Clear();
			i = (double)vsign;
			assert(wsign != 0);
			j = wsign * 2.0;
			goto Compare;
		}
		if (nbits <= 48) {
			j = PyLong_AsDouble(w);
			/* It's impossible that <= 48 bits overflowed. */
			assert(j != -1.0 || ! PyErr_Occurred());
			goto Compare;
		}
		assert(wsign != 0); /* else nbits was 0 */
		assert(vsign != 0); /* if vsign were 0, then since wsign is
		                     * not 0, we would have taken the
		                     * vsign != wsign branch at the start */
		/* We want to work with non-negative numbers. */
		if (vsign < 0) {
			/* "Multiply both sides" by -1; this also swaps the
			 * comparator.
			 */
			i = -i;
			op = _Py_SwappedOp[op];
		}
		assert(i > 0.0);
		(void) frexp(i, &exponent);
		/* exponent is the # of bits in v before the radix point;
		 * we know that nbits (the # of bits in w) > 48 at this point
		 */
		if (exponent < 0 || (size_t)exponent < nbits) {
			i = 1.0;
			j = 2.0;
			goto Compare;
		}
		if ((size_t)exponent > nbits) {
			i = 2.0;
			j = 1.0;
			goto Compare;
		}
		/* v and w have the same number of bits before the radix
		 * point.  Construct two longs that have the same comparison
		 * outcome.
		 */
		{
			double fracpart;
			double intpart;
			PyObject *result = NULL;
			PyObject *one = NULL;
			PyObject *vv = NULL;
			PyObject *ww = w;

			if (wsign < 0) {
				ww = PyNumber_Negative(w);
				if (ww == NULL)
					goto Error;
			}
			else
				Py_INCREF(ww);

			fracpart = modf(i, &intpart);
			vv = PyLong_FromDouble(intpart);
			if (vv == NULL)
				goto Error;

			if (fracpart != 0.0) {
				/* Shift left, and or a 1 bit into vv
				 * to represent the lost fraction.
				 */
				PyObject *temp;

				one = PyInt_FromLong(1);
				if (one == NULL)
					goto Error;

				temp = PyNumber_Lshift(ww, one);
				if (temp == NULL)
					goto Error;
				Py_DECREF(ww);
				ww = temp;

				temp = PyNumber_Lshift(vv, one);
				if (temp == NULL)
					goto Error;
				Py_DECREF(vv);
				vv = temp;

				temp = PyNumber_Or(vv, one);
				if (temp == NULL)
					goto Error;
				Py_DECREF(vv);
				vv = temp;
			}

			r = PyObject_RichCompareBool(vv, ww, op);
			if (r < 0)
				goto Error;
			result = PyBool_FromLong(r);
 		 Error:
 		 	Py_XDECREF(vv);
 		 	Py_XDECREF(ww);
 		 	Py_XDECREF(one);
 		 	return result;
		}
	} /* else if (PyLong_Check(w)) */

	else	/* w isn't float, int, or long */
		goto Unimplemented;

 Compare:
	PyFPE_START_PROTECT("richcompare", return NULL)
	switch (op) {
	case Py_EQ:
		r = i == j;
		break;
	case Py_NE:
		r = i != j;
		break;
	case Py_LE:
		r = i <= j;
		break;
	case Py_GE:
		r = i >= j;
		break;
	case Py_LT:
		r = i < j;
		break;
	case Py_GT:
		r = i > j;
		break;
	}
	PyFPE_END_PROTECT(r)
	return PyBool_FromLong(r);

 Unimplemented:
	Py_INCREF(Py_NotImplemented);
	return Py_NotImplemented;
}

static long
float_hash(PyFloatObject *v)
{
	return _Py_HashDouble(v->ob_fval);
}

static PyObject *
float_add(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	PyFPE_START_PROTECT("add", return 0)
	a = a + b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_sub(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	PyFPE_START_PROTECT("subtract", return 0)
	a = a - b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_mul(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	PyFPE_START_PROTECT("multiply", return 0)
	a = a * b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_div(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	if (b == 0.0) {
		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
		return NULL;
	}
	PyFPE_START_PROTECT("divide", return 0)
	a = a / b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_classic_div(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	if (Py_DivisionWarningFlag >= 2 &&
	    PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
		return NULL;
	if (b == 0.0) {
		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
		return NULL;
	}
	PyFPE_START_PROTECT("divide", return 0)
	a = a / b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_rem(PyObject *v, PyObject *w)
{
	double vx, wx;
	double mod;
 	CONVERT_TO_DOUBLE(v, vx);
 	CONVERT_TO_DOUBLE(w, wx);
	if (wx == 0.0) {
		PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
		return NULL;
	}
	PyFPE_START_PROTECT("modulo", return 0)
	mod = fmod(vx, wx);
	/* note: checking mod*wx < 0 is incorrect -- underflows to
	   0 if wx < sqrt(smallest nonzero double) */
	if (mod && ((wx < 0) != (mod < 0))) {
		mod += wx;
	}
	PyFPE_END_PROTECT(mod)
	return PyFloat_FromDouble(mod);
}

static PyObject *
float_divmod(PyObject *v, PyObject *w)
{
	double vx, wx;
	double div, mod, floordiv;
 	CONVERT_TO_DOUBLE(v, vx);
 	CONVERT_TO_DOUBLE(w, wx);
	if (wx == 0.0) {
		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
		return NULL;
	}
	PyFPE_START_PROTECT("divmod", return 0)
	mod = fmod(vx, wx);
	/* fmod is typically exact, so vx-mod is *mathematically* an
	   exact multiple of wx.  But this is fp arithmetic, and fp
	   vx - mod is an approximation; the result is that div may
	   not be an exact integral value after the division, although
	   it will always be very close to one.
	*/
	div = (vx - mod) / wx;
	if (mod) {
		/* ensure the remainder has the same sign as the denominator */
		if ((wx < 0) != (mod < 0)) {
			mod += wx;
			div -= 1.0;
		}
	}
	else {
		/* the remainder is zero, and in the presence of signed zeroes
		   fmod returns different results across platforms; ensure
		   it has the same sign as the denominator; we'd like to do
		   "mod = wx * 0.0", but that may get optimized away */
		mod *= mod;  /* hide "mod = +0" from optimizer */
		if (wx < 0.0)
			mod = -mod;
	}
	/* snap quotient to nearest integral value */
	if (div) {
		floordiv = floor(div);
		if (div - floordiv > 0.5)
			floordiv += 1.0;
	}
	else {
		/* div is zero - get the same sign as the true quotient */
		div *= div;	/* hide "div = +0" from optimizers */
		floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
	}
	PyFPE_END_PROTECT(floordiv)
	return Py_BuildValue("(dd)", floordiv, mod);
}

static PyObject *
float_floor_div(PyObject *v, PyObject *w)
{
	PyObject *t, *r;

	t = float_divmod(v, w);
	if (t == NULL || t == Py_NotImplemented)
		return t;
	assert(PyTuple_CheckExact(t));
	r = PyTuple_GET_ITEM(t, 0);
	Py_INCREF(r);
	Py_DECREF(t);
	return r;
}

static PyObject *
float_pow(PyObject *v, PyObject *w, PyObject *z)
{
	double iv, iw, ix;

	if ((PyObject *)z != Py_None) {
		PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
			"allowed unless all arguments are integers");
		return NULL;
	}

	CONVERT_TO_DOUBLE(v, iv);
	CONVERT_TO_DOUBLE(w, iw);

	/* Sort out special cases here instead of relying on pow() */
	if (iw == 0) { 		/* v**0 is 1, even 0**0 */
		PyFPE_START_PROTECT("pow", return NULL)
		if ((PyObject *)z != Py_None) {
			double iz;
			CONVERT_TO_DOUBLE(z, iz);
			ix = fmod(1.0, iz);
			if (ix != 0 && iz < 0)
				ix += iz;
		}
		else
			ix = 1.0;
		PyFPE_END_PROTECT(ix)
		return PyFloat_FromDouble(ix);
	}
	if (iv == 0.0) {  /* 0**w is error if w<0, else 1 */
		if (iw < 0.0) {
			PyErr_SetString(PyExc_ZeroDivisionError,
					"0.0 cannot be raised to a negative power");
			return NULL;
		}
		return PyFloat_FromDouble(0.0);
	}
	if (iv < 0.0) {
		/* Whether this is an error is a mess, and bumps into libm
		 * bugs so we have to figure it out ourselves.
		 */
		if (iw != floor(iw)) {
			PyErr_SetString(PyExc_ValueError, "negative number "
				"cannot be raised to a fractional power");
			return NULL;
		}
		/* iw is an exact integer, albeit perhaps a very large one.
		 * -1 raised to an exact integer should never be exceptional.
		 * Alas, some libms (chiefly glibc as of early 2003) return
		 * NaN and set EDOM on pow(-1, large_int) if the int doesn't
		 * happen to be representable in a *C* integer.  That's a
		 * bug; we let that slide in math.pow() (which currently
		 * reflects all platform accidents), but not for Python's **.
		 */
		 if (iv == -1.0 && !Py_IS_INFINITY(iw) && iw == iw) {
		 	/* XXX the "iw == iw" was to weed out NaNs.  This
		 	 * XXX doesn't actually work on all platforms.
		 	 */
		 	/* Return 1 if iw is even, -1 if iw is odd; there's
		 	 * no guarantee that any C integral type is big
		 	 * enough to hold iw, so we have to check this
		 	 * indirectly.
		 	 */
		 	ix = floor(iw * 0.5) * 2.0;
			return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0);
		}
		/* Else iv != -1.0, and overflow or underflow are possible.
		 * Unless we're to write pow() ourselves, we have to trust
		 * the platform to do this correctly.
		 */
	}
	errno = 0;
	PyFPE_START_PROTECT("pow", return NULL)
	ix = pow(iv, iw);
	PyFPE_END_PROTECT(ix)
	Py_ADJUST_ERANGE1(ix);
	if (errno != 0) {
		/* We don't expect any errno value other than ERANGE, but
		 * the range of libm bugs appears unbounded.
		 */
		PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
						     PyExc_ValueError);
		return NULL;
	}
	return PyFloat_FromDouble(ix);
}

static PyObject *
float_neg(PyFloatObject *v)
{
	return PyFloat_FromDouble(-v->ob_fval);
}

static PyObject *
float_pos(PyFloatObject *v)
{
	if (PyFloat_CheckExact(v)) {
		Py_INCREF(v);
		return (PyObject *)v;
	}
	else
		return PyFloat_FromDouble(v->ob_fval);
}

static PyObject *
float_abs(PyFloatObject *v)
{
	return PyFloat_FromDouble(fabs(v->ob_fval));
}

static int
float_nonzero(PyFloatObject *v)
{
	return v->ob_fval != 0.0;
}

static int
float_coerce(PyObject **pv, PyObject **pw)
{
	if (PyInt_Check(*pw)) {
		long x = PyInt_AsLong(*pw);
		*pw = PyFloat_FromDouble((double)x);
		Py_INCREF(*pv);
		return 0;
	}
	else if (PyLong_Check(*pw)) {
		double x = PyLong_AsDouble(*pw);
		if (x == -1.0 && PyErr_Occurred())
			return -1;
		*pw = PyFloat_FromDouble(x);
		Py_INCREF(*pv);
		return 0;
	}
	else if (PyFloat_Check(*pw)) {
		Py_INCREF(*pv);
		Py_INCREF(*pw);
		return 0;
	}
	return 1; /* Can't do it */
}

static PyObject *
float_long(PyObject *v)
{
	double x = PyFloat_AsDouble(v);
	return PyLong_FromDouble(x);
}

static PyObject *
float_int(PyObject *v)
{
	double x = PyFloat_AsDouble(v);
	double wholepart;	/* integral portion of x, rounded toward 0 */

	(void)modf(x, &wholepart);
	/* Try to get out cheap if this fits in a Python int.  The attempt
	 * to cast to long must be protected, as C doesn't define what
	 * happens if the double is too big to fit in a long.  Some rare
	 * systems raise an exception then (RISCOS was mentioned as one,
	 * and someone using a non-default option on Sun also bumped into
	 * that).  Note that checking for >= and <= LONG_{MIN,MAX} would
	 * still be vulnerable:  if a long has more bits of precision than
	 * a double, casting MIN/MAX to double may yield an approximation,
	 * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
	 * yield true from the C expression wholepart<=LONG_MAX, despite
	 * that wholepart is actually greater than LONG_MAX.
	 */
	if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
		const long aslong = (long)wholepart;
		return PyInt_FromLong(aslong);
	}
	return PyLong_FromDouble(wholepart);
}

static PyObject *
float_float(PyObject *v)
{
	if (PyFloat_CheckExact(v))
		Py_INCREF(v);
	else
		v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
	return v;
}


static PyObject *
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);

static PyObject *
float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
	PyObject *x = Py_False; /* Integer zero */
	static char *kwlist[] = {"x", 0};

	if (type != &PyFloat_Type)
		return float_subtype_new(type, args, kwds); /* Wimp out */
	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
		return NULL;
	if (PyString_Check(x))
		return PyFloat_FromString(x, NULL);
	return PyNumber_Float(x);
}

/* Wimpy, slow approach to tp_new calls for subtypes of float:
   first create a regular float from whatever arguments we got,
   then allocate a subtype instance and initialize its ob_fval
   from the regular float.  The regular float is then thrown away.
*/
static PyObject *
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
	PyObject *tmp, *new;

	assert(PyType_IsSubtype(type, &PyFloat_Type));
	tmp = float_new(&PyFloat_Type, args, kwds);
	if (tmp == NULL)
		return NULL;
	assert(PyFloat_CheckExact(tmp));
	new = type->tp_alloc(type, 0);
	if (new == NULL) {
		Py_DECREF(tmp);
		return NULL;
	}
	((PyFloatObject *)new)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
	Py_DECREF(tmp);
	return new;
}

static PyObject *
float_getnewargs(PyFloatObject *v)
{
	return Py_BuildValue("(d)", v->ob_fval);
}

/* this is for the benefit of the pack/unpack routines below */

typedef enum {
	unknown_format, ieee_big_endian_format, ieee_little_endian_format
} float_format_type;

static float_format_type double_format, float_format;
static float_format_type detected_double_format, detected_float_format;

static PyObject *
float_getformat(PyTypeObject *v, PyObject* arg)
{
	char* s;
	float_format_type r;

	if (!PyString_Check(arg)) {
		PyErr_Format(PyExc_TypeError,
	     "__getformat__() argument must be string, not %.500s",
			     arg->ob_type->tp_name);
		return NULL;
	}
	s = PyString_AS_STRING(arg);
	if (strcmp(s, "double") == 0) {
		r = double_format;
	}
	else if (strcmp(s, "float") == 0) {
		r = float_format;
	}
	else {
		PyErr_SetString(PyExc_ValueError,
				"__getformat__() argument 1 must be "
				"'double' or 'float'");
		return NULL;
	}
	
	switch (r) {
	case unknown_format:
		return PyString_FromString("unknown");
	case ieee_little_endian_format:
		return PyString_FromString("IEEE, little-endian");
	case ieee_big_endian_format:
		return PyString_FromString("IEEE, big-endian");
	default:
		Py_FatalError("insane float_format or double_format");
		return NULL;
	}
}

PyDoc_STRVAR(float_getformat_doc,
"float.__getformat__(typestr) -> string\n"
"\n"
"You probably don't want to use this function.  It exists mainly to be\n"
"used in Python's test suite.\n"
"\n"
"typestr must be 'double' or 'float'.  This function returns whichever of\n"
"'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
"format of floating point numbers used by the C type named by typestr.");

static PyObject *
float_setformat(PyTypeObject *v, PyObject* args)
{
	char* typestr;
	char* format;
	float_format_type f;
	float_format_type detected;
	float_format_type *p;

	if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
		return NULL;

	if (strcmp(typestr, "double") == 0) {
		p = &double_format;
		detected = detected_double_format;
	}
	else if (strcmp(typestr, "float") == 0) {
		p = &float_format;
		detected = detected_float_format;
	}
	else {
		PyErr_SetString(PyExc_ValueError,
				"__setformat__() argument 1 must "
				"be 'double' or 'float'");
		return NULL;
	}
	
	if (strcmp(format, "unknown") == 0) {
		f = unknown_format;
	}
	else if (strcmp(format, "IEEE, little-endian") == 0) {
		f = ieee_little_endian_format;
	}
	else if (strcmp(format, "IEEE, big-endian") == 0) {
		f = ieee_big_endian_format;
	}
	else {
		PyErr_SetString(PyExc_ValueError,
				"__setformat__() argument 2 must be "
				"'unknown', 'IEEE, little-endian' or "
				"'IEEE, big-endian'");
		return NULL;

	}

	if (f != unknown_format && f != detected) {
		PyErr_Format(PyExc_ValueError,
			     "can only set %s format to 'unknown' or the "
			     "detected platform value", typestr);
		return NULL;
	}

	*p = f;
	Py_RETURN_NONE;
}

PyDoc_STRVAR(float_setformat_doc,
"float.__setformat__(typestr, fmt) -> None\n"
"\n"
"You probably don't want to use this function.  It exists mainly to be\n"
"used in Python's test suite.\n"
"\n"
"typestr must be 'double' or 'float'.  fmt must be one of 'unknown',\n"
"'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
"one of the latter two if it appears to match the underlying C reality.\n"
"\n"
"Overrides the automatic determination of C-level floating point type.\n"
"This affects how floats are converted to and from binary strings.");

static PyMethodDef float_methods[] = {
	{"__getnewargs__",	(PyCFunction)float_getnewargs,	METH_NOARGS},
	{"__getformat__",	(PyCFunction)float_getformat,	
	 METH_O|METH_CLASS,		float_getformat_doc},
	{"__setformat__",	(PyCFunction)float_setformat,	
	 METH_VARARGS|METH_CLASS,	float_setformat_doc},
	{NULL,		NULL}		/* sentinel */
};

PyDoc_STRVAR(float_doc,
"float(x) -> floating point number\n\
\n\
Convert a string or number to a floating point number, if possible.");


static PyNumberMethods float_as_number = {
	(binaryfunc)float_add, /*nb_add*/
	(binaryfunc)float_sub, /*nb_subtract*/
	(binaryfunc)float_mul, /*nb_multiply*/
	(binaryfunc)float_classic_div, /*nb_divide*/
	(binaryfunc)float_rem, /*nb_remainder*/
	(binaryfunc)float_divmod, /*nb_divmod*/
	(ternaryfunc)float_pow, /*nb_power*/
	(unaryfunc)float_neg, /*nb_negative*/
	(unaryfunc)float_pos, /*nb_positive*/
	(unaryfunc)float_abs, /*nb_absolute*/
	(inquiry)float_nonzero, /*nb_nonzero*/
	0,		/*nb_invert*/
	0,		/*nb_lshift*/
	0,		/*nb_rshift*/
	0,		/*nb_and*/
	0,		/*nb_xor*/
	0,		/*nb_or*/
	(coercion)float_coerce, /*nb_coerce*/
	(unaryfunc)float_int, /*nb_int*/
	(unaryfunc)float_long, /*nb_long*/
	(unaryfunc)float_float, /*nb_float*/
	0,		/* nb_oct */
	0,		/* nb_hex */
	0,		/* nb_inplace_add */
	0,		/* nb_inplace_subtract */
	0,		/* nb_inplace_multiply */
	0,		/* nb_inplace_divide */
	0,		/* nb_inplace_remainder */
	0, 		/* nb_inplace_power */
	0,		/* nb_inplace_lshift */
	0,		/* nb_inplace_rshift */
	0,		/* nb_inplace_and */
	0,		/* nb_inplace_xor */
	0,		/* nb_inplace_or */
	float_floor_div, /* nb_floor_divide */
	float_div,	/* nb_true_divide */
	0,		/* nb_inplace_floor_divide */
	0,		/* nb_inplace_true_divide */
};

PyTypeObject PyFloat_Type = {
	PyObject_HEAD_INIT(&PyType_Type)
	0,
	"float",
	sizeof(PyFloatObject),
	0,
	(destructor)float_dealloc,		/* tp_dealloc */
	(printfunc)float_print, 		/* tp_print */
	0,					/* tp_getattr */
	0,					/* tp_setattr */
	0,			 		/* tp_compare */
	(reprfunc)float_repr,			/* tp_repr */
	&float_as_number,			/* tp_as_number */
	0,					/* tp_as_sequence */
	0,					/* tp_as_mapping */
	(hashfunc)float_hash,			/* tp_hash */
	0,					/* tp_call */
	(reprfunc)float_str,			/* tp_str */
	PyObject_GenericGetAttr,		/* tp_getattro */
	0,					/* tp_setattro */
	0,					/* tp_as_buffer */
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
		Py_TPFLAGS_BASETYPE,		/* tp_flags */
	float_doc,				/* tp_doc */
 	0,					/* tp_traverse */
	0,					/* tp_clear */
	(richcmpfunc)float_richcompare,		/* tp_richcompare */
	0,					/* tp_weaklistoffset */
	0,					/* tp_iter */
	0,					/* tp_iternext */
	float_methods,				/* tp_methods */
	0,					/* tp_members */
	0,					/* tp_getset */
	0,					/* tp_base */
	0,					/* tp_dict */
	0,					/* tp_descr_get */
	0,					/* tp_descr_set */
	0,					/* tp_dictoffset */
	0,					/* tp_init */
	0,					/* tp_alloc */
	float_new,				/* tp_new */
};

void
_PyFloat_Init(void)
{
	/* We attempt to determine if this machine is using IEEE
	   floating point formats by peering at the bits of some
	   carefully chosen values.  If it looks like we are on an
	   IEEE platform, the float packing/unpacking routines can
	   just copy bits, if not they resort to arithmetic & shifts
	   and masks.  The shifts & masks approach works on all finite
	   values, but what happens to infinities, NaNs and signed
	   zeroes on packing is an accident, and attempting to unpack
	   a NaN or an infinity will raise an exception.

	   Note that if we're on some whacked-out platform which uses
	   IEEE formats but isn't strictly little-endian or big-
	   endian, we will fall back to the portable shifts & masks
	   method. */

#if SIZEOF_DOUBLE == 8
	{
		double x = 9006104071832581.0;
		if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
			detected_double_format = ieee_big_endian_format;
		else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
			detected_double_format = ieee_little_endian_format;
		else 
			detected_double_format = unknown_format;
	}
#else
	detected_double_format = unknown_format;
#endif

#if SIZEOF_FLOAT == 4
	{
		float y = 16711938.0;
		if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
			detected_float_format = ieee_big_endian_format;
		else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
			detected_float_format = ieee_little_endian_format;
		else 
			detected_float_format = unknown_format;
	}
#else
	detected_float_format = unknown_format;
#endif

	double_format = detected_double_format;
	float_format = detected_float_format;
}

void
PyFloat_Fini(void)
{
	PyFloatObject *p;
	PyFloatBlock *list, *next;
	unsigned i;
	int bc, bf;	/* block count, number of freed blocks */
	int frem, fsum;	/* remaining unfreed floats per block, total */

	bc = 0;
	bf = 0;
	fsum = 0;
	list = block_list;
	block_list = NULL;
	free_list = NULL;
	while (list != NULL) {
		bc++;
		frem = 0;
		for (i = 0, p = &list->objects[0];
		     i < N_FLOATOBJECTS;
		     i++, p++) {
			if (PyFloat_CheckExact(p) && p->ob_refcnt != 0)
				frem++;
		}
		next = list->next;
		if (frem) {
			list->next = block_list;
			block_list = list;
			for (i = 0, p = &list->objects[0];
			     i < N_FLOATOBJECTS;
			     i++, p++) {
				if (!PyFloat_CheckExact(p) ||
				    p->ob_refcnt == 0) {
					p->ob_type = (struct _typeobject *)
						free_list;
					free_list = p;
				}
			}
		}
		else {
			PyMem_FREE(list); /* XXX PyObject_FREE ??? */
			bf++;
		}
		fsum += frem;
		list = next;
	}
	if (!Py_VerboseFlag)
		return;
	fprintf(stderr, "# cleanup floats");
	if (!fsum) {
		fprintf(stderr, "\n");
	}
	else {
		fprintf(stderr,
			": %d unfreed float%s in %d out of %d block%s\n",
			fsum, fsum == 1 ? "" : "s",
			bc - bf, bc, bc == 1 ? "" : "s");
	}
	if (Py_VerboseFlag > 1) {
		list = block_list;
		while (list != NULL) {
			for (i = 0, p = &list->objects[0];
			     i < N_FLOATOBJECTS;
			     i++, p++) {
				if (PyFloat_CheckExact(p) &&
				    p->ob_refcnt != 0) {
					char buf[100];
					PyFloat_AsString(buf, p);
					/* XXX(twouters) cast refcount to
					   long until %zd is universally
					   available
					 */
					fprintf(stderr,
			     "#   <float at %p, refcnt=%ld, val=%s>\n",
						p, (long)p->ob_refcnt, buf);
				}
			}
			list = list->next;
		}
	}
}

/*----------------------------------------------------------------------------
 * _PyFloat_{Pack,Unpack}{4,8}.  See floatobject.h.
 *
 * TODO:  On platforms that use the standard IEEE-754 single and double
 * formats natively, these routines could simply copy the bytes.
 */
int
_PyFloat_Pack4(double x, unsigned char *p, int le)
{
	if (float_format == unknown_format) {
		unsigned char sign;
		int e;
		double f;
		unsigned int fbits;
		int incr = 1;

		if (le) {
			p += 3;
			incr = -1;
		}

		if (x < 0) {
			sign = 1;
			x = -x;
		}
		else
			sign = 0;

		f = frexp(x, &e);

		/* Normalize f to be in the range [1.0, 2.0) */
		if (0.5 <= f && f < 1.0) {
			f *= 2.0;
			e--;
		}
		else if (f == 0.0)
			e = 0;
		else {
			PyErr_SetString(PyExc_SystemError,
					"frexp() result out of range");
			return -1;
		}

		if (e >= 128)
			goto Overflow;
		else if (e < -126) {
			/* Gradual underflow */
			f = ldexp(f, 126 + e);
			e = 0;
		}
		else if (!(e == 0 && f == 0.0)) {
			e += 127;
			f -= 1.0; /* Get rid of leading 1 */
		}

		f *= 8388608.0; /* 2**23 */
		fbits = (unsigned int)(f + 0.5); /* Round */
		assert(fbits <= 8388608);
		if (fbits >> 23) {
			/* The carry propagated out of a string of 23 1 bits. */
			fbits = 0;
			++e;
			if (e >= 255)
				goto Overflow;
		}

		/* First byte */
		*p = (sign << 7) | (e >> 1);
		p += incr;

		/* Second byte */
		*p = (char) (((e & 1) << 7) | (fbits >> 16));
		p += incr;

		/* Third byte */
		*p = (fbits >> 8) & 0xFF;
		p += incr;

		/* Fourth byte */
		*p = fbits & 0xFF;

		/* Done */
		return 0;

	  Overflow:
		PyErr_SetString(PyExc_OverflowError,
				"float too large to pack with f format");
		return -1;
	}
	else {
		float y = (float)x;
		const char *s = (char*)&y;
		int i, incr = 1;

		if ((float_format == ieee_little_endian_format && !le)
		    || (float_format == ieee_big_endian_format && le)) {
			p += 3;
			incr = -1;
		}
		
		for (i = 0; i < 4; i++) {
			*p = *s++;
			p += incr;
		}
		return 0;
	}
}

int
_PyFloat_Pack8(double x, unsigned char *p, int le)
{
	if (double_format == unknown_format) {
		unsigned char sign;
		int e;
		double f;
		unsigned int fhi, flo;
		int incr = 1;

		if (le) {
			p += 7;
			incr = -1;
		}

		if (x < 0) {
			sign = 1;
			x = -x;
		}
		else
			sign = 0;

		f = frexp(x, &e);

		/* Normalize f to be in the range [1.0, 2.0) */
		if (0.5 <= f && f < 1.0) {
			f *= 2.0;
			e--;
		}
		else if (f == 0.0)
			e = 0;
		else {
			PyErr_SetString(PyExc_SystemError,
					"frexp() result out of range");
			return -1;
		}

		if (e >= 1024)
			goto Overflow;
		else if (e < -1022) {
			/* Gradual underflow */
			f = ldexp(f, 1022 + e);
			e = 0;
		}
		else if (!(e == 0 && f == 0.0)) {
			e += 1023;
			f -= 1.0; /* Get rid of leading 1 */
		}

		/* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
		f *= 268435456.0; /* 2**28 */
		fhi = (unsigned int)f; /* Truncate */
		assert(fhi < 268435456);

		f -= (double)fhi;
		f *= 16777216.0; /* 2**24 */
		flo = (unsigned int)(f + 0.5); /* Round */
		assert(flo <= 16777216);
		if (flo >> 24) {
			/* The carry propagated out of a string of 24 1 bits. */
			flo = 0;
			++fhi;
			if (fhi >> 28) {
				/* And it also progagated out of the next 28 bits. */
				fhi = 0;
				++e;
				if (e >= 2047)
					goto Overflow;
			}
		}

		/* First byte */
		*p = (sign << 7) | (e >> 4);
		p += incr;

		/* Second byte */
		*p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
		p += incr;

		/* Third byte */
		*p = (fhi >> 16) & 0xFF;
		p += incr;

		/* Fourth byte */
		*p = (fhi >> 8) & 0xFF;
		p += incr;

		/* Fifth byte */
		*p = fhi & 0xFF;
		p += incr;

		/* Sixth byte */
		*p = (flo >> 16) & 0xFF;
		p += incr;

		/* Seventh byte */
		*p = (flo >> 8) & 0xFF;
		p += incr;

		/* Eighth byte */
		*p = flo & 0xFF;
		p += incr;

		/* Done */
		return 0;

	  Overflow:
		PyErr_SetString(PyExc_OverflowError,
				"float too large to pack with d format");
		return -1;
	}
	else {
		const char *s = (char*)&x;
		int i, incr = 1;

		if ((double_format == ieee_little_endian_format && !le)
		    || (double_format == ieee_big_endian_format && le)) {
			p += 7;
			incr = -1;
		}
		
		for (i = 0; i < 8; i++) {
			*p = *s++;
			p += incr;
		}
		return 0;
	}
}

double
_PyFloat_Unpack4(const unsigned char *p, int le)
{
	if (float_format == unknown_format) {
		unsigned char sign;
		int e;
		unsigned int f;
		double x;
		int incr = 1;

		if (le) {
			p += 3;
			incr = -1;
		}

		/* First byte */
		sign = (*p >> 7) & 1;
		e = (*p & 0x7F) << 1;
		p += incr;

		/* Second byte */
		e |= (*p >> 7) & 1;
		f = (*p & 0x7F) << 16;
		p += incr;

		if (e == 255) {
			PyErr_SetString(
				PyExc_ValueError,
				"can't unpack IEEE 754 special value "
				"on non-IEEE platform");
			return -1;
		}

		/* Third byte */
		f |= *p << 8;
		p += incr;

		/* Fourth byte */
		f |= *p;

		x = (double)f / 8388608.0;

		/* XXX This sadly ignores Inf/NaN issues */
		if (e == 0)
			e = -126;
		else {
			x += 1.0;
			e -= 127;
		}
		x = ldexp(x, e);

		if (sign)
			x = -x;

		return x;
	}
	else {
		float x;

		if ((float_format == ieee_little_endian_format && !le)
		    || (float_format == ieee_big_endian_format && le)) {
			char buf[4];
			char *d = &buf[3];
			int i;

			for (i = 0; i < 4; i++) {
				*d-- = *p++;
			}
			memcpy(&x, buf, 4);
		}
		else {
			memcpy(&x, p, 4);
		}

		return x;
	}		
}

double
_PyFloat_Unpack8(const unsigned char *p, int le)
{
	if (double_format == unknown_format) {
		unsigned char sign;
		int e;
		unsigned int fhi, flo;
		double x;
		int incr = 1;

		if (le) {
			p += 7;
			incr = -1;
		}

		/* First byte */
		sign = (*p >> 7) & 1;
		e = (*p & 0x7F) << 4;
		
		p += incr;

		/* Second byte */
		e |= (*p >> 4) & 0xF;
		fhi = (*p & 0xF) << 24;
		p += incr;

		if (e == 2047) {
			PyErr_SetString(
				PyExc_ValueError,
				"can't unpack IEEE 754 special value "
				"on non-IEEE platform");
			return -1.0;
		}

		/* Third byte */
		fhi |= *p << 16;
		p += incr;

		/* Fourth byte */
		fhi |= *p  << 8;
		p += incr;

		/* Fifth byte */
		fhi |= *p;
		p += incr;

		/* Sixth byte */
		flo = *p << 16;
		p += incr;

		/* Seventh byte */
		flo |= *p << 8;
		p += incr;

		/* Eighth byte */
		flo |= *p;

		x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
		x /= 268435456.0; /* 2**28 */

		if (e == 0)
			e = -1022;
		else {
			x += 1.0;
			e -= 1023;
		}
		x = ldexp(x, e);

		if (sign)
			x = -x;

		return x;
	}
	else {
		double x;

		if ((double_format == ieee_little_endian_format && !le)
		    || (double_format == ieee_big_endian_format && le)) {
			char buf[8];
			char *d = &buf[7];
			int i;
			
			for (i = 0; i < 8; i++) {
				*d-- = *p++;
			}
			memcpy(&x, buf, 8);
		}
		else {
			memcpy(&x, p, 8);
		}

		return x;
	}
}