• Barry Warsaw's avatar
    Make test_email.py completely pass. This is cheating though because the two · bef9d21d
    Barry Warsaw yazdı
    line splitting examples don't split things the way they used to -- or should.
    In these cases, change the test case and add an XXX.
    
    The final failure was in Charset.body_encode() with euc-jp charset.  These
    return the original string unencoded, which isn't right.  XXX and comment this
    out for now; we'll fix it after a1.
    bef9d21d
header.py 24.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
# Copyright (C) 2002-2007 Python Software Foundation
# Author: Ben Gertzfield, Barry Warsaw
# Contact: email-sig@python.org

"""Header encoding and decoding functionality."""

__all__ = [
    'Header',
    'decode_header',
    'make_header',
    ]

import re
import binascii

import email.quoprimime
import email.base64mime

from email.errors import HeaderParseError
from email.charset import Charset

NL = '\n'
SPACE = ' '
BSPACE = b' '
SPACE8 = ' ' * 8
EMPTYSTRING = ''
MAXLINELEN = 78

USASCII = Charset('us-ascii')
UTF8 = Charset('utf-8')

# Match encoded-word strings in the form =?charset?q?Hello_World?=
ecre = re.compile(r'''
  =\?                   # literal =?
  (?P<charset>[^?]*?)   # non-greedy up to the next ? is the charset
  \?                    # literal ?
  (?P<encoding>[qb])    # either a "q" or a "b", case insensitive
  \?                    # literal ?
  (?P<encoded>.*?)      # non-greedy up to the next ?= is the encoded string
  \?=                   # literal ?=
  (?=[ \t]|$)           # whitespace or the end of the string
  ''', re.VERBOSE | re.IGNORECASE | re.MULTILINE)

# Field name regexp, including trailing colon, but not separating whitespace,
# according to RFC 2822.  Character range is from tilde to exclamation mark.
# For use with .match()
fcre = re.compile(r'[\041-\176]+:$')



# Helpers
_max_append = email.quoprimime._max_append



def decode_header(header):
    """Decode a message header value without converting charset.

    Returns a list of (string, charset) pairs containing each of the decoded
    parts of the header.  Charset is None for non-encoded parts of the header,
    otherwise a lower-case string containing the name of the character set
    specified in the encoded string.

    An email.Errors.HeaderParseError may be raised when certain decoding error
    occurs (e.g. a base64 decoding exception).
    """
    # If no encoding, just return the header with no charset.
    if not ecre.search(header):
        return [(header, None)]
    # First step is to parse all the encoded parts into triplets of the form
    # (encoded_string, encoding, charset).  For unencoded strings, the last
    # two parts will be None.
    words = []
    for line in header.splitlines():
        parts = ecre.split(line)
        while parts:
            unencoded = parts.pop(0).strip()
            if unencoded:
                words.append((unencoded, None, None))
            if parts:
                charset = parts.pop(0).lower()
                encoding = parts.pop(0).lower()
                encoded = parts.pop(0)
                words.append((encoded, encoding, charset))
    # The next step is to decode each encoded word by applying the reverse
    # base64 or quopri transformation.  decoded_words is now a list of the
    # form (decoded_word, charset).
    decoded_words = []
    for encoded_string, encoding, charset in words:
        if encoding is None:
            # This is an unencoded word.
            decoded_words.append((encoded_string, charset))
        elif encoding == 'q':
            word = email.quoprimime.header_decode(encoded_string)
            decoded_words.append((word, charset))
        elif encoding == 'b':
            try:
                word = email.base64mime.decode(encoded_string)
            except binascii.Error:
                raise HeaderParseError('Base64 decoding error')
            else:
                decoded_words.append((word, charset))
        else:
            raise AssertionError('Unexpected encoding: ' + encoding)
    # Now convert all words to bytes and collapse consecutive runs of
    # similarly encoded words.
    collapsed = []
    last_word = last_charset = None
    for word, charset in decoded_words:
        if isinstance(word, str):
            word = bytes(word, 'raw-unicode-escape')
        if last_word is None:
            last_word = word
            last_charset = charset
        elif charset != last_charset:
            collapsed.append((last_word, last_charset))
            last_word = word
            last_charset = charset
        elif last_charset is None:
            last_word += BSPACE + word
        else:
            last_word += word
    collapsed.append((last_word, last_charset))
    return collapsed



def make_header(decoded_seq, maxlinelen=None, header_name=None,
                continuation_ws=' '):
    """Create a Header from a sequence of pairs as returned by decode_header()

    decode_header() takes a header value string and returns a sequence of
    pairs of the format (decoded_string, charset) where charset is the string
    name of the character set.

    This function takes one of those sequence of pairs and returns a Header
    instance.  Optional maxlinelen, header_name, and continuation_ws are as in
    the Header constructor.
    """
    h = Header(maxlinelen=maxlinelen, header_name=header_name,
               continuation_ws=continuation_ws)
    for s, charset in decoded_seq:
        # None means us-ascii but we can simply pass it on to h.append()
        if charset is not None and not isinstance(charset, Charset):
            charset = Charset(charset)
        h.append(s, charset)
    return h



class Header:
    def __init__(self, s=None, charset=None,
                 maxlinelen=None, header_name=None,
                 continuation_ws=' ', errors='strict'):
        """Create a MIME-compliant header that can contain many character sets.

        Optional s is the initial header value.  If None, the initial header
        value is not set.  You can later append to the header with .append()
        method calls.  s may be a byte string or a Unicode string, but see the
        .append() documentation for semantics.

        Optional charset serves two purposes: it has the same meaning as the
        charset argument to the .append() method.  It also sets the default
        character set for all subsequent .append() calls that omit the charset
        argument.  If charset is not provided in the constructor, the us-ascii
        charset is used both as s's initial charset and as the default for
        subsequent .append() calls.

        The maximum line length can be specified explicit via maxlinelen.  For
        splitting the first line to a shorter value (to account for the field
        header which isn't included in s, e.g. `Subject') pass in the name of
        the field in header_name.  The default maxlinelen is 78 as recommended
        by RFC 2822.

        continuation_ws must be RFC 2822 compliant folding whitespace (usually
        either a space or a hard tab) which will be prepended to continuation
        lines.

        errors is passed through to the .append() call.
        """
        if charset is None:
            charset = USASCII
        elif not isinstance(charset, Charset):
            charset = Charset(charset)
        self._charset = charset
        self._continuation_ws = continuation_ws
        self._chunks = []
        if s is not None:
            self.append(s, charset, errors)
        if maxlinelen is None:
            maxlinelen = MAXLINELEN
        self._maxlinelen = maxlinelen
        if header_name is None:
            self._headerlen = 0
        else:
            # Take the separating colon and space into account.
            self._headerlen = len(header_name) + 2

    def __str__(self):
        """Return the string value of the header."""
        self._normalize()
        uchunks = []
        lastcs = None
        for string, charset in self._chunks:
            # We must preserve spaces between encoded and non-encoded word
            # boundaries, which means for us we need to add a space when we go
            # from a charset to None/us-ascii, or from None/us-ascii to a
            # charset.  Only do this for the second and subsequent chunks.
            nextcs = charset
            if uchunks:
                if lastcs not in (None, 'us-ascii'):
                    if nextcs in (None, 'us-ascii'):
                        uchunks.append(SPACE)
                        nextcs = None
                elif nextcs not in (None, 'us-ascii'):
                    uchunks.append(SPACE)
            lastcs = nextcs
            uchunks.append(string)
        return EMPTYSTRING.join(uchunks)

    # Rich comparison operators for equality only.  BAW: does it make sense to
    # have or explicitly disable <, <=, >, >= operators?
    def __eq__(self, other):
        # other may be a Header or a string.  Both are fine so coerce
        # ourselves to a unicode (of the unencoded header value), swap the
        # args and do another comparison.
        return other == str(self)

    def __ne__(self, other):
        return not self == other

    def append(self, s, charset=None, errors='strict'):
        """Append a string to the MIME header.

        Optional charset, if given, should be a Charset instance or the name
        of a character set (which will be converted to a Charset instance).  A
        value of None (the default) means that the charset given in the
        constructor is used.

        s may be a byte string or a Unicode string.  If it is a byte string
        (i.e. isinstance(s, str) is true), then charset is the encoding of
        that byte string, and a UnicodeError will be raised if the string
        cannot be decoded with that charset.  If s is a Unicode string, then
        charset is a hint specifying the character set of the characters in
        the string.  In this case, when producing an RFC 2822 compliant header
        using RFC 2047 rules, the Unicode string will be encoded using the
        following charsets in order: us-ascii, the charset hint, utf-8.  The
        first character set not to provoke a UnicodeError is used.

        Optional `errors' is passed as the third argument to any unicode() or
        ustr.encode() call.
        """
        if charset is None:
            charset = self._charset
        elif not isinstance(charset, Charset):
            charset = Charset(charset)
        if isinstance(s, str):
            # Convert the string from the input character set to the output
            # character set and store the resulting bytes and the charset for
            # composition later.
            input_charset = charset.input_codec or 'us-ascii'
            input_bytes = s.encode(input_charset, errors)
        else:
            # We already have the bytes we will store internally.
            input_bytes = s
        # Ensure that the bytes we're storing can be decoded to the output
        # character set, otherwise an early error is thrown.
        output_charset = charset.output_codec or 'us-ascii'
        output_string = input_bytes.decode(output_charset, errors)
        self._chunks.append((output_string, charset))

    def encode(self, splitchars=';, \t', maxlinelen=None):
        """Encode a message header into an RFC-compliant format.

        There are many issues involved in converting a given string for use in
        an email header.  Only certain character sets are readable in most
        email clients, and as header strings can only contain a subset of
        7-bit ASCII, care must be taken to properly convert and encode (with
        Base64 or quoted-printable) header strings.  In addition, there is a
        75-character length limit on any given encoded header field, so
        line-wrapping must be performed, even with double-byte character sets.

        This method will do its best to convert the string to the correct
        character set used in email, and encode and line wrap it safely with
        the appropriate scheme for that character set.

        If the given charset is not known or an error occurs during
        conversion, this function will return the header untouched.

        Optional splitchars is a string containing characters to split long
        ASCII lines on, in rough support of RFC 2822's `highest level
        syntactic breaks'.  This doesn't affect RFC 2047 encoded lines.
        """
        self._normalize()
        if maxlinelen is None:
            maxlinelen = self._maxlinelen
        # A maxlinelen of 0 means don't wrap.  For all practical purposes,
        # choosing a huge number here accomplishes that and makes the
        # _ValueFormatter algorithm much simpler.
        if maxlinelen == 0:
            maxlinelen = 1000000
        formatter = _ValueFormatter(self._headerlen, maxlinelen,
                                    self._continuation_ws, splitchars)
        for string, charset in self._chunks:
            lines = string.splitlines()
            for line in lines:
                formatter.feed(line, charset)
                if len(lines) > 1:
                    formatter.newline()
            formatter.add_transition()
        return str(formatter)

    def _normalize(self):
        # Step 1: Normalize the chunks so that all runs of identical charsets
        # get collapsed into a single unicode string.
        chunks = []
        last_charset = None
        last_chunk = []
        for string, charset in self._chunks:
            if charset == last_charset:
                last_chunk.append(string)
            else:
                if last_charset is not None:
                    chunks.append((SPACE.join(last_chunk), last_charset))
                last_chunk = [string]
                last_charset = charset
        if last_chunk:
            chunks.append((SPACE.join(last_chunk), last_charset))
        self._chunks = chunks



class _ValueFormatter:
    def __init__(self, headerlen, maxlen, continuation_ws, splitchars):
        self._maxlen = maxlen
        self._continuation_ws = continuation_ws
        self._continuation_ws_len = len(continuation_ws.replace('\t', SPACE8))
        self._splitchars = splitchars
        self._lines = []
        self._current_line = _Accumulator(headerlen)

    def __str__(self):
        self.newline()
        return NL.join(self._lines)

    def newline(self):
        end_of_line = self._current_line.pop()
        if end_of_line is not None:
            self._current_line.push(end_of_line)
        if len(self._current_line) > 0:
            self._lines.append(str(self._current_line))
        self._current_line.reset()

    def add_transition(self):
        self._current_line.push(None)

    def feed(self, string, charset):
        # If the string itself fits on the current line in its encoded format,
        # then add it now and be done with it.
        encoded_string = charset.header_encode(string)
        if len(encoded_string) + len(self._current_line) <= self._maxlen:
            self._current_line.push(encoded_string)
            return
        # If the charset has no header encoding (i.e. it is an ASCII encoding)
        # then we must split the header at the "highest level syntactic break"
        # possible. Note that we don't have a lot of smarts about field
        # syntax; we just try to break on semi-colons, then commas, then
        # whitespace.  Eventually, this should be pluggable.
        if charset.header_encoding is None:
            for ch in self._splitchars:
                if ch in string:
                    break
            else:
                ch = None
            # If there's no available split character then regardless of
            # whether the string fits on the line, we have to put it on a line
            # by itself.
            if ch is None:
                if not self._current_line.is_onlyws():
                    self._lines.append(str(self._current_line))
                    self._current_line.reset(self._continuation_ws)
                self._current_line.push(encoded_string)
            else:
                self._ascii_split(string, ch)
            return
        # Otherwise, we're doing either a Base64 or a quoted-printable
        # encoding which means we don't need to split the line on syntactic
        # breaks.  We can basically just find enough characters to fit on the
        # current line, minus the RFC 2047 chrome.  What makes this trickier
        # though is that we have to split at octet boundaries, not character
        # boundaries but it's only safe to split at character boundaries so at
        # best we can only get close.
        encoded_lines = charset.header_encode_lines(string, self._maxlengths())
        # The first element extends the current line, but if it's None then
        # nothing more fit on the current line so start a new line.
        try:
            first_line = encoded_lines.pop(0)
        except IndexError:
            # There are no encoded lines, so we're done.
            return
        if first_line is not None:
            self._current_line.push(first_line)
        self._lines.append(str(self._current_line))
        self._current_line.reset(self._continuation_ws)
        try:
            last_line = encoded_lines.pop()
        except IndexError:
            # There was only one line.
            return
        self._current_line.push(last_line)
        # Everything else are full lines in themselves.
        for line in encoded_lines:
            self._lines.append(self._continuation_ws + line)

    def _maxlengths(self):
        # The first line's length.
        yield self._maxlen - len(self._current_line)
        while True:
            yield self._maxlen - self._continuation_ws_len

    def _ascii_split(self, string, ch):
        holding = _Accumulator()
        # Split the line on the split character, preserving it.  If the split
        # character is whitespace RFC 2822 $2.2.3 requires us to fold on the
        # whitespace, so that the line leads with the original whitespace we
        # split on.  However, if a higher syntactic break is used instead
        # (e.g. comma or semicolon), the folding should happen after the split
        # character.  But then in that case, we need to add our own
        # continuation whitespace -- although won't that break unfolding?
        for part, splitpart, nextpart in _spliterator(ch, string):
            if not splitpart:
                # No splitpart means this is the last chunk.  Put this part
                # either on the current line or the next line depending on
                # whether it fits.
                holding.push(part)
                if len(holding) + len(self._current_line) <= self._maxlen:
                    # It fits, but we're done.
                    self._current_line.push(str(holding))
                else:
                    # It doesn't fit, but we're done.  Before pushing a new
                    # line, watch out for the current line containing only
                    # whitespace.
                    holding.pop()
                    if self._current_line.is_onlyws() and holding.is_onlyws():
                        # Don't start a new line.
                        holding.push(part)
                        part = None
                    self._current_line.push(str(holding))
                    self._lines.append(str(self._current_line))
                    if part is None:
                        self._current_line.reset()
                    else:
                        holding.reset(part)
                        self._current_line.reset(str(holding))
                return
            elif not nextpart:
                # There must be some trailing split characters because we
                # found a split character but no next part.  In this case we
                # must treat the thing to fit as the part + splitpart because
                # if splitpart is whitespace it's not allowed to be the only
                # thing on the line, and if it's not whitespace we must split
                # after the syntactic break.  In either case, we're done.
                holding_prelen = len(holding)
                holding.push(part + splitpart)
                if len(holding) + len(self._current_line) <= self._maxlen:
                    self._current_line.push(str(holding))
                elif holding_prelen == 0:
                    # This is the only chunk left so it has to go on the
                    # current line.
                    self._current_line.push(str(holding))
                else:
                    save_part = holding.pop()
                    self._current_line.push(str(holding))
                    self._lines.append(str(self._current_line))
                    holding.reset(save_part)
                    self._current_line.reset(str(holding))
                return
            elif not part:
                # We're leading with a split character.  See if the splitpart
                # and nextpart fits on the current line.
                holding.push(splitpart + nextpart)
                holding_len = len(holding)
                # We know we're not leaving the nextpart on the stack.
                holding.pop()
                if holding_len + len(self._current_line) <= self._maxlen:
                    holding.push(splitpart)
                else:
                    # It doesn't fit.  Since there's no current part really
                    # the best we can do is start a new line and push the
                    # split part onto it.
                    self._current_line.push(str(holding))
                    holding.reset()
                    if len(self._current_line) > 0 and self._lines:
                        self._lines.append(str(self._current_line))
                        self._current_line.reset()
                    holding.push(splitpart)
            else:
                # All three parts are present.  First let's see if all three
                # parts will fit on the current line.  If so, we don't need to
                # split it.
                holding.push(part + splitpart + nextpart)
                holding_len = len(holding)
                # Pop the part because we'll push nextpart on the next
                # iteration through the loop.
                holding.pop()
                if holding_len + len(self._current_line) <= self._maxlen:
                    holding.push(part + splitpart)
                else:
                    # The entire thing doesn't fit.  See if we need to split
                    # before or after the split characters.
                    if splitpart.isspace():
                        # Split before whitespace.  Remember that the
                        # whitespace becomes the continuation whitespace of
                        # the next line so it goes to current_line not holding.
                        holding.push(part)
                        self._current_line.push(str(holding))
                        holding.reset()
                        self._lines.append(str(self._current_line))
                        self._current_line.reset(splitpart)
                    else:
                        # Split after non-whitespace.  The continuation
                        # whitespace comes from the instance variable.
                        holding.push(part + splitpart)
                        self._current_line.push(str(holding))
                        holding.reset()
                        self._lines.append(str(self._current_line))
                        if nextpart[0].isspace():
                            self._current_line.reset()
                        else:
                            self._current_line.reset(self._continuation_ws)
        # Get the last of the holding part
        self._current_line.push(str(holding))



def _spliterator(character, string):
    parts = list(reversed(re.split('(%s)' % character, string)))
    while parts:
        part = parts.pop()
        splitparts = (parts.pop() if parts else None)
        nextpart = (parts.pop() if parts else None)
        yield (part, splitparts, nextpart)
        if nextpart is not None:
            parts.append(nextpart)


class _Accumulator:
    def __init__(self, initial_size=0):
        self._initial_size = initial_size
        self._current = []

    def push(self, string):
        self._current.append(string)

    def pop(self):
        if not self._current:
            return None
        return self._current.pop()

    def __len__(self):
        return sum(((1 if string is None else len(string))
                    for string in self._current),
                   self._initial_size)

    def __str__(self):
        if self._current and self._current[-1] is None:
            self._current.pop()
        return EMPTYSTRING.join((' ' if string is None else string)
                                for string in self._current)

    def reset(self, string=None):
        self._current = []
        self._initial_size = 0
        if string is not None:
            self.push(string)

    def is_onlyws(self):
        return len(self) == 0 or str(self).isspace()