Kaydet (Commit) 0f33604e authored tarafından Tim Peters's avatar Tim Peters

SF bug [ #409448 ] Complex division is braindead

http://sourceforge.net/tracker/?func=detail&aid=409448&group_id=5470&atid=105470
Now less braindead.  Also added test_complex.py, which doesn't test much, but
fails without this patch.
üst 7620bbdc
from test_support import TestFailed
from random import random
# XXX need many, many more tests here.
nerrors = 0
def check_close_real(x, y, eps=1e-12):
"""Return true iff floats x and y "are close\""""
# put the one with larger magnitude second
if abs(x) > abs(y):
x, y = y, x
if y == 0:
return abs(x) < eps
if x == 0:
return abs(y) < eps
# check that relative difference < eps
return abs((x-y)/y) < eps
def check_close(x, y, eps=1e-12):
"""Return true iff complexes x and y "are close\""""
return check_close_real(x.real, y.real, eps) and \
check_close_real(x.imag, y.imag, eps)
def test_div(x, y):
"""Compute complex z=x*y, and check that z/x==y and z/y==x."""
global nerrors
z = x * y
if x != 0:
q = z / x
if not check_close(q, y):
nerrors += 1
print `z`, "/", `x`, "==", `q`, "but expected", `y`
if y != 0:
q = z / y
if not check_close(q, x):
nerrors += 1
print `z`, "/", `y`, "==", `q`, "but expected", `x`
simple_real = [float(i) for i in range(-5, 6)]
simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
for x in simple_complex:
for y in simple_complex:
test_div(x, y)
# A naive complex division algorithm (such as in 2.0) is very prone to
# nonsense errors for these (overflows and underflows).
test_div(complex(1e200, 1e200), 1+0j)
test_div(complex(1e-200, 1e-200), 1+0j)
# Just for fun.
for i in range(100):
test_div(complex(random(), random()),
complex(random(), random()))
try:
z = 1.0 / (0+0j)
except ZeroDivisionError:
pass
else:
nerrors += 1
raise TestFailed("Division by complex 0 didn't raise ZeroDivisionError")
if nerrors:
raise TestFailed("%d tests failed" % nerrors)
......@@ -29,7 +29,8 @@
static Py_complex c_1 = {1., 0.};
Py_complex c_sum(Py_complex a, Py_complex b)
Py_complex
c_sum(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real + b.real;
......@@ -37,7 +38,8 @@ Py_complex c_sum(Py_complex a, Py_complex b)
return r;
}
Py_complex c_diff(Py_complex a, Py_complex b)
Py_complex
c_diff(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real - b.real;
......@@ -45,7 +47,8 @@ Py_complex c_diff(Py_complex a, Py_complex b)
return r;
}
Py_complex c_neg(Py_complex a)
Py_complex
c_neg(Py_complex a)
{
Py_complex r;
r.real = -a.real;
......@@ -53,7 +56,8 @@ Py_complex c_neg(Py_complex a)
return r;
}
Py_complex c_prod(Py_complex a, Py_complex b)
Py_complex
c_prod(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real*b.real - a.imag*b.imag;
......@@ -61,8 +65,16 @@ Py_complex c_prod(Py_complex a, Py_complex b)
return r;
}
Py_complex c_quot(Py_complex a, Py_complex b)
Py_complex
c_quot(Py_complex a, Py_complex b)
{
/******************************************************************
This was the original algorithm. It's grossly prone to spurious
overflow and underflow errors. It also merrily divides by 0 despite
checking for that(!). The code still serves a doc purpose here, as
the algorithm following is a simple by-cases transformation of this
one:
Py_complex r;
double d = b.real*b.real + b.imag*b.imag;
if (d == 0.)
......@@ -70,9 +82,45 @@ Py_complex c_quot(Py_complex a, Py_complex b)
r.real = (a.real*b.real + a.imag*b.imag)/d;
r.imag = (a.imag*b.real - a.real*b.imag)/d;
return r;
******************************************************************/
/* This algorithm is better, and is pretty obvious: first divide the
* numerators and denominator by whichever of {b.real, b.imag} has
* larger magnitude. The earliest reference I found was to CACM
* Algorithm 116 (Complex Division, Robert L. Smith, Stanford
* University). As usual, though, we're still ignoring all IEEE
* endcases.
*/
Py_complex r; /* the result */
const double abs_breal = b.real < 0 ? -b.real : b.real;
const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
if (abs_breal >= abs_bimag) {
/* divide tops and bottom by b.real */
if (abs_breal == 0.0) {
errno = EDOM;
r.real = r.imag = 0.0;
}
else {
const double ratio = b.imag / b.real;
const double denom = b.real + b.imag * ratio;
r.real = (a.real + a.imag * ratio) / denom;
r.imag = (a.imag - a.real * ratio) / denom;
}
}
else {
/* divide tops and bottom by b.imag */
const double ratio = b.real / b.imag;
const double denom = b.real * ratio + b.imag;
assert(b.imag != 0.0);
r.real = (a.real * ratio + a.imag) / denom;
r.imag = (a.imag * ratio - a.real) / denom;
}
return r;
}
Py_complex c_pow(Py_complex a, Py_complex b)
Py_complex
c_pow(Py_complex a, Py_complex b)
{
Py_complex r;
double vabs,len,at,phase;
......@@ -101,7 +149,8 @@ Py_complex c_pow(Py_complex a, Py_complex b)
return r;
}
static Py_complex c_powu(Py_complex x, long n)
static Py_complex
c_powu(Py_complex x, long n)
{
Py_complex r, p;
long mask = 1;
......@@ -116,7 +165,8 @@ static Py_complex c_powu(Py_complex x, long n)
return r;
}
static Py_complex c_powi(Py_complex x, long n)
static Py_complex
c_powi(Py_complex x, long n)
{
Py_complex cn;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment