Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
C
cpython
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Batuhan Osman TASKAYA
cpython
Commits
2a0711d8
Kaydet (Commit)
2a0711d8
authored
Şub 23, 1997
tarafından
Guido van Rossum
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
Removing this -- complex numbers are now builtin,
and there is already a similar demo in Demo/classes/Complex.py.
üst
5680906c
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
275 deletions
+0
-275
Complex.py
Lib/Complex.py
+0
-275
No files found.
Lib/Complex.py
deleted
100644 → 0
Dosyayı görüntüle @
5680906c
# Complex numbers
# ---------------
# This module represents complex numbers as instances of the class Complex.
# A Complex instance z has two data attribues, z.re (the real part) and z.im
# (the imaginary part). In fact, z.re and z.im can have any value -- all
# arithmetic operators work regardless of the type of z.re and z.im (as long
# as they support numerical operations).
#
# The following functions exist (Complex is actually a class):
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
# Polar([r [,phi [,fullcircle]]]) ->
# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
# (r and phi default to 0)
#
# Complex numbers have the following methods:
# z.abs() -> absolute value of z
# z.radius() == z.abs()
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
# z.phi([fullcircle]) == z.angle(fullcircle)
#
# These standard functions and unary operators accept complex arguments:
# abs(z)
# -z
# +z
# not z
# repr(z) == `z`
# str(z)
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
# the result equals hash(z.re)
# Note that hex(z) and oct(z) are not defined.
#
# These conversions accept complex arguments only if their imaginary part is zero:
# int(z)
# long(z)
# float(z)
#
# The following operators accept two complex numbers, or one complex number
# and one real number (int, long or float):
# z1 + z2
# z1 - z2
# z1 * z2
# z1 / z2
# pow(z1, z2)
# cmp(z1, z2)
# Note that z1 % z2 and divmod(z1, z2) are not defined,
# nor are shift and mask operations.
#
# The standard module math does not support complex numbers.
# (I suppose it would be easy to implement a cmath module.)
#
# Idea:
# add a class Polar(r, phi) and mixed-mode arithmetic which
# chooses the most appropriate type for the result:
# Complex for +,-,cmp
# Polar for *,/,pow
import
types
,
math
if
not
hasattr
(
math
,
'hypot'
):
def
hypot
(
x
,
y
):
# XXX I know there's a way to compute this without possibly causing
# overflow, but I can't remember what it is right now...
return
math
.
sqrt
(
x
*
x
+
y
*
y
)
math
.
hypot
=
hypot
twopi
=
math
.
pi
*
2.0
halfpi
=
math
.
pi
/
2.0
def
IsComplex
(
obj
):
return
hasattr
(
obj
,
're'
)
and
hasattr
(
obj
,
'im'
)
def
Polar
(
r
=
0
,
phi
=
0
,
fullcircle
=
twopi
):
phi
=
phi
*
(
twopi
/
fullcircle
)
return
Complex
(
math
.
cos
(
phi
)
*
r
,
math
.
sin
(
phi
)
*
r
)
class
Complex
:
def
__init__
(
self
,
re
=
0
,
im
=
0
):
if
IsComplex
(
re
):
im
=
im
+
re
.
im
re
=
re
.
re
if
IsComplex
(
im
):
re
=
re
-
im
.
im
im
=
im
.
re
self
.
re
=
re
self
.
im
=
im
def
__setattr__
(
self
,
name
,
value
):
if
hasattr
(
self
,
name
):
raise
TypeError
,
"Complex numbers have set-once attributes"
self
.
__dict__
[
name
]
=
value
def
__repr__
(
self
):
if
not
self
.
im
:
return
'Complex(
%
s)'
%
`self.re`
else
:
return
'Complex(
%
s,
%
s)'
%
(
`self.re`
,
`self.im`
)
def
__str__
(
self
):
if
not
self
.
im
:
return
`self.re`
else
:
return
'Complex(
%
s,
%
s)'
%
(
`self.re`
,
`self.im`
)
def
__coerce__
(
self
,
other
):
if
IsComplex
(
other
):
return
self
,
other
return
self
,
Complex
(
other
)
# May fail
def
__cmp__
(
self
,
other
):
return
cmp
(
self
.
re
,
other
.
re
)
or
cmp
(
self
.
im
,
other
.
im
)
def
__hash__
(
self
):
if
not
self
.
im
:
return
hash
(
self
.
re
)
mod
=
sys
.
maxint
+
1L
return
int
((
hash
(
self
.
re
)
+
2L
*
hash
(
self
.
im
)
+
mod
)
%
(
2L
*
mod
)
-
mod
)
def
__neg__
(
self
):
return
Complex
(
-
self
.
re
,
-
self
.
im
)
def
__pos__
(
self
):
return
self
def
__abs__
(
self
):
return
math
.
hypot
(
self
.
re
,
self
.
im
)
##return math.sqrt(self.re*self.re + self.im*self.im)
def
__int__
(
self
):
if
self
.
im
:
raise
ValueError
,
"can't convert Complex with nonzero im to int"
return
int
(
self
.
re
)
def
__long__
(
self
):
if
self
.
im
:
raise
ValueError
,
"can't convert Complex with nonzero im to long"
return
long
(
self
.
re
)
def
__float__
(
self
):
if
self
.
im
:
raise
ValueError
,
"can't convert Complex with nonzero im to float"
return
float
(
self
.
re
)
def
__nonzero__
(
self
):
return
not
(
self
.
re
==
self
.
im
==
0
)
abs
=
radius
=
__abs__
def
angle
(
self
,
fullcircle
=
twopi
):
return
(
fullcircle
/
twopi
)
*
((
halfpi
-
math
.
atan2
(
self
.
re
,
self
.
im
))
%
twopi
)
phi
=
angle
def
__add__
(
self
,
other
):
return
Complex
(
self
.
re
+
other
.
re
,
self
.
im
+
other
.
im
)
__radd__
=
__add__
def
__sub__
(
self
,
other
):
return
Complex
(
self
.
re
-
other
.
re
,
self
.
im
-
other
.
im
)
def
__rsub__
(
self
,
other
):
return
Complex
(
other
.
re
-
self
.
re
,
other
.
im
-
self
.
im
)
def
__mul__
(
self
,
other
):
return
Complex
(
self
.
re
*
other
.
re
-
self
.
im
*
other
.
im
,
self
.
re
*
other
.
im
+
self
.
im
*
other
.
re
)
__rmul__
=
__mul__
def
__div__
(
self
,
other
):
# Deviating from the general principle of not forcing re or im
# to be floats, we cast to float here, otherwise division
# of Complex numbers with integer re and im parts would use
# the (truncating) integer division
d
=
float
(
other
.
re
*
other
.
re
+
other
.
im
*
other
.
im
)
if
not
d
:
raise
ZeroDivisionError
,
'Complex division'
return
Complex
((
self
.
re
*
other
.
re
+
self
.
im
*
other
.
im
)
/
d
,
(
self
.
im
*
other
.
re
-
self
.
re
*
other
.
im
)
/
d
)
def
__rdiv__
(
self
,
other
):
return
other
/
self
def
__pow__
(
self
,
n
,
z
=
None
):
if
z
is
not
None
:
raise
TypeError
,
'Complex does not support ternary pow()'
if
IsComplex
(
n
):
if
n
.
im
:
raise
TypeError
,
'Complex to the Complex power'
n
=
n
.
re
r
=
pow
(
self
.
abs
(),
n
)
phi
=
n
*
self
.
angle
()
return
Complex
(
math
.
cos
(
phi
)
*
r
,
math
.
sin
(
phi
)
*
r
)
def
__rpow__
(
self
,
base
):
return
pow
(
base
,
self
)
# Everything below this point is part of the test suite
def
checkop
(
expr
,
a
,
b
,
value
,
fuzz
=
1e-6
):
import
sys
print
' '
,
a
,
'and'
,
b
,
try
:
result
=
eval
(
expr
)
except
:
result
=
sys
.
exc_type
print
'->'
,
result
if
(
type
(
result
)
==
type
(
''
)
or
type
(
value
)
==
type
(
''
)):
ok
=
result
==
value
else
:
ok
=
abs
(
result
-
value
)
<=
fuzz
if
not
ok
:
print
'!!
\t
!!
\t
!! should be'
,
value
,
'diff'
,
abs
(
result
-
value
)
def
test
():
testsuite
=
{
'a+b'
:
[
(
1
,
10
,
11
),
(
1
,
Complex
(
0
,
10
),
Complex
(
1
,
10
)),
(
Complex
(
0
,
10
),
1
,
Complex
(
1
,
10
)),
(
Complex
(
0
,
10
),
Complex
(
1
),
Complex
(
1
,
10
)),
(
Complex
(
1
),
Complex
(
0
,
10
),
Complex
(
1
,
10
)),
],
'a-b'
:
[
(
1
,
10
,
-
9
),
(
1
,
Complex
(
0
,
10
),
Complex
(
1
,
-
10
)),
(
Complex
(
0
,
10
),
1
,
Complex
(
-
1
,
10
)),
(
Complex
(
0
,
10
),
Complex
(
1
),
Complex
(
-
1
,
10
)),
(
Complex
(
1
),
Complex
(
0
,
10
),
Complex
(
1
,
-
10
)),
],
'a*b'
:
[
(
1
,
10
,
10
),
(
1
,
Complex
(
0
,
10
),
Complex
(
0
,
10
)),
(
Complex
(
0
,
10
),
1
,
Complex
(
0
,
10
)),
(
Complex
(
0
,
10
),
Complex
(
1
),
Complex
(
0
,
10
)),
(
Complex
(
1
),
Complex
(
0
,
10
),
Complex
(
0
,
10
)),
],
'a/b'
:
[
(
1.
,
10
,
0.1
),
(
1
,
Complex
(
0
,
10
),
Complex
(
0
,
-
0.1
)),
(
Complex
(
0
,
10
),
1
,
Complex
(
0
,
10
)),
(
Complex
(
0
,
10
),
Complex
(
1
),
Complex
(
0
,
10
)),
(
Complex
(
1
),
Complex
(
0
,
10
),
Complex
(
0
,
-
0.1
)),
],
'pow(a,b)'
:
[
(
1
,
10
,
1
),
(
1
,
Complex
(
0
,
10
),
'TypeError'
),
(
Complex
(
0
,
10
),
1
,
Complex
(
0
,
10
)),
(
Complex
(
0
,
10
),
Complex
(
1
),
Complex
(
0
,
10
)),
(
Complex
(
1
),
Complex
(
0
,
10
),
'TypeError'
),
(
2
,
Complex
(
4
,
0
),
16
),
],
'cmp(a,b)'
:
[
(
1
,
10
,
-
1
),
(
1
,
Complex
(
0
,
10
),
1
),
(
Complex
(
0
,
10
),
1
,
-
1
),
(
Complex
(
0
,
10
),
Complex
(
1
),
-
1
),
(
Complex
(
1
),
Complex
(
0
,
10
),
1
),
],
}
exprs
=
testsuite
.
keys
()
exprs
.
sort
()
for
expr
in
exprs
:
print
expr
+
':'
t
=
(
expr
,)
for
item
in
testsuite
[
expr
]:
apply
(
checkop
,
t
+
item
)
if
__name__
==
'__main__'
:
test
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment