Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
C
cpython
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Batuhan Osman TASKAYA
cpython
Commits
2eda4ca4
Kaydet (Commit)
2eda4ca4
authored
Mar 08, 1998
tarafından
Fred Drake
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
Markup adjustments.
üst
cd14a87c
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
50 additions
and
46 deletions
+50
-46
librandom.tex
Doc/lib/librandom.tex
+25
-23
librandom.tex
Doc/librandom.tex
+25
-23
No files found.
Doc/lib/librandom.tex
Dosyayı görüntüle @
2eda4ca4
...
...
@@ -9,66 +9,68 @@ distributions. For generating distribution of angles, the circular
uniform and von Mises distributions are available.
The module exports the following functions, which are exactly
equivalent to those in the
\code
{
whrandom
}
module:
\code
{
choice
}
,
\code
{
randint
}
,
\code
{
random
}
,
\code
{
uniform
}
. See the documentation
for the
\code
{
whrandom
}
module for these functions.
equivalent to those in the
\module
{
whrandom
}
module:
\function
{
choice()
}
,
\function
{
randint()
}
,
\function
{
random()
}
and
\function
{
uniform()
}
. See the documentation for the
\module
{
whrandom
}
module for these functions.
The following functions specific to the
\
cod
e
{
random
}
module are also
The following functions specific to the
\
modul
e
{
random
}
module are also
defined, and all return real values. Function parameters are named
after the corresponding variables in the distribution's equation, as
used in common mathematical practice; most of these equations can be
found in any statistics text.
\setindexsubitem
{
(in module random)
}
\begin{funcdesc}
{
betavariate
}{
alpha
\
,
beta
}
Beta distribution. Conditions on the parameters are
\code
{
alpha>-1
}
and
\code
{
beta
>-1
}
.
\begin{funcdesc}
{
betavariate
}{
alpha, beta
}
Beta distribution. Conditions on the parameters are
\code
{
\var
{
alpha
}
>-1
}
and
\code
{
\var
{
beta
}
>-1
}
.
Returned values will range between 0 and 1.
\end{funcdesc}
\begin{funcdesc}
{
cunifvariate
}{
mean
\
,
arc
}
\begin{funcdesc}
{
cunifvariate
}{
mean, arc
}
Circular uniform distribution.
\var
{
mean
}
is the mean angle, and
\var
{
arc
}
is the range of the distribution, centered around the mean
angle. Both values must be expressed in radians, and can range
between 0 and
\code
{
pi
}
. Returned values will range between
\code
{
mean - arc/2
}
and
\code
{
mean + arc
/2
}
.
\code
{
\var
{
mean
}
-
\var
{
arc
}
/2
}
and
\code
{
\var
{
mean
}
+
\var
{
arc
}
/2
}
.
\end{funcdesc}
\begin{funcdesc}
{
expovariate
}{
lambd
}
Exponential distribution.
\var
{
lambd
}
is 1.0 divided by the desired mean.
(The parameter would be called ``lambda'', but that's also a reserved
word in Python.) Returned values will range from 0 to positive infinity.
Exponential distribution.
\var
{
lambd
}
is 1.0 divided by the desired
mean. (The parameter would be called ``lambda'', but that is a
reserved word in Python.) Returned values will range from 0 to
positive infinity.
\end{funcdesc}
\begin{funcdesc}
{
gamma
}{
alpha
\
,
beta
}
Gamma distribution. (
\emph
{
Not
}
the gamma function!)
Conditions on the parameters are
\code
{
alpha>-1
}
and
\code
{
beta
>0
}
.
\begin{funcdesc}
{
gamma
}{
alpha, beta
}
Gamma distribution. (
\emph
{
Not
}
the gamma function!)
Conditions on
the parameters are
\code
{
\var
{
alpha
}
>-1
}
and
\code
{
\var
{
beta
}
>0
}
.
\end{funcdesc}
\begin{funcdesc}
{
gauss
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
gauss
}{
mu, sigma
}
Gaussian distribution.
\var
{
mu
}
is the mean, and
\var
{
sigma
}
is the
standard deviation. This is slightly faster than the
\
code
{
normalvariate
}
function defined below.
\
function
{
normalvariate()
}
function defined below.
\end{funcdesc}
\begin{funcdesc}
{
lognormvariate
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
lognormvariate
}{
mu, sigma
}
Log normal distribution. If you take the natural logarithm of this
distribution, you'll get a normal distribution with mean
\var
{
mu
}
and
standard deviation
\var
{
sigma
}
\var
{
mu
}
can have any value, and
\var
{
sigma
}
standard deviation
\var
{
sigma
}
.
\var
{
mu
}
can have any value, and
\var
{
sigma
}
must be greater than zero.
\end{funcdesc}
\begin{funcdesc}
{
normalvariate
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
normalvariate
}{
mu, sigma
}
Normal distribution.
\var
{
mu
}
is the mean, and
\var
{
sigma
}
is the
standard deviation.
\end{funcdesc}
\begin{funcdesc}
{
vonmisesvariate
}{
mu
\
,
kappa
}
\begin{funcdesc}
{
vonmisesvariate
}{
mu, kappa
}
\var
{
mu
}
is the mean angle, expressed in radians between 0 and pi,
and
\var
{
kappa
}
is the concentration parameter, which must be greater
then or equal to zero. If
\var
{
kappa
}
is equal to zero, this
distribution reduces to a uniform random angle over the range 0 to
\code
{
2*pi
}
.
$
2
\pi
$
.
\end{funcdesc}
\begin{funcdesc}
{
paretovariate
}{
alpha
}
...
...
@@ -76,7 +78,7 @@ Pareto distribution. \var{alpha} is the shape parameter.
\end{funcdesc}
\begin{funcdesc}
{
weibullvariate
}{
alpha, beta
}
Weibull distribution.
\var
{
alpha
}
is the scale parameter
,
and
Weibull distribution.
\var
{
alpha
}
is the scale parameter and
\var
{
beta
}
is the shape parameter.
\end{funcdesc}
...
...
Doc/librandom.tex
Dosyayı görüntüle @
2eda4ca4
...
...
@@ -9,66 +9,68 @@ distributions. For generating distribution of angles, the circular
uniform and von Mises distributions are available.
The module exports the following functions, which are exactly
equivalent to those in the
\code
{
whrandom
}
module:
\code
{
choice
}
,
\code
{
randint
}
,
\code
{
random
}
,
\code
{
uniform
}
. See the documentation
for the
\code
{
whrandom
}
module for these functions.
equivalent to those in the
\module
{
whrandom
}
module:
\function
{
choice()
}
,
\function
{
randint()
}
,
\function
{
random()
}
and
\function
{
uniform()
}
. See the documentation for the
\module
{
whrandom
}
module for these functions.
The following functions specific to the
\
cod
e
{
random
}
module are also
The following functions specific to the
\
modul
e
{
random
}
module are also
defined, and all return real values. Function parameters are named
after the corresponding variables in the distribution's equation, as
used in common mathematical practice; most of these equations can be
found in any statistics text.
\setindexsubitem
{
(in module random)
}
\begin{funcdesc}
{
betavariate
}{
alpha
\
,
beta
}
Beta distribution. Conditions on the parameters are
\code
{
alpha>-1
}
and
\code
{
beta
>-1
}
.
\begin{funcdesc}
{
betavariate
}{
alpha, beta
}
Beta distribution. Conditions on the parameters are
\code
{
\var
{
alpha
}
>-1
}
and
\code
{
\var
{
beta
}
>-1
}
.
Returned values will range between 0 and 1.
\end{funcdesc}
\begin{funcdesc}
{
cunifvariate
}{
mean
\
,
arc
}
\begin{funcdesc}
{
cunifvariate
}{
mean, arc
}
Circular uniform distribution.
\var
{
mean
}
is the mean angle, and
\var
{
arc
}
is the range of the distribution, centered around the mean
angle. Both values must be expressed in radians, and can range
between 0 and
\code
{
pi
}
. Returned values will range between
\code
{
mean - arc/2
}
and
\code
{
mean + arc
/2
}
.
\code
{
\var
{
mean
}
-
\var
{
arc
}
/2
}
and
\code
{
\var
{
mean
}
+
\var
{
arc
}
/2
}
.
\end{funcdesc}
\begin{funcdesc}
{
expovariate
}{
lambd
}
Exponential distribution.
\var
{
lambd
}
is 1.0 divided by the desired mean.
(The parameter would be called ``lambda'', but that's also a reserved
word in Python.) Returned values will range from 0 to positive infinity.
Exponential distribution.
\var
{
lambd
}
is 1.0 divided by the desired
mean. (The parameter would be called ``lambda'', but that is a
reserved word in Python.) Returned values will range from 0 to
positive infinity.
\end{funcdesc}
\begin{funcdesc}
{
gamma
}{
alpha
\
,
beta
}
Gamma distribution. (
\emph
{
Not
}
the gamma function!)
Conditions on the parameters are
\code
{
alpha>-1
}
and
\code
{
beta
>0
}
.
\begin{funcdesc}
{
gamma
}{
alpha, beta
}
Gamma distribution. (
\emph
{
Not
}
the gamma function!)
Conditions on
the parameters are
\code
{
\var
{
alpha
}
>-1
}
and
\code
{
\var
{
beta
}
>0
}
.
\end{funcdesc}
\begin{funcdesc}
{
gauss
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
gauss
}{
mu, sigma
}
Gaussian distribution.
\var
{
mu
}
is the mean, and
\var
{
sigma
}
is the
standard deviation. This is slightly faster than the
\
code
{
normalvariate
}
function defined below.
\
function
{
normalvariate()
}
function defined below.
\end{funcdesc}
\begin{funcdesc}
{
lognormvariate
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
lognormvariate
}{
mu, sigma
}
Log normal distribution. If you take the natural logarithm of this
distribution, you'll get a normal distribution with mean
\var
{
mu
}
and
standard deviation
\var
{
sigma
}
\var
{
mu
}
can have any value, and
\var
{
sigma
}
standard deviation
\var
{
sigma
}
.
\var
{
mu
}
can have any value, and
\var
{
sigma
}
must be greater than zero.
\end{funcdesc}
\begin{funcdesc}
{
normalvariate
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
normalvariate
}{
mu, sigma
}
Normal distribution.
\var
{
mu
}
is the mean, and
\var
{
sigma
}
is the
standard deviation.
\end{funcdesc}
\begin{funcdesc}
{
vonmisesvariate
}{
mu
\
,
kappa
}
\begin{funcdesc}
{
vonmisesvariate
}{
mu, kappa
}
\var
{
mu
}
is the mean angle, expressed in radians between 0 and pi,
and
\var
{
kappa
}
is the concentration parameter, which must be greater
then or equal to zero. If
\var
{
kappa
}
is equal to zero, this
distribution reduces to a uniform random angle over the range 0 to
\code
{
2*pi
}
.
$
2
\pi
$
.
\end{funcdesc}
\begin{funcdesc}
{
paretovariate
}{
alpha
}
...
...
@@ -76,7 +78,7 @@ Pareto distribution. \var{alpha} is the shape parameter.
\end{funcdesc}
\begin{funcdesc}
{
weibullvariate
}{
alpha, beta
}
Weibull distribution.
\var
{
alpha
}
is the scale parameter
,
and
Weibull distribution.
\var
{
alpha
}
is the scale parameter and
\var
{
beta
}
is the shape parameter.
\end{funcdesc}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment