Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
C
cpython
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Batuhan Osman TASKAYA
cpython
Commits
6463ba30
Unverified
Kaydet (Commit)
6463ba30
authored
5 years ago
tarafından
Raymond Hettinger
Kaydeden (comit)
GitHub
5 years ago
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
bpo-27181: Add statistics.geometric_mean() (GH-12638)
üst
9d7b2c09
No related merge requests found
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
132 additions
and
1 deletion
+132
-1
statistics.rst
Doc/library/statistics.rst
+19
-0
3.8.rst
Doc/whatsnew/3.8.rst
+3
-0
statistics.py
Lib/statistics.py
+21
-1
test_statistics.py
Lib/test/test_statistics.py
+88
-0
2019-03-31-01-18-52.bpo-27181.LVUWcc.rst
...S.d/next/Library/2019-03-31-01-18-52.bpo-27181.LVUWcc.rst
+1
-0
No files found.
Doc/library/statistics.rst
Dosyayı görüntüle @
6463ba30
...
...
@@ -40,6 +40,7 @@ or sample.
======================= ===============================================================
:func:`mean` Arithmetic mean ("average") of data.
:func:`fmean` Fast, floating point arithmetic mean.
:func:`geometric_mean` Geometric mean of data.
:func:`harmonic_mean` Harmonic mean of data.
:func:`median` Median (middle value) of data.
:func:`median_low` Low median of data.
...
...
@@ -130,6 +131,24 @@ However, for reading convenience, most of the examples show sorted sequences.
.. versionadded:: 3.8
.. function:: geometric_mean(data)
Convert *data* to floats and compute the geometric mean.
Raises a :exc:`StatisticsError` if the input dataset is empty,
if it contains a zero, or if it contains a negative value.
No special efforts are made to achieve exact results.
(However, this may change in the future.)
.. doctest::
>>> round(geometric_mean([54, 24, 36]), 9)
36.0
.. versionadded:: 3.8
.. function:: harmonic_mean(data)
Return the harmonic mean of *data*, a sequence or iterator of
...
...
This diff is collapsed.
Click to expand it.
Doc/whatsnew/3.8.rst
Dosyayı görüntüle @
6463ba30
...
...
@@ -322,6 +322,9 @@ Added :func:`statistics.fmean` as a faster, floating point variant of
:func:`statistics.mean()`. (Contributed by Raymond Hettinger and
Steven D'Aprano in :issue:`35904`.)
Added :func:`statistics.geometric_mean()`
(Contributed by Raymond Hettinger in :issue:`27181`.)
Added :func:`statistics.multimode` that returns a list of the most
common values. (Contributed by Raymond Hettinger in :issue:`35892`.)
...
...
This diff is collapsed.
Click to expand it.
Lib/statistics.py
Dosyayı görüntüle @
6463ba30
...
...
@@ -11,13 +11,14 @@ Calculating averages
Function Description
================== =============================================
mean Arithmetic mean (average) of data.
geometric_mean Geometric mean of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
multimode List of modes (most common values of data)
multimode List of modes (most common values of data)
.
================== =============================================
Calculate the arithmetic mean ("the average") of data:
...
...
@@ -81,6 +82,7 @@ __all__ = [ 'StatisticsError', 'NormalDist',
'pstdev'
,
'pvariance'
,
'stdev'
,
'variance'
,
'median'
,
'median_low'
,
'median_high'
,
'median_grouped'
,
'mean'
,
'mode'
,
'multimode'
,
'harmonic_mean'
,
'fmean'
,
'geometric_mean'
,
]
import
math
...
...
@@ -328,6 +330,24 @@ def fmean(data):
except
ZeroDivisionError
:
raise
StatisticsError
(
'fmean requires at least one data point'
)
from
None
def
geometric_mean
(
data
):
"""Convert data to floats and compute the geometric mean.
Raises a StatisticsError if the input dataset is empty,
if it contains a zero, or if it contains a negative value.
No special efforts are made to achieve exact results.
(However, this may change in the future.)
>>> round(geometric_mean([54, 24, 36]), 9)
36.0
"""
try
:
return
exp
(
fmean
(
map
(
log
,
data
)))
except
ValueError
:
raise
StatisticsError
(
'geometric mean requires a non-empty dataset '
' containing positive numbers'
)
from
None
def
harmonic_mean
(
data
):
"""Return the harmonic mean of data.
...
...
This diff is collapsed.
Click to expand it.
Lib/test/test_statistics.py
Dosyayı görüntüle @
6463ba30
...
...
@@ -2038,6 +2038,94 @@ class TestStdev(VarianceStdevMixin, NumericTestCase):
expected
=
math
.
sqrt
(
statistics
.
variance
(
data
))
self
.
assertEqual
(
self
.
func
(
data
),
expected
)
class
TestGeometricMean
(
unittest
.
TestCase
):
def
test_basics
(
self
):
geometric_mean
=
statistics
.
geometric_mean
self
.
assertAlmostEqual
(
geometric_mean
([
54
,
24
,
36
]),
36.0
)
self
.
assertAlmostEqual
(
geometric_mean
([
4.0
,
9.0
]),
6.0
)
self
.
assertAlmostEqual
(
geometric_mean
([
17.625
]),
17.625
)
random
.
seed
(
86753095551212
)
for
rng
in
[
range
(
1
,
100
),
range
(
1
,
1
_000
),
range
(
1
,
10
_000
),
range
(
500
,
10
_000
,
3
),
range
(
10
_000
,
500
,
-
3
),
[
12
,
17
,
13
,
5
,
120
,
7
],
[
random
.
expovariate
(
50.0
)
for
i
in
range
(
1
_000
)],
[
random
.
lognormvariate
(
20.0
,
3.0
)
for
i
in
range
(
2
_000
)],
[
random
.
triangular
(
2000
,
3000
,
2200
)
for
i
in
range
(
3
_000
)],
]:
gm_decimal
=
math
.
prod
(
map
(
Decimal
,
rng
))
**
(
Decimal
(
1
)
/
len
(
rng
))
gm_float
=
geometric_mean
(
rng
)
self
.
assertTrue
(
math
.
isclose
(
gm_float
,
float
(
gm_decimal
)))
def
test_various_input_types
(
self
):
geometric_mean
=
statistics
.
geometric_mean
D
=
Decimal
F
=
Fraction
# https://www.wolframalpha.com/input/?i=geometric+mean+3.5,+4.0,+5.25
expected_mean
=
4.18886
for
data
,
kind
in
[
([
3.5
,
4.0
,
5.25
],
'floats'
),
([
D
(
'3.5'
),
D
(
'4.0'
),
D
(
'5.25'
)],
'decimals'
),
([
F
(
7
,
2
),
F
(
4
,
1
),
F
(
21
,
4
)],
'fractions'
),
([
3.5
,
4
,
F
(
21
,
4
)],
'mixed types'
),
((
3.5
,
4.0
,
5.25
),
'tuple'
),
(
iter
([
3.5
,
4.0
,
5.25
]),
'iterator'
),
]:
actual_mean
=
geometric_mean
(
data
)
self
.
assertIs
(
type
(
actual_mean
),
float
,
kind
)
self
.
assertAlmostEqual
(
actual_mean
,
expected_mean
,
places
=
5
)
def
test_big_and_small
(
self
):
geometric_mean
=
statistics
.
geometric_mean
# Avoid overflow to infinity
large
=
2.0
**
1000
big_gm
=
geometric_mean
([
54.0
*
large
,
24.0
*
large
,
36.0
*
large
])
self
.
assertTrue
(
math
.
isclose
(
big_gm
,
36.0
*
large
))
self
.
assertFalse
(
math
.
isinf
(
big_gm
))
# Avoid underflow to zero
small
=
2.0
**
-
1000
small_gm
=
geometric_mean
([
54.0
*
small
,
24.0
*
small
,
36.0
*
small
])
self
.
assertTrue
(
math
.
isclose
(
small_gm
,
36.0
*
small
))
self
.
assertNotEqual
(
small_gm
,
0.0
)
def
test_error_cases
(
self
):
geometric_mean
=
statistics
.
geometric_mean
StatisticsError
=
statistics
.
StatisticsError
with
self
.
assertRaises
(
StatisticsError
):
geometric_mean
([])
# empty input
with
self
.
assertRaises
(
StatisticsError
):
geometric_mean
([
3.5
,
0.0
,
5.25
])
# zero input
with
self
.
assertRaises
(
StatisticsError
):
geometric_mean
([
3.5
,
-
4.0
,
5.25
])
# negative input
with
self
.
assertRaises
(
StatisticsError
):
geometric_mean
(
iter
([]))
# empty iterator
with
self
.
assertRaises
(
TypeError
):
geometric_mean
(
None
)
# non-iterable input
with
self
.
assertRaises
(
TypeError
):
geometric_mean
([
10
,
None
,
20
])
# non-numeric input
with
self
.
assertRaises
(
TypeError
):
geometric_mean
()
# missing data argument
with
self
.
assertRaises
(
TypeError
):
geometric_mean
([
10
,
20
,
60
],
70
)
# too many arguments
def
test_special_values
(
self
):
# Rules for special values are inherited from math.fsum()
geometric_mean
=
statistics
.
geometric_mean
NaN
=
float
(
'Nan'
)
Inf
=
float
(
'Inf'
)
self
.
assertTrue
(
math
.
isnan
(
geometric_mean
([
10
,
NaN
])),
'nan'
)
self
.
assertTrue
(
math
.
isnan
(
geometric_mean
([
NaN
,
Inf
])),
'nan and infinity'
)
self
.
assertTrue
(
math
.
isinf
(
geometric_mean
([
10
,
Inf
])),
'infinity'
)
with
self
.
assertRaises
(
ValueError
):
geometric_mean
([
Inf
,
-
Inf
])
class
TestNormalDist
(
unittest
.
TestCase
):
# General note on precision: The pdf(), cdf(), and overlap() methods
...
...
This diff is collapsed.
Click to expand it.
Misc/NEWS.d/next/Library/2019-03-31-01-18-52.bpo-27181.LVUWcc.rst
0 → 100644
Dosyayı görüntüle @
6463ba30
Add statistics.geometric_mean().
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment