Kaydet (Commit) 856898b3 authored tarafından Georg Brandl's avatar Georg Brandl

Harmonize docstrings. Move redemo from Tools/scripts to Tools/demo. Add a…

Harmonize docstrings.  Move redemo from Tools/scripts to Tools/demo.  Add a README file to Tools/demo.
üst a3fe8e0b
This directory contains a collection of demonstration scripts for
various aspects of Python programming.
beer.py Well-known programming example: Bottles of beer.
eiffel.py Python advanced magic: A metaclass for Eiffel post/preconditions.
hanoi.py Well-known programming example: Towers of Hanoi.
life.py Curses programming: Simple game-of-life.
markov.py Algorithms: Markov chain simulation.
mcast.py Network programming: Send and receive UDP multicast packets.
queens.py Well-known programming example: N-Queens problem.
redemo.py Regular Expressions: GUI script to test regexes.
rpython.py Network programming: Small client for remote code execution.
rpythond.py Network programming: Small server for remote code execution.
sortvisu.py GUI programming: Visualization of different sort algorithms.
ss1.py GUI/Application programming: A simple spreadsheet application.
vector.py Python basics: A vector class with demonstrating special methods.
\ No newline at end of file
#! /usr/bin/env python3
#!/usr/bin/env python3
# By GvR, demystified after a version by Fredrik Lundh.
"""
A Python version of the classic "bottles of beer on the wall" programming
example.
By Guido van Rossum, demystified after a version by Fredrik Lundh.
"""
import sys
......
"""Support Eiffel-style preconditions and postconditions."""
#!/usr/bin/env python3
"""
Support Eiffel-style preconditions and postconditions for functions.
An example for Python metaclasses.
"""
import unittest
from types import FunctionType as function
class EiffelBaseMetaClass(type):
def __new__(meta, name, bases, dict):
meta.convert_methods(dict)
return super(EiffelBaseMetaClass, meta).__new__(meta, name, bases,
dict)
return super(EiffelBaseMetaClass, meta).__new__(
meta, name, bases, dict)
@classmethod
def convert_methods(cls, dict):
......@@ -31,6 +38,7 @@ class EiffelBaseMetaClass(type):
if pre or post:
dict[k] = cls.make_eiffel_method(dict[m], pre, post)
class EiffelMetaClass1(EiffelBaseMetaClass):
# an implementation of the "eiffel" meta class that uses nested functions
......@@ -39,16 +47,17 @@ class EiffelMetaClass1(EiffelBaseMetaClass):
def method(self, *args, **kwargs):
if pre:
pre(self, *args, **kwargs)
x = func(self, *args, **kwargs)
rv = func(self, *args, **kwargs)
if post:
post(self, x, *args, **kwargs)
return x
post(self, rv, *args, **kwargs)
return rv
if func.__doc__:
method.__doc__ = func.__doc__
return method
class EiffelMethodWrapper:
def __init__(self, inst, descr):
......@@ -58,7 +67,8 @@ class EiffelMethodWrapper:
def __call__(self, *args, **kwargs):
return self._descr.callmethod(self._inst, args, kwargs)
class EiffelDescriptor(object):
class EiffelDescriptor:
def __init__(self, func, pre, post):
self._func = func
......@@ -79,63 +89,58 @@ class EiffelDescriptor(object):
self._post(inst, x, *args, **kwargs)
return x
class EiffelMetaClass2(EiffelBaseMetaClass):
# an implementation of the "eiffel" meta class that uses descriptors
make_eiffel_method = EiffelDescriptor
def _test(metaclass):
class Eiffel(metaclass=metaclass):
pass
class Test(Eiffel):
def m(self, arg):
"""Make it a little larger"""
return arg + 1
def m2(self, arg):
"""Make it a little larger"""
return arg + 1
def m2_pre(self, arg):
assert arg > 0
def m2_post(self, result, arg):
assert result > arg
class Sub(Test):
def m2(self, arg):
return arg**2
def m2_post(self, Result, arg):
super(Sub, self).m2_post(Result, arg)
assert Result < 100
t = Test()
t.m(1)
t.m2(1)
try:
t.m2(0)
except AssertionError:
pass
else:
assert False
s = Sub()
try:
s.m2(1)
except AssertionError:
pass # result == arg
else:
assert False
try:
s.m2(10)
except AssertionError:
pass # result == 100
else:
assert False
s.m2(5)
class Tests(unittest.TestCase):
def testEiffelMetaClass1(self):
self._test(EiffelMetaClass1)
def testEiffelMetaClass2(self):
self._test(EiffelMetaClass2)
def _test(self, metaclass):
class Eiffel(metaclass=metaclass):
pass
class Test(Eiffel):
def m(self, arg):
"""Make it a little larger"""
return arg + 1
def m2(self, arg):
"""Make it a little larger"""
return arg + 1
def m2_pre(self, arg):
assert arg > 0
def m2_post(self, result, arg):
assert result > arg
class Sub(Test):
def m2(self, arg):
return arg**2
def m2_post(self, Result, arg):
super(Sub, self).m2_post(Result, arg)
assert Result < 100
t = Test()
self.assertEqual(t.m(1), 2)
self.assertEqual(t.m2(1), 2)
self.assertRaises(AssertionError, t.m2, 0)
s = Sub()
self.assertRaises(AssertionError, s.m2, 1)
self.assertRaises(AssertionError, s.m2, 10)
self.assertEqual(s.m2(5), 25)
if __name__ == "__main__":
_test(EiffelMetaClass1)
_test(EiffelMetaClass2)
unittest.main()
# Animated Towers of Hanoi using Tk with optional bitmap file in
# background.
#
# Usage: tkhanoi [n [bitmapfile]]
#
# n is the number of pieces to animate; default is 4, maximum 15.
#
# The bitmap file can be any X11 bitmap file (look in
# /usr/include/X11/bitmaps for samples); it is displayed as the
# background of the animation. Default is no bitmap.
#!/usr/bin/env python3
# This uses Steen Lumholt's Tk interface
from tkinter import *
"""
Animated Towers of Hanoi using Tk with optional bitmap file in background.
Usage: hanoi.py [n [bitmapfile]]
n is the number of pieces to animate; default is 4, maximum 15.
The bitmap file can be any X11 bitmap file (look in /usr/include/X11/bitmaps for
samples); it is displayed as the background of the animation. Default is no
bitmap.
"""
from tkinter import Tk, Canvas
# Basic Towers-of-Hanoi algorithm: move n pieces from a to b, using c
# as temporary. For each move, call report()
......@@ -123,7 +124,6 @@ class Tkhanoi:
self.pegstate[b].append(i)
# Main program
def main():
import sys
......
#!/usr/bin/env python3
# life.py -- A curses-based version of Conway's Game of Life.
# Contributed by AMK
# Mouse support and color by Dafydd Crosby
#
# An empty board will be displayed, and the following commands are available:
# E : Erase the board
# R : Fill the board randomly
# S : Step for a single generation
# C : Update continuously until a key is struck
# Q : Quit
# Cursor keys : Move the cursor around the board
# Space or Enter : Toggle the contents of the cursor's position
#
# TODO :
# Make board updates faster
#
import random, string, traceback
"""
A curses-based version of Conway's Game of Life.
An empty board will be displayed, and the following commands are available:
E : Erase the board
R : Fill the board randomly
S : Step for a single generation
C : Update continuously until a key is struck
Q : Quit
Cursor keys : Move the cursor around the board
Space or Enter : Toggle the contents of the cursor's position
Contributed by Andrew Kuchling, Mouse support and color by Dafydd Crosby.
"""
import curses
import random
class LifeBoard:
"""Encapsulates a Life board
......@@ -31,7 +31,7 @@ class LifeBoard:
next generation. Then display the state
of the board and refresh the screen.
erase() -- clear the entire board
makeRandom() -- fill the board randomly
make_random() -- fill the board randomly
set(y,x) -- set the given cell to Live; doesn't refresh the screen
toggle(y,x) -- change the given cell from live to dead, or vice
versa, and refresh the screen display
......@@ -53,7 +53,7 @@ class LifeBoard:
# Draw a border around the board
border_line = '+'+(self.X*'-')+'+'
self.scr.addstr(0, 0, border_line)
self.scr.addstr(self.Y+1,0, border_line)
self.scr.addstr(self.Y+1, 0, border_line)
for y in range(0, self.Y):
self.scr.addstr(1+y, 0, '|')
self.scr.addstr(1+y, self.X+1, '|')
......@@ -62,21 +62,21 @@ class LifeBoard:
def set(self, y, x):
"""Set a cell to the live state"""
if x<0 or self.X<=x or y<0 or self.Y<=y:
raise ValueError("Coordinates out of range %i,%i"% (y,x))
raise ValueError("Coordinates out of range %i,%i"% (y, x))
self.state[x,y] = 1
def toggle(self, y, x):
"""Toggle a cell's state between live and dead"""
if x<0 or self.X<=x or y<0 or self.Y<=y:
raise ValueError("Coordinates out of range %i,%i"% (y,x))
if (x,y) in self.state:
del self.state[x,y]
if x < 0 or self.X <= x or y < 0 or self.Y <= y:
raise ValueError("Coordinates out of range %i,%i"% (y, x))
if (x, y) in self.state:
del self.state[x, y]
self.scr.addch(y+1, x+1, ' ')
else:
self.state[x,y] = 1
self.state[x, y] = 1
if curses.has_colors():
#Let's pick a random color!
self.scr.attrset(curses.color_pair(random.randrange(1,7)))
# Let's pick a random color!
self.scr.attrset(curses.color_pair(random.randrange(1, 7)))
self.scr.addch(y+1, x+1, self.char)
self.scr.attrset(0)
self.scr.refresh()
......@@ -115,8 +115,9 @@ class LifeBoard:
# Birth
d[i,j] = 1
if curses.has_colors():
#Let's pick a random color!
self.scr.attrset(curses.color_pair(random.randrange(1,7)))
# Let's pick a random color!
self.scr.attrset(curses.color_pair(
random.randrange(1, 7)))
self.scr.addch(j+1, i+1, self.char)
self.scr.attrset(0)
if not live: self.boring = 0
......@@ -128,7 +129,7 @@ class LifeBoard:
self.state = d
self.scr.refresh()
def makeRandom(self):
def make_random(self):
"Fill the board with a random pattern"
self.state = {}
for i in range(0, self.X):
......@@ -152,9 +153,9 @@ def display_menu(stdscr, menu_y):
if curses.has_colors():
stdscr.attrset(curses.color_pair(1))
stdscr.addstr(menu_y, 4,
'Use the cursor keys to move, and space or Enter to toggle a cell.')
'Use the cursor keys to move, and space or Enter to toggle a cell.')
stdscr.addstr(menu_y+1, 4,
'E)rase the board, R)andom fill, S)tep once or C)ontinuously, Q)uit')
'E)rase the board, R)andom fill, S)tep once or C)ontinuously, Q)uit')
stdscr.attrset(0)
def keyloop(stdscr):
......@@ -186,10 +187,10 @@ def keyloop(stdscr):
xpos, ypos = board.X//2, board.Y//2
# Main loop:
while (1):
while True:
stdscr.move(1+ypos, 1+xpos) # Move the cursor
c = stdscr.getch() # Get a keystroke
if 0<c<256:
if 0 < c < 256:
c = chr(c)
if c in ' \n':
board.toggle(ypos, xpos)
......@@ -201,14 +202,14 @@ def keyloop(stdscr):
# Activate nodelay mode; getch() will return -1
# if no keystroke is available, instead of waiting.
stdscr.nodelay(1)
while (1):
while True:
c = stdscr.getch()
if c != -1:
break
stdscr.addstr(0,0, '/')
stdscr.addstr(0, 0, '/')
stdscr.refresh()
board.display()
stdscr.addstr(0,0, '+')
stdscr.addstr(0, 0, '+')
stdscr.refresh()
stdscr.nodelay(0) # Disable nodelay mode
......@@ -219,18 +220,19 @@ def keyloop(stdscr):
elif c in 'Qq':
break
elif c in 'Rr':
board.makeRandom()
board.make_random()
board.display(update_board=False)
elif c in 'Ss':
board.display()
else: pass # Ignore incorrect keys
elif c == curses.KEY_UP and ypos>0: ypos -= 1
elif c == curses.KEY_DOWN and ypos<board.Y-1: ypos += 1
elif c == curses.KEY_LEFT and xpos>0: xpos -= 1
elif c == curses.KEY_RIGHT and xpos<board.X-1: xpos += 1
elif c == curses.KEY_UP and ypos > 0: ypos -= 1
elif c == curses.KEY_DOWN and ypos < board.Y-1: ypos += 1
elif c == curses.KEY_LEFT and xpos > 0: xpos -= 1
elif c == curses.KEY_RIGHT and xpos < board.X-1: xpos += 1
elif c == curses.KEY_MOUSE:
(mouse_id, mouse_x, mouse_y, mouse_z, button_state) = curses.getmouse()
if (mouse_x>0 and mouse_x<board.X+1) and (mouse_y>0 and mouse_y<board.Y+1):
mouse_id, mouse_x, mouse_y, mouse_z, button_state = curses.getmouse()
if (mouse_x > 0 and mouse_x < board.X+1 and
mouse_y > 0 and mouse_y < board.Y+1):
xpos = mouse_x - 1
ypos = mouse_y - 1
board.toggle(ypos, xpos)
......@@ -245,6 +247,5 @@ def keyloop(stdscr):
def main(stdscr):
keyloop(stdscr) # Enter the main loop
if __name__ == '__main__':
curses.wrapper(main)
#! /usr/bin/env python3
#!/usr/bin/env python3
"""
Markov chain simulation of words or characters.
"""
class Markov:
def __init__(self, histsize, choice):
......
#!/usr/bin/env python3
#
# Send/receive UDP multicast packets.
# Requires that your OS kernel supports IP multicast.
#
# Usage:
# mcast -s (sender, IPv4)
# mcast -s -6 (sender, IPv6)
# mcast (receivers, IPv4)
# mcast -6 (receivers, IPv6)
"""
Send/receive UDP multicast packets.
Requires that your OS kernel supports IP multicast.
Usage:
mcast -s (sender, IPv4)
mcast -s -6 (sender, IPv6)
mcast (receivers, IPv4)
mcast -6 (receivers, IPv6)
"""
MYPORT = 8123
MYGROUP_4 = '225.0.0.250'
......
#! /usr/bin/env python3
#!/usr/bin/env python3
"""N queens problem.
"""
N queens problem.
The (well-known) problem is due to Niklaus Wirth.
This solution is inspired by Dijkstra (Structured Programming). It is
a classic recursive backtracking approach.
"""
N = 8 # Default; command line overrides
......
#! /usr/bin/env python3
#!/usr/bin/env python3
# Remote python client.
# Execute Python commands remotely and send output back.
"""
Remote python client.
Execute Python commands remotely and send output back.
"""
import sys
from socket import socket, AF_INET, SOCK_STREAM, SHUT_WR
......
#! /usr/bin/env python3
#!/usr/bin/env python3
# Remote python server.
# Execute Python commands remotely and send output back.
# WARNING: This version has a gaping security hole -- it accepts requests
# from any host on the Internet!
"""
Remote python server.
Execute Python commands remotely and send output back.
WARNING: This version has a gaping security hole -- it accepts requests
from any host on the Internet!
"""
import sys
from socket import socket, AF_INET, SOCK_STREAM
......
#! /usr/bin/env python3
#!/usr/bin/env python3
"""Sorting algorithms visualizer using Tkinter.
"""
Sorting algorithms visualizer using Tkinter.
This module is comprised of three ``components'':
......@@ -15,13 +16,11 @@ to its annotation methods;
- and a ``driver'' class which can be used as a Grail applet or as a
stand-alone application.
"""
from tkinter import *
import random
XGRID = 10
YGRID = 10
WIDTH = 6
......
"""SS1 -- a spreadsheet."""
#!/usr/bin/env python3
"""
SS1 -- a spreadsheet-like application.
"""
import os
import re
......
#!/usr/bin/env python3
"""
A demonstration of classes and their special methods in Python.
"""
class Vec:
""" A simple vector class
"""A simple vector class.
Instances of the Vec class can be constructed from numbers
Instances of the Vec class can be constructed from numbers
>>> a = Vec(1, 2, 3)
>>> b = Vec(3, 2, 1)
......
......@@ -2,8 +2,6 @@ This directory contains a collection of executable Python scripts that are
useful while building, extending or managing Python. Some (e.g., dutree or lll)
are also generally useful UNIX tools.
See also the Demo/scripts directory!
2to3 Main script for running the 2to3 conversion tool
analyze_dxp.py Analyzes the result of sys.getdxp()
byext.py Print lines/words/chars stats of files by extension
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment