Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
C
cpython
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Batuhan Osman TASKAYA
cpython
Commits
87b74730
Kaydet (Commit)
87b74730
authored
Eyl 07, 1992
tarafından
Guido van Rossum
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
New module 'colorsys' implements conversions between different color systems.
üst
e1783324
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
119 additions
and
0 deletions
+119
-0
colorsys.py
Lib/colorsys.py
+119
-0
No files found.
Lib/colorsys.py
0 → 100644
Dosyayı görüntüle @
87b74730
# Conversion functions between RGB and other color systems.
#
# Define two functions for each color system XYZ:
# rgb_to_xyz(r, g, b) --> x, y, z
# xyz_to_rgb(x, y, z) --> r, g, b
# All inputs and outputs are triples of floats in the range [0.0...1.0].
# Inputs outside this range may cause exceptions or invalid outputs.
#
# Supported color systems:
# RGB: Red, Green, Blue components
# YIQ: used by composite video signals
# HLS: Hue, Luminance, S???
# HSV: Hue, Saturation, Value(?)
#
# References:
# XXX Where's the literature?
# Some floating point constants
ONE_THIRD
=
1.0
/
3.0
ONE_SIXTH
=
1.0
/
6.0
TWO_THIRD
=
2.0
/
3.0
# YIQ: used by composite video signals (linear combinations of RGB)
# Y: perceived grey level (0.0 == black, 1.0 == white)
# I, Q: color components
def
rgb_to_yiq
(
r
,
g
,
b
):
y
=
0.30
*
r
+
0.59
*
g
+
0.11
*
b
i
=
0.60
*
r
-
0.28
*
g
-
0.32
*
b
q
=
0.21
*
r
-
0.52
*
g
+
0.31
*
b
return
(
y
,
i
,
q
)
def
yiq_to_rgb
(
y
,
i
,
q
):
r
=
y
+
0.948262
*
i
+
0.624013
*
q
g
=
y
-
0.276066
*
i
-
0.639810
*
q
b
=
y
-
1.105450
*
i
+
1.729860
*
q
if
r
<
0.0
:
r
=
0.0
if
g
<
0.0
:
g
=
0.0
if
b
<
0.0
:
b
=
0.0
if
r
>
1.0
:
r
=
1.0
if
g
>
1.0
:
g
=
1.0
if
b
>
1.0
:
b
=
1.0
return
(
r
,
g
,
b
)
# HLS: Hue, Luminance, S???
# H: position in the spectrum
# L: ???
# S: ???
def
rgb_to_hls
(
r
,
g
,
b
):
maxc
=
max
(
r
,
g
,
b
)
minc
=
min
(
r
,
g
,
b
)
# XXX Can optimize (maxc+minc) and (maxc-minc)
l
=
(
minc
+
maxc
)
/
2.0
if
minc
==
maxc
:
return
0.0
,
l
,
0.0
if
l
<=
0.5
:
s
=
(
maxc
-
minc
)
/
(
maxc
+
minc
)
else
:
s
=
(
maxc
-
minc
)
/
(
2.0
-
maxc
-
minc
)
rc
=
(
maxc
-
r
)
/
(
maxc
-
minc
)
gc
=
(
maxc
-
g
)
/
(
maxc
-
minc
)
bc
=
(
maxc
-
b
)
/
(
maxc
-
minc
)
if
r
==
maxc
:
h
=
bc
-
gc
elif
g
==
maxc
:
h
=
2.0
+
rc
-
bc
else
:
h
=
4.0
+
gc
-
rc
h
=
(
h
/
6.0
)
%
1.0
return
h
,
l
,
s
def
hls_to_rgb
(
h
,
l
,
s
):
if
s
==
0.0
:
return
l
,
l
,
l
if
l
<=
0.5
:
m2
=
l
*
(
1.0
+
s
)
else
:
m2
=
l
+
s
-
(
l
*
s
)
m1
=
2.0
*
l
-
m2
return
(
_v
(
m1
,
m2
,
h
+
ONE_THIRD
),
_v
(
m1
,
m2
,
h
),
_v
(
m1
,
m2
,
h
-
ONE_THIRD
))
def
_v
(
m1
,
m2
,
hue
):
hue
=
hue
%
1.0
if
hue
<
ONE_SIXTH
:
return
m1
+
(
m2
-
m1
)
*
hue
*
6.0
if
hue
<
0.5
:
return
m2
if
hue
<
TWO_THIRD
:
return
m1
+
(
m2
-
m1
)
*
(
TWO_THIRD
-
hue
)
*
6.0
return
m1
# HSV: Hue, Saturation, Value(?)
# H: position in the spectrum
# S: ???
# V: ???
def
rgb_to_hsv
(
r
,
g
,
b
):
maxc
=
max
(
r
,
g
,
b
)
minc
=
min
(
r
,
g
,
b
)
v
=
maxc
if
minc
==
maxc
:
return
0.0
,
0.0
,
v
s
=
(
maxc
-
minc
)
/
maxc
rc
=
(
maxc
-
r
)
/
(
maxc
-
minc
)
gc
=
(
maxc
-
g
)
/
(
maxc
-
minc
)
bc
=
(
maxc
-
b
)
/
(
maxc
-
minc
)
if
r
==
maxc
:
h
=
bc
-
gc
elif
g
==
maxc
:
h
=
2.0
+
rc
-
bc
else
:
h
=
4.0
+
gc
-
rc
h
=
(
h
/
6.0
)
%
1.0
return
h
,
s
,
v
def
hsv_to_rgb
(
h
,
s
,
v
):
if
s
==
0.0
:
return
v
,
v
,
v
i
=
int
(
h
*
6.0
)
# XXX assume int() truncates!
f
=
(
h
*
6.0
)
-
i
p
=
v
*
(
1.0
-
s
)
q
=
v
*
(
1.0
-
s
*
f
)
t
=
v
*
(
1.0
-
s
*
(
1.0
-
f
))
if
i
%
6
==
0
:
return
v
,
t
,
p
if
i
==
1
:
return
q
,
v
,
p
if
i
==
2
:
return
p
,
v
,
t
if
i
==
3
:
return
p
,
q
,
v
if
i
==
4
:
return
t
,
p
,
v
if
i
==
5
:
return
v
,
p
,
q
# Cannot get here
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment