Kaydet (Commit) a3394bce authored tarafından Stefan Krah's avatar Stefan Krah

1) Add error analysis comments to mpd_qln10() and _mpd_qln().

2) Simplify the precision adjustment code for values in [0.900, 1.15].
üst a01f1adb
......@@ -4212,6 +4212,18 @@ mpd_qfma(mpd_t *result, const mpd_t *a, const mpd_t *b, const mpd_t *c,
*status |= workstatus;
}
/*
* Schedule the optimal precision increase for the Newton iteration.
* v := input operand
* z_0 := initial approximation
* initprec := natural number such that abs(log(v) - z_0) < 10**-initprec
* maxprec := target precision
*
* For convenience the output klist contains the elements in reverse order:
* klist := [k_n-1, ..., k_0], where
* 1) k_0 <= initprec and
* 2) abs(log(v) - result) < 10**(-2*k_n-1 + 1) <= 10**-maxprec.
*/
static inline int
ln_schedule_prec(mpd_ssize_t klist[MPD_MAX_PREC_LOG2], mpd_ssize_t maxprec,
mpd_ssize_t initprec)
......@@ -4231,6 +4243,7 @@ ln_schedule_prec(mpd_ssize_t klist[MPD_MAX_PREC_LOG2], mpd_ssize_t maxprec,
return i-1;
}
/* The constants have been verified with both decimal.py and mpfr. */
#ifdef CONFIG_64
#if MPD_RDIGITS != 19
#error "mpdecimal.c: MPD_RDIGITS must be 19."
......@@ -4285,7 +4298,7 @@ static const mpd_t _mpd_ln10 = {
(mpd_uint_t *)mpd_ln10_data
};
/* Set 'result' to ln(10), with 'prec' digits, using ROUND_HALF_EVEN. */
/* Set 'result' to ln(10). ulp error: abs(result - log(10)) < ulp(log(10)) */
void
mpd_qln10(mpd_t *result, mpd_ssize_t prec, uint32_t *status)
{
......@@ -4320,7 +4333,7 @@ mpd_qln10(mpd_t *result, mpd_ssize_t prec, uint32_t *status)
mpd_maxcontext(&varcontext);
varcontext.round = MPD_ROUND_TRUNC;
i = ln_schedule_prec(klist, prec+2, result->digits);
i = ln_schedule_prec(klist, prec+2, -result->exp);
for (; i >= 0; i--) {
varcontext.prec = 2*klist[i]+3;
result->flags ^= MPD_NEG;
......@@ -4339,7 +4352,18 @@ mpd_qln10(mpd_t *result, mpd_ssize_t prec, uint32_t *status)
mpd_qfinalize(result, &maxcontext, status);
}
/* Initial approximations for the ln() iteration */
/*
* Initial approximations for the ln() iteration. The values have the
* following properties (established with both decimal.py and mpfr):
*
* Index 0 - 400, logarithms of x in [1.00, 5.00]:
* abs(lnapprox[i] * 10**-3 - log((i+100)/100)) < 10**-2
* abs(lnapprox[i] * 10**-3 - log((i+1+100)/100)) < 10**-2
*
* Index 401 - 899, logarithms of x in (0.500, 0.999]:
* abs(-lnapprox[i] * 10**-3 - log((i+100)/1000)) < 10**-2
* abs(-lnapprox[i] * 10**-3 - log((i+1+100)/1000)) < 10**-2
*/
static const uint16_t lnapprox[900] = {
/* index 0 - 400: log((i+100)/100) * 1000 */
0, 10, 20, 30, 39, 49, 58, 68, 77, 86, 95, 104, 113, 122, 131, 140, 148, 157,
......@@ -4406,7 +4430,10 @@ static const uint16_t lnapprox[900] = {
18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
};
/* Internal ln() function that does not check for specials, zero or one. */
/*
* Internal ln() function that does not check for specials, zero or one.
* Relative error: abs(result - log(a)) < 0.1 * 10**-prec * abs(log(a))
*/
static void
_mpd_qln(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx,
uint32_t *status)
......@@ -4451,10 +4478,16 @@ _mpd_qln(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx,
mpd_setdigits(z);
if (x <= 400) {
/* Reduce the input operand to 1.00 <= v <= 5.00. Let y = x + 100,
* so 100 <= y <= 500. Since y contains the most significant digits
* of v, y/100 <= v < (y+1)/100 and abs(z - log(v)) < 10**-2. */
v.exp = -(a_digits - 1);
t = a_exp + a_digits - 1;
}
else {
/* Reduce the input operand to 0.500 < v <= 0.999. Let y = x + 100,
* so 500 < y <= 999. Since y contains the most significant digits
* of v, y/1000 <= v < (y+1)/1000 and abs(z - log(v)) < 10**-2. */
v.exp = -a_digits;
t = a_exp + a_digits;
mpd_set_negative(z);
......@@ -4465,37 +4498,46 @@ _mpd_qln(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx,
varcontext.round = MPD_ROUND_TRUNC;
maxprec = ctx->prec + 2;
if (x <= 10 || x >= 805) {
/* v is close to 1: Estimate the magnitude of the logarithm.
* If v = 1 or ln(v) will underflow, skip the loop. Otherwise,
* adjust the precision upwards in order to obtain a sufficient
* number of significant digits.
*
* 1) x/(1+x) < ln(1+x) < x, for x > -1, x != 0
if (t == 0 && (x <= 15 || x >= 800)) {
/* 0.900 <= v <= 1.15: Estimate the magnitude of the logarithm.
* If ln(v) will underflow, skip the loop. Otherwise, adjust the
* precision upwards in order to obtain a sufficient number of
* significant digits.
*
* 2) (v-1)/v < ln(v) < v-1
* Case v > 1:
* abs((v-1)/10) < abs((v-1)/v) < abs(ln(v)) < abs(v-1)
* Case v < 1:
* abs(v-1) < abs(ln(v)) < abs((v-1)/v) < abs((v-1)*10)
*/
mpd_t *lower = &tmp;
mpd_t *upper = &vtmp;
int cmp = _mpd_cmp(&v, &one);
varcontext.round = MPD_ROUND_CEILING;
varcontext.prec = maxprec;
mpd_qsub(upper, &v, &one, &varcontext, &varcontext.status);
varcontext.round = MPD_ROUND_FLOOR;
mpd_qdiv(lower, upper, &v, &varcontext, &varcontext.status);
varcontext.round = MPD_ROUND_TRUNC;
/* Upper bound (assume v > 1): abs(v-1), unrounded */
_mpd_qsub(&tmp, &v, &one, &maxcontext, &maxcontext.status);
if (maxcontext.status & MPD_Errors) {
mpd_seterror(result, MPD_Malloc_error, status);
goto finish;
}
if (cmp < 0) {
_mpd_ptrswap(&upper, &lower);
/* v < 1: abs((v-1)*10) */
tmp.exp += 1;
}
if (mpd_adjexp(upper) < mpd_etiny(ctx)) {
_settriple(z, (cmp<0), 1, mpd_etiny(ctx)-1);
goto postloop;
if (mpd_adjexp(&tmp) < mpd_etiny(ctx)) {
/* The upper bound is less than etiny: Underflow to zero */
_settriple(result, (cmp<0), 1, mpd_etiny(ctx)-1);
goto finish;
}
/* XXX optimization: t == 0 && mpd_adjexp(lower) < 0 */
if (mpd_adjexp(lower) < 0) {
maxprec = maxprec - mpd_adjexp(lower);
/* Lower bound: abs((v-1)/10) or abs(v-1) */
tmp.exp -= 1;
if (mpd_adjexp(&tmp) < 0) {
/* Absolute error of the loop: abs(z - log(v)) < 10**-p. If
* p = ctx->prec+2-adjexp(lower), then the relative error of
* the result is (using 10**adjexp(x) <= abs(x)):
*
* abs(z - log(v)) / abs(log(v)) < 10**-p / abs(log(v))
* <= 10**(-ctx->prec-2)
*/
maxprec = maxprec - mpd_adjexp(&tmp);
}
}
......@@ -4523,14 +4565,37 @@ _mpd_qln(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx,
}
}
postloop:
mpd_qln10(&v, maxprec+2, status);
/*
* Case t == 0:
* t * log(10) == 0, the result does not change and the analysis
* above applies. If v < 0.900 or v > 1.15, the relative error is
* less than 10**(-ctx.prec-1).
* Case t != 0:
* z := approx(log(v))
* y := approx(log(10))
* p := maxprec = ctx->prec + 2
* Absolute errors:
* 1) abs(z - log(v)) < 10**-p
* 2) abs(y - log(10)) < 10**-p
* The multiplication is exact, so:
* 3) abs(t*y - t*log(10)) < t*10**-p
* The sum is exact, so:
* 4) abs((z + t*y) - (log(v) + t*log(10))) < (abs(t) + 1) * 10**-p
* Bounds for log(v) and log(10):
* 5) -7/10 < log(v) < 17/10
* 6) 23/10 < log(10) < 24/10
* Using 4), 5), 6) and t != 0, the relative error is:
*
* 7) relerr < ((abs(t) + 1)*10**-p) / abs(log(v) + t*log(10))
* < 0.5 * 10**(-p + 1) = 0.5 * 10**(-ctx->prec-1)
*/
mpd_qln10(&v, maxprec+1, status);
mpd_qmul_ssize(&tmp, &v, t, &maxcontext, status);
varcontext.prec = maxprec+2;
mpd_qadd(result, &tmp, z, &varcontext, status);
mpd_qadd(result, &tmp, z, &maxcontext, status);
finish:
*status |= (MPD_Inexact|MPD_Rounded);
mpd_del(&v);
mpd_del(&vtmp);
mpd_del(&tmp);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment