Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
C
cpython
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Batuhan Osman TASKAYA
cpython
Commits
e8f1e002
Kaydet (Commit)
e8f1e002
authored
Eyl 07, 2016
tarafından
Raymond Hettinger
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
Issue #18844: Add random.weighted_choices()
üst
63d98bcd
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
118 additions
and
1 deletion
+118
-1
random.rst
Doc/library/random.rst
+21
-0
random.py
Lib/random.py
+27
-1
test_random.py
Lib/test/test_random.py
+68
-0
NEWS
Misc/NEWS
+2
-0
No files found.
Doc/library/random.rst
Dosyayı görüntüle @
e8f1e002
...
...
@@ -124,6 +124,27 @@ Functions for sequences:
Return a random element from the non-empty sequence *seq*. If *seq* is empty,
raises :exc:`IndexError`.
.. function:: weighted_choices(k, population, weights=None, *, cum_weights=None)
Return a *k* sized list of elements chosen from the *population* with replacement.
If the *population* is empty, raises :exc:`IndexError`.
If a *weights* sequence is specified, selections are made according to the
relative weights. Alternatively, if a *cum_weights* sequence is given, the
selections are made according to the cumulative weights. For example, the
relative weights ``[10, 5, 30, 5]`` are equivalent to the cumulative
weights ``[10, 15, 45, 50]``. Internally, the relative weights are
converted to cumulative weights before making selections, so supplying the
cumulative weights saves work.
If neither *weights* nor *cum_weights* are specified, selections are made
with equal probability. If a weights sequence is supplied, it must be
the same length as the *population* sequence. It is a :exc:`TypeError`
to specify both *weights* and *cum_weights*.
The *weights* or *cum_weights* can use any numeric type that interoperates
with the :class:`float` values returned by :func:`random` (that includes
integers, floats, and fractions but excludes decimals).
.. function:: shuffle(x[, random])
...
...
Lib/random.py
Dosyayı görüntüle @
e8f1e002
...
...
@@ -8,6 +8,7 @@
---------
pick random element
pick random sample
pick weighted random sample
generate random permutation
distributions on the real line:
...
...
@@ -43,12 +44,14 @@ from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from
os
import
urandom
as
_urandom
from
_collections_abc
import
Set
as
_Set
,
Sequence
as
_Sequence
from
hashlib
import
sha512
as
_sha512
import
itertools
as
_itertools
import
bisect
as
_bisect
__all__
=
[
"Random"
,
"seed"
,
"random"
,
"uniform"
,
"randint"
,
"choice"
,
"sample"
,
"randrange"
,
"shuffle"
,
"normalvariate"
,
"lognormvariate"
,
"expovariate"
,
"vonmisesvariate"
,
"gammavariate"
,
"triangular"
,
"gauss"
,
"betavariate"
,
"paretovariate"
,
"weibullvariate"
,
"getstate"
,
"setstate"
,
"getrandbits"
,
"getstate"
,
"setstate"
,
"getrandbits"
,
"weighted_choices"
,
"SystemRandom"
]
NV_MAGICCONST
=
4
*
_exp
(
-
0.5
)
/
_sqrt
(
2.0
)
...
...
@@ -334,6 +337,28 @@ class Random(_random.Random):
result
[
i
]
=
population
[
j
]
return
result
def
weighted_choices
(
self
,
k
,
population
,
weights
=
None
,
*
,
cum_weights
=
None
):
"""Return a k sized list of population elements chosen with replacement.
If the relative weights or cumulative weights are not specified,
the selections are made with equal probability.
"""
if
cum_weights
is
None
:
if
weights
is
None
:
choice
=
self
.
choice
return
[
choice
(
population
)
for
i
in
range
(
k
)]
else
:
cum_weights
=
list
(
_itertools
.
accumulate
(
weights
))
elif
weights
is
not
None
:
raise
TypeError
(
'Cannot specify both weights and cumulative_weights'
)
if
len
(
cum_weights
)
!=
len
(
population
):
raise
ValueError
(
'The number of weights does not match the population'
)
bisect
=
_bisect
.
bisect
random
=
self
.
random
total
=
cum_weights
[
-
1
]
return
[
population
[
bisect
(
cum_weights
,
random
()
*
total
)]
for
i
in
range
(
k
)]
## -------------------- real-valued distributions -------------------
## -------------------- uniform distribution -------------------
...
...
@@ -724,6 +749,7 @@ choice = _inst.choice
randrange
=
_inst
.
randrange
sample
=
_inst
.
sample
shuffle
=
_inst
.
shuffle
weighted_choices
=
_inst
.
weighted_choices
normalvariate
=
_inst
.
normalvariate
lognormvariate
=
_inst
.
lognormvariate
expovariate
=
_inst
.
expovariate
...
...
Lib/test/test_random.py
Dosyayı görüntüle @
e8f1e002
...
...
@@ -7,6 +7,7 @@ import warnings
from
functools
import
partial
from
math
import
log
,
exp
,
pi
,
fsum
,
sin
from
test
import
support
from
fractions
import
Fraction
class
TestBasicOps
:
# Superclass with tests common to all generators.
...
...
@@ -141,6 +142,73 @@ class TestBasicOps:
def
test_sample_on_dicts
(
self
):
self
.
assertRaises
(
TypeError
,
self
.
gen
.
sample
,
dict
.
fromkeys
(
'abcdef'
),
2
)
def
test_weighted_choices
(
self
):
weighted_choices
=
self
.
gen
.
weighted_choices
data
=
[
'red'
,
'green'
,
'blue'
,
'yellow'
]
str_data
=
'abcd'
range_data
=
range
(
4
)
set_data
=
set
(
range
(
4
))
# basic functionality
for
sample
in
[
weighted_choices
(
5
,
data
),
weighted_choices
(
5
,
data
,
range
(
4
)),
weighted_choices
(
k
=
5
,
population
=
data
,
weights
=
range
(
4
)),
weighted_choices
(
k
=
5
,
population
=
data
,
cum_weights
=
range
(
4
)),
]:
self
.
assertEqual
(
len
(
sample
),
5
)
self
.
assertEqual
(
type
(
sample
),
list
)
self
.
assertTrue
(
set
(
sample
)
<=
set
(
data
))
# test argument handling
with
self
.
assertRaises
(
TypeError
):
# missing arguments
weighted_choices
(
2
)
self
.
assertEqual
(
weighted_choices
(
0
,
data
),
[])
# k == 0
self
.
assertEqual
(
weighted_choices
(
-
1
,
data
),
[])
# negative k behaves like ``[0] * -1``
with
self
.
assertRaises
(
TypeError
):
weighted_choices
(
2.5
,
data
)
# k is a float
self
.
assertTrue
(
set
(
weighted_choices
(
5
,
str_data
))
<=
set
(
str_data
))
# population is a string sequence
self
.
assertTrue
(
set
(
weighted_choices
(
5
,
range_data
))
<=
set
(
range_data
))
# population is a range
with
self
.
assertRaises
(
TypeError
):
weighted_choices
(
2.5
,
set_data
)
# population is not a sequence
self
.
assertTrue
(
set
(
weighted_choices
(
5
,
data
,
None
))
<=
set
(
data
))
# weights is None
self
.
assertTrue
(
set
(
weighted_choices
(
5
,
data
,
weights
=
None
))
<=
set
(
data
))
with
self
.
assertRaises
(
ValueError
):
weighted_choices
(
5
,
data
,
[
1
,
2
])
# len(weights) != len(population)
with
self
.
assertRaises
(
IndexError
):
weighted_choices
(
5
,
data
,
[
0
]
*
4
)
# weights sum to zero
with
self
.
assertRaises
(
TypeError
):
weighted_choices
(
5
,
data
,
10
)
# non-iterable weights
with
self
.
assertRaises
(
TypeError
):
weighted_choices
(
5
,
data
,
[
None
]
*
4
)
# non-numeric weights
for
weights
in
[
[
15
,
10
,
25
,
30
],
# integer weights
[
15.1
,
10.2
,
25.2
,
30.3
],
# float weights
[
Fraction
(
1
,
3
),
Fraction
(
2
,
6
),
Fraction
(
3
,
6
),
Fraction
(
4
,
6
)],
# fractional weights
[
True
,
False
,
True
,
False
]
# booleans (include / exclude)
]:
self
.
assertTrue
(
set
(
weighted_choices
(
5
,
data
,
weights
))
<=
set
(
data
))
with
self
.
assertRaises
(
ValueError
):
weighted_choices
(
5
,
data
,
cum_weights
=
[
1
,
2
])
# len(weights) != len(population)
with
self
.
assertRaises
(
IndexError
):
weighted_choices
(
5
,
data
,
cum_weights
=
[
0
]
*
4
)
# cum_weights sum to zero
with
self
.
assertRaises
(
TypeError
):
weighted_choices
(
5
,
data
,
cum_weights
=
10
)
# non-iterable cum_weights
with
self
.
assertRaises
(
TypeError
):
weighted_choices
(
5
,
data
,
cum_weights
=
[
None
]
*
4
)
# non-numeric cum_weights
with
self
.
assertRaises
(
TypeError
):
weighted_choices
(
5
,
data
,
range
(
4
),
cum_weights
=
range
(
4
))
# both weights and cum_weights
for
weights
in
[
[
15
,
10
,
25
,
30
],
# integer cum_weights
[
15.1
,
10.2
,
25.2
,
30.3
],
# float cum_weights
[
Fraction
(
1
,
3
),
Fraction
(
2
,
6
),
Fraction
(
3
,
6
),
Fraction
(
4
,
6
)],
# fractional cum_weights
]:
self
.
assertTrue
(
set
(
weighted_choices
(
5
,
data
,
cum_weights
=
weights
))
<=
set
(
data
))
def
test_gauss
(
self
):
# Ensure that the seed() method initializes all the hidden state. In
# particular, through 2.2.1 it failed to reset a piece of state used
...
...
Misc/NEWS
Dosyayı görüntüle @
e8f1e002
...
...
@@ -101,6 +101,8 @@ Library
-
Issue
#
27691
:
Fix
ssl
module
's parsing of GEN_RID subject alternative name
fields in X.509 certs.
- Issue #18844: Add random.weighted_choices().
- Issue #25761: Improved error reporting about truncated pickle data in
C implementation of unpickler. UnpicklingError is now raised instead of
AttributeError and ValueError in some cases.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment