Skip to content

  • Projeler
  • Gruplar
  • Parçacıklar
  • Yardım
    • Yükleniyor...
  • Oturum aç / Kaydol
D
disdikkalteng
  • Proje
    • Proje
    • Ayrıntılar
    • Etkinlik
    • Cycle Analytics
  • Konular (issue) 1
    • Konular (issue) 1
    • Liste
    • Pano
    • Etiketler
    • Kilometre Taşları
  • Birleştirme (merge) Talepleri 0
    • Birleştirme (merge) Talepleri 0
  • CI / CD
    • CI / CD
    • İş akışları (pipeline)
    • İşler
    • Zamanlamalar
  • Paketler
    • Paketler
  • Wiki
    • Wiki
  • Parçacıklar
    • Parçacıklar
  • Üyeler
    • Üyeler
  • Collapse sidebar
  • Etkinlik
  • Yeni bir konu (issue) oluştur
  • İşler
  • Konu (issue) Panoları
  • Leandra Marrone
  • disdikkalteng
  • Issues
  • #1

Closed
Open
Opened May 29, 2025 by Leandra Marrone@leandramarrone
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with reinforcement learning (RL) to improve reasoning ability. DeepSeek-R1 attains outcomes on par with OpenAI's o1 model on a number of standards, including MATH-500 and SWE-bench.

DeepSeek-R1 is based on DeepSeek-V3, a mixture of experts (MoE) model recently open-sourced by DeepSeek. This base model is fine-tuned using Group Relative Policy Optimization (GRPO), a reasoning-oriented variation of RL. The research group also carried out understanding distillation from DeepSeek-R1 to open-source Qwen and Llama designs and released several variations of each; these designs exceed bigger designs, consisting of GPT-4, on mathematics and coding criteria.

[DeepSeek-R1 is] the initial step toward improving language design reasoning capabilities utilizing pure reinforcement learning (RL). Our goal is to explore the capacity of LLMs to establish thinking abilities with no supervised data, concentrating on their self-evolution through a pure RL process...DeepSeek-R1 ... master a vast array of jobs, including imaginative writing, general question answering, editing, summarization, and more. Additionally, DeepSeek-R1 demonstrates outstanding efficiency on tasks needing long-context understanding, significantly exceeding DeepSeek-V3 on long-context benchmarks.

To establish the design, DeepSeek started with DeepSeek-V3 as a base. They first attempted fine-tuning it only with RL, and with no monitored fine-tuning (SFT), producing a design called DeepSeek-R1-Zero, which they have actually likewise released. This design shows strong thinking efficiency, but" powerful reasoning behaviors, it deals with several concerns. For example, DeepSeek-R1-Zero battles with difficulties like poor readability and language mixing."

To resolve this, the team utilized a short stage of SFT to avoid the "cold start" issue of RL. They gathered a number of thousand examples of chain-of-thought reasoning to use in SFT of DeepSeek-V3 before running RL. After the RL process assembled, they then collected more SFT information utilizing rejection tasting, resulting in a dataset of 800k samples. This dataset was utilized for further fine-tuning and to produce the distilled models from Llama and Qwen.

DeepSeek assessed their design on a range of reasoning, math, and coding standards and compared it to other designs, consisting of Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outperformed all of them on several of the standards, yewiki.org consisting of AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a few days of its release, the LMArena revealed that DeepSeek-R1 was ranked # 3 overall in the arena and # 1 in coding and math. It was also tied for # 1 with o1 in "Hard Prompt with Style Control" category.

Django structure co-creator Simon Willison discussed his experiments with among the DeepSeek distilled Llama designs on his blog:

Each reaction begins with a ... pseudo-XML tag containing the chain of idea utilized to assist produce the response. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then thought for 20 paragraphs before outputting the joke! ... [T] he joke is horrible. But the process of was such an interesting insight into how these new designs work.

Andrew Ng's newsletter The Batch blogged about DeepSeek-R1:

DeepSeek is rapidly emerging as a strong builder of open designs. Not only are these models terrific entertainers, but their license permits usage of their outputs for distillation, possibly pushing forward the state of the art for language models (and multimodal models) of all sizes.

The DeepSeek-R1 models are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This material remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering - Generative AI

  • Large language designs

    - Related Editorial

    Related Sponsored Content

    - [eBook] Starting with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to try out innovative technologies? You can start developing intelligent apps with totally free Azure app, information, and AI services to decrease upfront costs. Learn More.

    How could we improve? Take the InfoQ reader study

    Each year, we look for feedback from our readers to help us improve InfoQ. Would you mind costs 2 minutes to share your feedback in our brief survey? Your feedback will straight assist us continually progress how we support you. The InfoQ Team Take the survey

    Related Content

    The InfoQ Newsletter

    A round-up of recently's content on InfoQ sent every Tuesday. Join a community of over 250,000 senior developers.
Atanan Kişi
Şuna ata
Hiçbiri
Kilometre taşı
Hiçbiri
Kilometre taşı ata
Zaman takibi
None
Sona erme tarihi
Bitiş tarihi yok
0
Etiketler
Hiçbiri
Etiket ata
  • Proje etiketlerini görüntüle
Referans: leandramarrone/disdikkalteng#1