Kaydet (Commit) 188ed98e authored tarafından Thomas Arnhold's avatar Thomas Arnhold

callcatcher: remove unused methods

üst 5f24eddf
......@@ -56,7 +56,6 @@ namespace basegfx
double getLength() const { if(maLengthArray.size()) return maLengthArray[maLengthArray.size() - 1]; else return 0.0; }
double distanceToRelative(double fDistance) const;
double relativeToDistance(double fRelative) const;
};
} // end of namespace basegfx
......
......@@ -202,22 +202,6 @@ namespace basegfx
sense to use reserve(4) at the vector as preparation.
*/
void getAllExtremumPositions(::std::vector< double >& rResults) const;
/** Get optimum-split position on this segment
This method calculates the positions of all points of the segment
that have the maximimum distance to the corresponding line from
startpoint-endpoint. This helps to approximate the bezier curve
with a minimum number of line segments
@param fResults
Result positions are in the range ]0.0 .. 1.0[
Cubic beziers have at most two of these positions
@return
Returns the number of split positions found
*/
int getMaxDistancePositions( double fResults[2]) const;
};
} // end of namespace basegfx
......
......@@ -233,19 +233,6 @@ namespace basegfx
*/
B3DVector getPerpendicular(const B3DVector& rNormalizedVec) const;
/** get the projection of this Vector on the given Plane
@attention This only works if the given 3D Vector defining
the Plane is normalized.
@param rNormalizedPlane
A normalized 3D Vector defining a Plane.
@return
The projected 3D Vector
*/
B3DVector getProjectionOnPlane(const B3DVector& rNormalizedPlane) const;
/** Calculate the Scalar product
This method calculates the Scalar product between this
......
......@@ -126,37 +126,6 @@ namespace basegfx
return (static_cast< double >(nIndex) + fLinearInterpolatedLength) / static_cast< double >(mnEdgeCount);
}
double B2DCubicBezierHelper::relativeToDistance(double fRelative) const
{
if(fRelative <= 0.0)
{
return 0.0;
}
const double fLength(getLength());
if(fTools::moreOrEqual(fRelative, 1.0))
{
return fLength;
}
// fRelative is in ]0.0 .. 1.0[
if(1 == mnEdgeCount)
{
// not a bezier, linear edge
return fRelative * fLength;
}
// fRelative is in ]0.0 .. 1.0[
const double fIndex(fRelative * static_cast< double >(mnEdgeCount));
double fIntIndex;
const double fFractIndex(modf(fIndex, &fIntIndex));
const sal_uInt32 nIntIndex(static_cast< sal_uInt32 >(fIntIndex));
const double fStartDistance(nIntIndex ? maLengthArray[nIntIndex - 1] : 0.0);
return fStartDistance + ((maLengthArray[nIntIndex] - fStartDistance) * fFractIndex);
}
} // end of namespace basegfx
//////////////////////////////////////////////////////////////////////////////
......
......@@ -1042,65 +1042,6 @@ namespace basegfx
}
}
int B2DCubicBezier::getMaxDistancePositions( double pResult[2]) const
{
// the distance from the bezier to a line through start and end
// is proportional to (ENDx-STARTx,ENDy-STARTy)*(+BEZIERy(t)-STARTy,-BEZIERx(t)-STARTx)
// this distance becomes zero for at least t==0 and t==1
// its extrema that are between 0..1 are interesting as split candidates
// its derived function has the form dD/dt = fA*t^2 + 2*fB*t + fC
const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
const double fA = (3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX()) * aRelativeEndPoint.getY()
- (3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY()) * aRelativeEndPoint.getX();
const double fB = (maControlPointB.getX() - 2 * maControlPointA.getX() + maStartPoint.getX()) * aRelativeEndPoint.getY()
- (maControlPointB.getY() - 2 * maControlPointA.getY() + maStartPoint.getY()) * aRelativeEndPoint.getX();
const double fC = (maControlPointA.getX() - maStartPoint.getX()) * aRelativeEndPoint.getY()
- (maControlPointA.getY() - maStartPoint.getY()) * aRelativeEndPoint.getX();
// test for degenerated case: order<2
if( fTools::equalZero(fA) )
{
// test for degenerated case: order==0
if( fTools::equalZero(fB) )
return 0;
// solving the order==1 polynomial is trivial
pResult[0] = -fC / (2*fB);
// test root and ignore it when it is outside the curve
int nCount = ((pResult[0] > 0) && (pResult[0] < 1));
return nCount;
}
// derivative is polynomial of order 2
// check if the polynomial has non-imaginary roots
const double fD = fB*fB - fA*fC;
if( fD >= 0.0 ) // TODO: is this test needed? geometrically not IMHO
{
// calculate first root (avoiding a numerically unstable subtraction)
const double fS = sqrt(fD);
const double fQ = -(fB + ((fB >= 0) ? +fS : -fS));
pResult[0] = fQ / fA;
// ignore root when it is outside the curve
static const double fEps = 1e-9;
int nCount = ((pResult[0] > fEps) && (pResult[0] < fEps));
// ignore root multiplicity
if( !fTools::equalZero(fD) )
{
// calculate the other root
const double fRoot = fC / fQ;
// ignore root when it is outside the curve
if( (fRoot > fEps) && (fRoot < 1.0-fEps) )
pResult[ nCount++ ] = fRoot;
}
return nCount;
}
return 0;
}
} // end of namespace basegfx
// eof
......
......@@ -67,19 +67,6 @@ namespace basegfx
return aNew;
}
B3DVector B3DVector::getProjectionOnPlane(const B3DVector& rNormalizedPlane) const
{
B3DVector aNew(*this);
aNew = cross(aNew, rNormalizedPlane);
aNew = cross(aNew, rNormalizedPlane);
aNew.mfX = mfX - aNew.mfX;
aNew.mfY = mfY - aNew.mfY;
aNew.mfZ = mfZ - aNew.mfZ;
return aNew;
}
B3DVector& B3DVector::operator*=( const ::basegfx::B3DHomMatrix& rMat )
{
const double fTempX( rMat.get(0,0)*mfX + rMat.get(0,1)*mfY + rMat.get(0,2)*mfZ );
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment